Aphids Facing Their Parasitoids: A First Look at How Chemical Signals May Make Higher Densities of the Pea Aphid Acyrthosiphon pisum Less Attractive to the Parasitoid Aphidius ervi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant and Insect Rearing
2.2. Bio-Assay Behavioral Experiment
2.3. Experiment 1: Effect of Aphid Density on Parasitoid Behavioral Choice
2.4. Experiment 2: Detectability of a Female Conspecific on a Host Colony
2.5. Chemical Extraction and Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
2.6. Statistical Analysis
3. Results
3.1. Experiment 1: Effect of Host Density on A. ervi Response
3.2. Experiment 2: Detectability of a Female Conspecific on a Host Colony
3.3. Volatile Blends
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, J.O. Chapter 68—Defensive Behavior. In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 252–257. ISBN 978-0-12-374144-8. [Google Scholar]
- Pulliam, H. On the Advantages of Flocking. J. Theor. Biol. 1973, 38, 419–422. [Google Scholar] [CrossRef]
- Powell, G.V.N. Experimental Analysis of the Social Value of Flocking by Starlings (Sturnus vulgaris) in Relation to Predation and Foraging. Anim. Behav. 1974, 22, 501–505. [Google Scholar] [CrossRef]
- Beauchamp, G. A Comparative Analysis of Vigilance in Birds. Evol. Ecol. 2010, 24, 1267–1276. [Google Scholar] [CrossRef]
- Creel, S.; Schuette, P.; Christianson, D. Effects of Predation Risk on Group Size, Vigilance, and Foraging Behavior in an African Ungulate Community. Behav. Ecol. 2014, 25, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.J.W.; Herbert-Read, J.E.; Sumpter, D.J.T.; Krause, J. Fast and Accurate Decisions through Collective Vigilance in Fish Shoals. Proc. Acad. Natl. Sci. USA 2011, 108, 2312–2315. [Google Scholar] [CrossRef] [Green Version]
- Inman, A.; Krebs, J. Predation and Group Living. Trends Ecol. Evol. 1987, 2, 31–32. [Google Scholar] [CrossRef]
- Foster, W.A.; Treherne, J.E. Evidence for the Dilution Effect in the Selfish Herd from Fish Predation on a Marine Insect. Nature 1981, 293, 466–467. [Google Scholar] [CrossRef]
- Ioannou, C.; Tosh, C.; Neville, L.; Krause, J. The Confusion Effect—From Neural Networks to Reduced Predation Risk. Behav. Ecol. 2008, 19, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Wiesel, I. Killing of Cape Fur Seal (Arctocephalus pusillus Pusillus) Pups by Brown Hyenas (Parahyaena brunnea) at Mainland Breeding Colonies along the Coastal Namib Desert. Acta Ethol. 2010, 13, 93–100. [Google Scholar] [CrossRef]
- Sugiura, S. Predators as Drivers of Insect Defenses. Entomol. Sci. 2020, 23, 316–337. [Google Scholar] [CrossRef]
- Théry, M.; Gomez, D. Insect Colours and Visual Appearance in the Eyes of Their Predators. Adv. Insect Physiol. 2010, 38, 267–363. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd ed.; John Wiley and Sons Ltd.: Chichester, UK, 2000. [Google Scholar]
- Boivin, G.; Hance, T.; Brodeur, J. Aphid Parasitoids in Biological Control. Can. J. Plant Sci. 2012, 92, 1–12. [Google Scholar] [CrossRef]
- Hance, T.; Kohandani-Trafresh, F.; Munaut, F. Biological control. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 448–493. [Google Scholar]
- Wang, Z.; Liu, Y.; Shi, M.; Huang, J.; Chen, X. Parasitoid Wasps as Effective Biological Control Agents. J. Integr. Agric. 2019, 18, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Dixon, A.F.G. The Escape Responses Shown by Certain Aphids to the Presence of the Coccinellid Adalia decempunctata (L.). Trans. R. Entomol. Soc. Lond. 1958, 110, 319–334. [Google Scholar] [CrossRef]
