Effect of Benzoylphenyl Ureas on Survival and Reproduction of the Lace Bug, Leptopharsa gibbicarina
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lace Bugs
2.2. Concentration-Mortality Bioassay
2.3. Time-Mortality Bioassay
2.4. Adult Emergence, Longevity, and Reproduction
2.5. Semi-Field Assays in Oil Palm Trees
2.6. Statistical Analysis
3. Results
3.1. Concentration-Mortality Bioassay
3.2. Time-Mortality Bioassay
3.3. Adult Emergence, Longevity, and Reproduction
3.4. Semi-Field Assays in Palm Trees
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froeschner, R.C. Description of a new species of lace bug attacking the oil palm in Colombia (Hemiptera: Tingidae). Proc. Entomol. Soc. Wash. 1976, 78, 104–107. [Google Scholar]
- Genty, P.; Desmier de Chenon, R.; Morin, J.P. Les ravageurs du palmier a huile en Amerique latine. Oléagineux 1978, 33, 325–419. [Google Scholar]
- Escalante, M.; Damas, D.; Márquez, D.; Gelvez, W.; Chacón, H.; Díaz, A.; Moreno, B. Diagnosis and evaluation of Pestalotiopsis, and insect vectors, in an oil palm plantation at the South of Maracaibo Lake, Venezuela. Bioagro 2010, 22, 211–216. [Google Scholar]
- Martínez, L.C.; Plata-Rueda, A. Lepidoptera vectors of Pestalotiopsis fungal disease: First records in oil palm plantations from Colombia. Int. J. Trop. Insect Sci. 2013, 33, 239–246. [Google Scholar] [CrossRef]
- Gitau, C.W.; Gurr, G.M.; Dewhurst, C.F.; Fletcher, M.J.; Mitchell, A. Insect pests and insect-vectored diseases of palms. Austral Entomol. 2009, 48, 328–342. [Google Scholar] [CrossRef]
- Martínez, O.L.; Plata-Rueda, A.; Martínez, L.C. Oil palm plantations as an agroecosystem: Impact on integrated pest management and pesticide use. Outlooks Pest Manag. 2013, 24, 225–229. [Google Scholar] [CrossRef]
- Genty, P.; Garzon, M.; García, R. Damage and control of the Leptopharsa-Pestalotiopsis complex in oil palm. Oléagineux 1983, 38, 291–299. [Google Scholar]
- Mariau, D. Control methods against the bug-Pestalotiopsis complex on oil palm in Latin America. Oléagineux 1994, 49, 189–195. [Google Scholar]
- Reyes, A.R.; Cruz, M.A.; Genty, P. The root absorption technique for controlling oil-palm pests. Oléagineux 1988, 43, 363–370. [Google Scholar]
- Martínez, L.C.; Plata-Rueda, A.; Agudelo, O. Efficacy of insecticides on Leptopharsa gibbicarina Froeschner (Hemiptera: Tingidae) applied by root absorption technique in oil palm. Persian Gulf Crop Prot. 2013, 2, 10–17. [Google Scholar]
- Yeoh, C.B.; Chong, C.L. Acephate, methamidophos and monocrotophos residues in a laboratory-scale oil refining process. Eur. J. Lipid Sci. Technol. 2009, 111, 593–598. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Rotterdam Convention on the Prior Informed Consent (PIC) Procedure for Certain Hazardous Chemicals and Pesticides in International Trade; UNEP: Geneva, Switzerland, 2008. [Google Scholar]
- Environmental Protection Agency, EPA’s Pesticides Industry Sales and Usage, 2006 and 2007 Market Estimates. 2011. Available online: http://www.epa.gov/oppbead1/pestsales/ (accessed on 1 February 2011).