- Siddiqui, J.; Xuting, Z.; Qian, L.; Zhang, H.; Xiaolan, L.; Huang, X. Functional Morphology and Defensive Behavior in a Social Aphid. Insects 2019, 10, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphreys, R.; Ruxton, G.; Karley, A. Drop When the Stakes Are High: Adaptive, Flexible Use of Dropping Behaviour by Aphids. Behaviour 2021, 1, 1–21. [Google Scholar] [CrossRef]
- Fan, L.-P.; Ouyang, F.; Su, J.-W.; Ge, F. Adaptation of Defensive Strategies by the Pea Aphid Mediates Predation Risk from the Predatory Lady Beetle. J. Chem. Ecol. 2018, 44, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Vandermoten, S.; Mescher, M.; Francis, F.; Haubruge, E.; Verheggen, F. Aphid Alarm Pheromone: An Overview of Current Knowledge on Biosynthesis and Functions. Insect Biochem. Mol. Biol. 2011, 42, 155–163. [Google Scholar] [CrossRef]
- Treherne, J.E.; Foster, W.A. Group Size and Anti-Predator Strategies in a Marine Insect. Anim. Behav. 1982, 30, 536–542. [Google Scholar] [CrossRef]
- Wellings, P.W. Foraging Behaviour in Aphid Parasitoids: Spatial Scale and Resource Assessment. Eur. J. Entomol. 1993, 90, 377–382. [Google Scholar]
- Quilici, S.; Rousse, P. Location of Host and Host Habitat by Fruit Fly Parasitoids. Insects 2012, 3, 1220–1235. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, C.; Lewis, W.J.; Pare, P.; Alborn, H.; Tumlinson, J. Herbivore-Infested Plants Selectively Attract Parasitoids. Nature 1998, 393, 570–573. [Google Scholar] [CrossRef]
- Guo, H.; Wang, C.-Z. The Ethological Significance and Olfactory Detection of Herbivore-Induced Plant Volatiles in Interactions of Plants, Herbivorous Insects, and Parasitoids. Arthropod-Plant Interact. 2019, 13, 161–179. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Schuman, M.C.; Baldwin, I.T. Field Studies Reveal Functions of Chemical Mediators in Plant Interactions. Chem. Soc. Rev. 2018, 47, 5338–5353. [Google Scholar] [CrossRef] [Green Version]
- Turlings, T.C.J.; Tumlinson, J.H.; Lewis, W.J. Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps. Science 1990, 250, 1251–1253. [Google Scholar] [CrossRef] [Green Version]
- Bezemer, T.M.; Harvey, J.A.; Kamp, A.F.D.; Wagenaar, R.; Gols, R.; Kostenko, O.; Fortuna, T.; Engelkes, T.; Vet, L.E.M.; van Der Putten, E.W.; et al. Behaviour of Male and Female Parasitoids in the Field: Influence of Patch Size, Host Density, and Habitat Complexity. Ecol. Entomol. 2010, 35, 341–351. [Google Scholar] [CrossRef]
- Powell, W.; Pennacchio, F.; Poppy, G.M.; Tremblay, E. Strategies Involved in the Location of Hosts by the Parasitoid Aphidius Ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol. Control. 1998, 11, 104–112. [Google Scholar] [CrossRef]
- Henneman, M.L.; Dyreson, E.G.; Takabayashi, J.; Raguso, R.A. Response to Walnut Olfactory and Visual Cues by the Parasitic Wasp Diachasmimorpha juglandis. J. Chem. Ecol. 2002, 28, 2221–2244. [Google Scholar] [CrossRef]
- Aartsma, Y.; Bianchi, F.J.J.A.; van der Werf, W.; Poelman, E.H.; Dicke, M. Herbivore-Induced Plant Volatiles and Tritrophic Interactions across Spatial Scales. New Phytol. 2017, 216, 1054–1063. [Google Scholar] [CrossRef] [Green Version]
- Kroes, A.; van Loon, J.J.A.; Dicke, M. Density-Dependent Interference of Aphids with Caterpillar-Induced Defenses in Arabidopsis: Involvement of Phytohormones and Transcription Factors. Plant Cell Physiol. 2015, 56, 98–106. [Google Scholar] [CrossRef]
- Turlings, T.C.J.; Loughrin, J.H.; McCall, P.J.; Rose, U.S.R.; Lewis, W.J.; Tumlinson, J.H. How Caterpillar-Damaged Plants Protect Themselves by Attracting Parasitic Wasps. Proc. Acda. Natl. Sci. USA 1995, 92, 4169–4174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiojiri, K.; Ozawa, R.; Kugimiya, S.; Uefune, M.; van Wijk, M.; Sabelis, M.W.; Takabayashi, J. Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or “Cry Wolf” Signals? PLoS ONE 2010, 5, e12161. [Google Scholar] [CrossRef] [PubMed]
- Masson, C.; Mustaparta, H. Chemical Information Processing in the Olfactory System of Insects. Physiol. Rev. 1990, 70, 199–245. [Google Scholar] [CrossRef] [PubMed]
- Florencio-Ortiz, V.; Sellés-Marchart, S.; Zubcoff-Vallejo, J.; Jander, G.; Casas, J.L. Changes in the Free Amino Acid Composition of Capsicum annuum (Pepper) Leaves in Response to Myzus persicae (Green Peach Aphid) Infestation. A Comparison with Water Stress. PLoS ONE 2018, 13, e0198093. [Google Scholar] [CrossRef] [Green Version]
- Cascone, P.; Gols, R.; Fatouros, N.E.; Ponzio, C.; Dicke, M.; Guerrieri, E. The Effect of Rearing History and Aphid Density on Volatile-Mediated Foraging Behaviour of Diaeretiella rapae. Ecol. Entomol. 2019, 44, 255–264. [Google Scholar] [CrossRef]
- Prado, E.; Tjallingii, W.F. Behavioral Evidence for Local Reduction of Aphid-Induced Resistance. J. Insect Sci. 2007, 7, 48. [Google Scholar] [CrossRef]
- Walling, L. Avoiding Effective Defenses: Strategies Employed by Phloem-Feeding Insects. Plant Physiol. 2008, 146, 859–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotes, B.; Rännbäck, L.-M.; Björkman, M.; Norli, H.; Meyling, N.; Rämert, B.; Anderson, P. Habitat Selection of a Parasitoid Mediated by Volatiles Informing on Host and Intraguild Predator Densities. Oecologia 2015, 179, 151–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelo, M.; Corley, J.; Desouhant, E. Conspecific Avoidance during Foraging in Venturia canescens (Hymenoptera: Ichneumonidae): The Roles of Host Presence and Conspecific Densities. J. Insect Behav. 2003, 16, 307–318. [Google Scholar] [CrossRef]
- Almohamad, R.; Hance, T. Encounters with Aphid Predators or Their Residues Impede Searching and Oviposition by the Aphid Parasitoid Aphidius ervi (Hymenoptera: Aphidiinae). Insect Sci. 2013, 21, 181–188. [Google Scholar] [CrossRef]
- Janssen, A.; Alphen, J.; Sabelis, M.; Bakker, K. Specificity of Odor Mediated Avoidance of Competition in Drosophila Parasitoids. Behav. Ecol. Sociobiol. 1995, 36, 229–235. [Google Scholar] [CrossRef]
- Xia, P.-L.; Xinglin, Y.; Li, Z.-T.; Feng, Y. The Impacts of Harmonia Axyridis Cues on Foraging Behavior of Aphidius Gifuensis to Myzus Persicae. J. Asia Pacific Entomol. 2021, 24, 278–284. [Google Scholar] [CrossRef]
- Muratori, F.B.; Damiens, D.; Hance, T.; Boivin, G. Bad Housekeeping: Why Do Aphids Leave Their Exuviae inside the Colony? BMC Evol. Biol. 2008, 8, 2008. [Google Scholar] [CrossRef] [Green Version]
- Muratori, F.; Le Ralec, A.; Lognay, G.; Hance, T. Epicuticular Factors Involved in Host Recognition for the Aphid Parasitoid Aphidius Rhopalosiphi. J. Chem. Ecol. 2006, 32, 579–593. [Google Scholar] [CrossRef]
- Du, Y.J.; Poppy, G.M.; Powell, W. Relative Importance of Semiochemicals from First and Second Trophic Levels in Host Foraging Behavior of Aphidius ervi. J. Chem. Ecol. 1996, 22, 1591–1605. [Google Scholar] [CrossRef]