- Martínez, L.C.; Plata-Rueda, A.; Zanuncio, J.C.; Serrão, J.E. Comparative toxicity of six insecticides on the rhinoceros beetle (Coleoptera: Scarabaeidae). Fla. Entomol. 2014, 97, 1056–1062. [Google Scholar] [CrossRef]
- Martínez, L.C.; Plata-Rueda, A.; Rodríguez-Dimaté, F.A.; Campos, J.M.; Santos Júnior, V.C.; Rolim, G.D.S.; Fernandes, F.L.; Silva, W.M.; Wilcken, C.F.; Zanuncio, J.C.; et al. Exposure to insecticides reduces populations of Rhynchophorus palmarum in oil palm plantations with Bud Rot disease. Insects 2019, 10, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plata-Rueda, A.; Quintero, H.A.; Serrão, J.E.; Martínez, L.C. Insecticidal activity of Bacillus thuringiensis strains on the nettle caterpillar, Euprosterna elaeasa (Lepidoptera: Limacodidae). Insects 2020, 11, 310. [Google Scholar] [CrossRef]
- Catchot, B.; Anderson, C.J.H.; Gore, J.; Jackson, R.; Rakshit, K.; Musser, F.; Krishnan, N. Novaluron prevents oogenesis and oviposition by inducing ultrastructural changes in ovarian tissue of young adult Lygus lineolaris. Pest Manag. Sci. 2020, 76, 4057–4063. [Google Scholar] [CrossRef]
- Sajap, A.S.; Amit, S.; Welker, J. Evaluation of hexaflumuron for controlling the subterranean termite Coptotermes curvignathus (Isoptera: Rhinotermitidae) in Malaysia. J. Econ. Entomol. 2000, 93, 429–433. [Google Scholar] [CrossRef]
- Reyes, A. Primeros resultados en el control de Euprosterna elaeasa Dyar defoliador de palma africana Elaeis guineensis Jacq. con triflumuron y teflubenzuron inhibidores de síntesis de quitina. Oléagineux 1991, 46, 139–144. [Google Scholar]
- Milosavljević, I.; El-Shafie, H.A.F.; Faleiro, J.R.; Hoddle, C.D.; Lewis, M.; Mark, S.; Hoddle, M.S. Palmageddon: The wasting of ornamental palms by invasive palm weevils, Rhynchophorus spp. J. Pest Sci. 2019, 92, 143–156. [Google Scholar] [CrossRef]
- Matsumura, F. Studies on the action mechanism of benzoylurea insecticides to inhibit the process of chitin synthesis in insects: A review on the status of research activities in the past, the present and the future prospects. Pestic. Biochem. Physiol. 2010, 97, 133–139. [Google Scholar] [CrossRef]
- Meyer, F.; Flotenmeyer, M.; Moussian, B. The sulfonylurea receptor Sur is dispensable for chitin synthesis in Drosophila melanogaster embryos. Pest Manag. Sci. 2013, 69, 1136–1140. [Google Scholar] [CrossRef]
- Karimzadeh, R.; Hejazi, M.J.; Khoei, F.R.; Moghaddam, M. Laboratory evaluation of five chitin synthesis inhibitors against the Colorado potato beetle Leptinotarsa decemlineata. J. Insect Sci. 2007, 7, 1–6. [Google Scholar] [CrossRef]
- Joseph, S. Ingestion of novaluron elicits transovarial activity in Stephanitis pyrioides (Hemiptera: Tingidae). Insects 2020, 11, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perveen, F.; Miyata, T. Effects of sublethal dose of chlorfluazuron on ovarian development and oogenesis in the common cutworm Spodoptera litura (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 2000, 93, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.X.; Chen, T.Y. Effects of the chitin synthesis inhibitor buprofezin on survival and development of immatures of Chrysoperla rufilabris (Neuroptera: Chrysopidae). J. Econ. Entomol. 2000, 93, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Liu, C.; Zhang, H.; Wang, Q. Benzoylurea synthesis inhitors. J. Agric. Food Chem. 2015, 63, 6847–6865. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Martínez, L.C.; Plata-Rueda, A.; Zanuncio, J.C.; Serrão, J.E. Leucothyreus femoratus (Coleoptera: Scarabaeidae): Feeding and behavioral activities as an oil palm defoliator. Fla. Entomol. 2013, 96, 55–63. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Liu, B.; Ali, A.; Luo, S.P.; Lu, Y.H.; Liang, G.M. Insecticide toxicity to Adelphocoris lineolatus (Hemiptera: Miridae) and its nymphal parasitoid Peristenus spretus (Hymenoptera: Braconidae). J. Econ. Entomol. 2015, 108, 1779–1785. [Google Scholar] [CrossRef]