- Guerrieri, E.; Poppy, G.M.; Powell, W.; Rao, R.; Pennacchio, F. Plant-to-Plant Communication Mediating in Flight Orientation of Aphidius ervi. J. Chem. Ecol. 2002, 28, 1703–1715. [Google Scholar] [CrossRef]
- Guerrieri, E.; Poppy, G.M.; Powell, W.; Tremblay, E.; Pennacchio, F. Induction and Systemic Release of Herbivore-Induced Plant Volatiles Mediating in Flight Orientation of Aphidius ervi. J. Chem. Ecol. 1999, 25, 1247–1261. [Google Scholar] [CrossRef]
- Sasso, R.; Iodice, L.; Digilio, M.C.; Carretta, A.; Ariati, L.; Guerrieri, E. Host-Locating Response by the Aphid Parasitoid Aphidius ervi to Tomato Plant Volatiles. J. Plant Interact. 2007, 2, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.J.; Poppy, G.M.; Powell, W.; Pickett, J.A.; Wadhams, L.J.; Woodcock, C.M. Identification of Semiochemicals Released during Aphid Feeding That Attract Parasitoid Aphidius ervi. J. Chem. Ecol. 1998, 24, 1355–1368. [Google Scholar] [CrossRef]
- Taborsky, M. Sample Size in the Study of Behaviour. Ethology 2010, 116, 185–202. [Google Scholar] [CrossRef]
- Champely, S. Pwr: Basic Functions for Power Analysis. 2020. Available online: https://github.com/heliosdrm/pwr (accessed on 18 September 2021).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R. Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; ISBN 3-900051-07-0. [Google Scholar]
- Guerrieri, E.; Pennacchio, F.; Tremblay, E. Flight Behavior of the Aphid Parasitoid Aphidius ervi (Hymenoptera, Braconidae) in Response to Plant and Host Volatiles. Eur. J. Entomol. 1993, 90, 415–421. [Google Scholar]
- Lucas-Barbosa, D.; Poelman, E.H.; Aartsma, Y.; Snoeren, T.A.L.; van Loon, J.J.A.; Dicke, M. Caught between Parasitoids and Predators—Survival of a Specialist Herbivore on Leaves and Flowers of Mustard Plants. J. Chem. Ecol. 2014, 40, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.-L.; Liu, T.-X. Aphid-Induced Plant Volatiles Affect the Attractiveness of Tomato Plants to Bemisia tabaci and Associated Natural Enemies. Entomol. Exp. Appl. 2014, 151, 259–269. [Google Scholar] [CrossRef]
- Gagic, V.; Petrović-Obradović, O.; Fründ, J.; Kavallieratos, N.G.; Athanassiou, C.G.; Starý, P.; Tomanović, Ž. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage. PLoS ONE 2016, 11, e0157674. [Google Scholar] [CrossRef]
- Jaroasik, V.; Lapchin, L. An Experimental Investigation of Patterns of Parasitism at Three Spatial Scales in an Aphid-Parasitoid System (Hymenoptera: Aphidiidae). Eur. J. Endocrinol. 2001, 98, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Hopper, K. Risk-Spreading and Bet-Hedging in Insect Population Biology. Ann. Rev. Entomol. 1999, 44, 535–560. [Google Scholar] [CrossRef]
- Seger, J.; Brockman, H.J. What is bethedging? In Oxford Surveys in Evolutionary Biology; Harvey, P.H., Partridge, L., Eds.; Oxford University Press: Oxford, UK, 1987; Volume 4. [Google Scholar]
- Ives, A.R.; Settle, W.H. The Failure of a Parasitoid to Persist with a Superabundant Host: The Importance of the Numerical Response. Oikos 1996, 75, 269–278. [Google Scholar] [CrossRef]
- Yang, S.; Xu, R.; Yang, S.Y.; Kuang, R.P. Olfactory Responses of Aphidius gifuensis to Odors of Host Plants and Aphid-Plant Complexes. Insect Sci. 2009, 16, 503–510. [Google Scholar] [CrossRef]
- Ismail, M.; Albittar, L. Mortality Factors Affecting Immature Stages of Codling Moth, Cydia pomonella (Lepidoptera: Tortricidae), and the Impact of Parasitoid Complex. Biocontrol. Sci. Technol. 2016, 26, 72–85. [Google Scholar] [CrossRef]
- Albittar, L.; Ismail, M.; Bragard, C.; Hance, T. Host Plants and Aphid Hosts Influence the Selection Behaviour of Three Aphid Parasitoids (Hymenoptera: Braconidae: Aphidiinae). Eur. J. Entomol. 2016, 113, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Pareja, M.; Mohib, A.; Birkett, M.; Dufour, S.; Glinwood, R. Multivariate Statistics Coupled to Generalized Linear Models Reveal Complex Use of Chemical Cues by a Parasitoid. Anim. Behav. 2009, 77, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Price, P.W. Inversely Density-Dependent Parasitism: The Role of Plant Refuges for Hosts. J. Anim. Ecol. 1988, 57, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Lessells, C.M. Parasitoid Foraging: Should Parasitism Be Density Dependent? J. Anim. Ecol. 1985, 54, 27–41. [Google Scholar] [CrossRef]
- Aartsma, Y.; Leroy, B.; Werf, W.; Dicke, M.; Poelman, E.; Bianchi, F. Intraspecific Variation in Herbivore-Induced Plant Volatiles Influences the Spatial Range of Plant-Parasitoid Interactions. Oikos 2019, 128, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Pareja, M.; Moraes, M.C.B.; Clark, S.J.; Birkett, M.A.; Powell, W. Response of the Aphid Parasitoid Aphidius Funebris to Volatiles from Undamaged and Aphid-Infested Centaurea Nigra. J. Chem. Ecol. 2007, 33, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Birkett, M.; Campbell, C.; Chamberlain, K.; Guerrieri, E.; Hick, A.; Martin, J.; Matthes, M.; Napier, J.; Pettersson, J.; Pickett, J.; et al. New Roles for Cis-Jasmone as an Insect Semiochemical and in Plant Defense. Proc. Acad. Natl. Sci. USA 2000, 97, 9329–9334. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-L.; Dong, J.; Huang, L.-Q.; Wang, C.-Z. The Cotton Bollworm Endoparasitoid Campoletis Chlorideae Is Attracted by Cis-Jasmone or Cis-3-Hexenyl Acetate but Not by Their Mixtures. Arthropod-Plant Interact. 2020, 14, 169–179. [Google Scholar] [CrossRef]
- Baluška, F.; Ninkovic, V. Plant Communication from an Ecological Perspective, Signaling and Communication in Plants; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Frago, E.; Mala, M.; Weldegergis, B.T.; Yang, C.; McLean, A.; Godfray, H.C.J.; Gols, R.; Dicke, M. Symbionts Protect Aphids from Parasitic Wasps by Attenuating Herbivore-Induced Plant Volatiles. Nat. Commun. 2017, 8, 1860. [Google Scholar] [CrossRef] [Green Version]
- Vosteen, I.; Weisser, W.; Kunert, G. Is There Any Evidence That Aphid Alarm Pheromones Work as Prey and Host Finding Kairomones for Natural Enemies? Ecol. Entomol. 2016, 41, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dall, S.R.X.; Giraldeau, L.-A.; Olsson, O.; McNamara, J.M.; Stephens, D.W. Information and Its Use by Animals in Evolutionary Ecology. Trends Ecol. Evol. 2005, 20, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Ito, E.; Yamada, Y.Y. Presence of a Conspecific Increases Superparasitism but Not Infanticide under Self- and Conspecific Superparasitism in a Semisolitary Parasitoid, Echthrodelphax fairchildii (Hymenoptera: Dryinidae). Entomol. Sci. 2016, 19, 25–33. [Google Scholar] [CrossRef]
- Tamò, C.; Roelfstra, L.; Guillaume, S.; Turlings, T. Odour-Mediated Long-Range Avoidance of Interspecific Competition by a Solitary Endoparasitoid: A Time-Saving Foraging Strategy. J. Anim. Ecol. 2006, 75, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- McBrien, H.; Mackauer, M. Decision to Superparasitize Based on Larval Survival: Competition between Aphid Parasitoids Aphidius ervi and Aphidius smithi. Entomol. Exp. Appl. 1991, 59, 145–150. [Google Scholar] [CrossRef]
- Van Lenteren, J.C. Host discrimination by parasitoids. In Semiochemicals: Their Role in Pest Control; Wiley and Sons: New York, NY, USA, 1981; pp. 153–179. [Google Scholar]
- Le Lann, C.; Outreman, Y.; Alphen, J.; van Baaren, J. First in, Last out: Asymmetric Competition Influences Patch Exploitation of a Parasitoid. Behav. Ecol. 2011, 22, 101–107. [Google Scholar] [CrossRef] [Green Version]
Time Taken in Seconds by Parasitoid Females to Make a Decision | ||
---|---|---|
Individual Density | Aphid-Infested Plants | Non-Infested Plants |
10 | 36.22 s (49.16) | 30.85 s (48.82) |
30 | 37.69 s (18.23) | 16.34 s (42.20) |
50 | 40.26 s (43.53) | 17.14 s (16.83) |
100 | 23.03 s (16.61) | 45.28 s (78.61) |
200 | 29.56 s (42.75) | 38.30 s (29.65) |
The Rate of Choice Hesitation of Parasitoid Females between the Two Choices | ||
---|---|---|
Individual Density | From Aphid-Infested to Non-Infested Plants | From Non-Infested to Aphid-Infested Plants |
10 | 0.10 ± 0.05 | 0.20 ± 0.07 |
30 | 0.07 ± 0.05 | 0.20 ± 0.07 |
50 | 0.07 ± 0.05 | 0.10 ± 0.05 |
100 | 0.03 ± 0.03 | 0.03 ± 0.03 |
200 | 0.23 ± 0.07 | 0.03 ± 0.03 |
VOCs ng/μL | Non-Infested | Aphid Infested | Statistical Analysis | |
---|---|---|---|---|
0 Individuals | 50 Individuals | 100 Individuals | ||
6-methyl-5-hepten-2-one | 1.03 (0.95) b | 3.81 (0.64) a | 0.35 (0.25) b | KW test: χ2 = 9.26, df = 2, p = 0.009 |
cis-jasmone | 1.84 (0.68) a | 3.25 (1.25) a | 0.32 (0.04) b | KW test: χ2 = 8.89, df = 2, p = 0.01 |
cis-3-hexenol | 0.77 (1.15) a | 2.61 (2.46) a | 0.11 (only one record) | MW U test: W = 6.5, p = 0.77 |
cis-3-hexenyl-acetate | 1.88 (0.47) a | 3.17 (1.42) a | 0 | MW U test: W = 4, p = 0.67 |
linalool | 0.46 (0.03) a | 1.37 (0.37) a | 0 | MW U test: W = 4, p = 0.33 |
E-2-hexenal | 0.87 | 1.43 | 0 | No test |
Total | 5.22 (1.40) b | 12.49 (2.92) a | 0.53 (0.62) c | KW test: χ2 = 9.84, df = 2, p = 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, M.; Zanolli, P.; Muratori, F.; Hance, T. Aphids Facing Their Parasitoids: A First Look at How Chemical Signals May Make Higher Densities of the Pea Aphid Acyrthosiphon pisum Less Attractive to the Parasitoid Aphidius ervi. Insects 2021, 12, 878. https://doi.org/10.3390/insects12100878
Ismail M, Zanolli P, Muratori F, Hance T. Aphids Facing Their Parasitoids: A First Look at How Chemical Signals May Make Higher Densities of the Pea Aphid Acyrthosiphon pisum Less Attractive to the Parasitoid Aphidius ervi. Insects. 2021; 12(10):878. https://doi.org/10.3390/insects12100878
Chicago/Turabian StyleIsmail, Mohannad, Penelope Zanolli, Frédéric Muratori, and Thierry Hance. 2021. "Aphids Facing Their Parasitoids: A First Look at How Chemical Signals May Make Higher Densities of the Pea Aphid Acyrthosiphon pisum Less Attractive to the Parasitoid Aphidius ervi" Insects 12, no. 10: 878. https://doi.org/10.3390/insects12100878
APA StyleIsmail, M., Zanolli, P., Muratori, F., & Hance, T. (2021). Aphids Facing Their Parasitoids: A First Look at How Chemical Signals May Make Higher Densities of the Pea Aphid Acyrthosiphon pisum Less Attractive to the Parasitoid Aphidius ervi. Insects, 12(10), 878. https://doi.org/10.3390/insects12100878