- Kumar, V.; Francis, A.; Avery, P.B.; McKenzie, C.L.; Osborne, L.S. Assessing compatibility of Isaria fumosorosea and buprofezin for mitigation of Aleurodicus rugioperculatus (Hemiptera: Aleyrodidae): An invasive pest in the Florida landscape. J. Econ. Entomol. 2018, 111, 1069–1079. [Google Scholar] [CrossRef]
- Joseph, S.V. Influence of insect growth regulators on Stephanitis pyrioides (Hemiptera: Tingidae) eggs and nymphs. Insects 2019, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Farnesi, L.C.; Brito, J.M.; Linss, J.G.; Pelajo-Machado, M.; Valle, D.; Rezende, G.L. Physiological and morphological aspects of Aedes aegypti developing larvae: Effects of the chitin synthesis inhibitor novaluron. PLoS ONE 2012, 7, e30363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meola, S.M.; Mayer, R.T. Inhibition of cellular proliferation of imaginal epidermal cells by diflubenzuron in pupae of the stable fly. Science 1980, 207, 985–987. [Google Scholar] [CrossRef] [PubMed]
- Gangishetti, U.; Breitenbach, S.; Zander, M.; Saheb, S.K.; Muller, U.; Schwarz, H.; Moussian, B. Effects of benzoylphenylurea on chitin synthesis and orientation in the cuticle of the Drosophila larva. Eur. J. Cell Biol. 2009, 88, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.-Y.; Meng, Q.-W.; Shi, J.-F.; Deng, P.; Guo, W.-C.; Li, G.-Q. Novaluron ingestion causes larval lethality and inhibits chitin content in Leptinotarsa decemlineata fourth-instar larvae. Pestic. Biochem. Physiol. 2017, 143, 173–180. [Google Scholar] [CrossRef]
- Amarasekare, K.G.; Shearer, P.W. Laboratory bioassays to estimate the lethal and sublethal effects of various insecticides and fungicides on Deraeocoris brevis (Hemiptera: Miridae). J. Econ. Entomol. 2013, 106, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Alyokhin, A.; Guillemette, R.; Choban, R. Stimulatory and suppressive effects of novaluron on the Colorado potato beetle reproduction. J. Econ. Entomol. 2009, 102, 2078–2083. [Google Scholar] [CrossRef]
- Parys, K.A.; Snodgrass, G.L.; Luttrell, R.G.; Allen, K.C.; Little, N.S. Baseline susceptibility of Lygus lineolaris (Hemiptera: Miridae) to novaluron. J. Econ. Entomol. 2016, 109, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Saour, G. Efficacy of kaolin particle film and selected synthetic insecticides against pistachio psyllid Agonoscena targionii (Homoptera: Psyllidae) infestation. Crop Prot. 2005, 24, 711–717. [Google Scholar] [CrossRef]
- Joseph, S.V. Effects of insect growth regulators on Bagrada hilaris (Hemiptera: Pentatomidae). J. Econ. Entomol. 2017, 110, 2471–2477. [Google Scholar] [CrossRef]
- Wakgari, W.; Giliomee, J. Effects of some conventional insecticides and insect growth regulators on different phenological stages of the white wax scale, Ceroplastes destructor Newstead (Hemiptera: Coccidae), and its primary parasitoid, Aprostocetus ceroplastae (Girault) (Hymenoptera: Eulophidae). Int. J. Pest Manag. 2001, 47, 179–184. [Google Scholar]
- Atta, B.; Gogi, M.D.; Arif, M.J.; Mustafa, F.; Raza, M.F.; Hussain, M.J.; Farooq, M.A.; Nisar, M.J.; Iqbal, M. Toxicity of some insect growth regulators (IGRs) against different life stages of Dusky cotton bugs Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae: Oxycareninae). Bulg. J. Agric. Sci. 2015, 21, 367–371. [Google Scholar]
- Mansur, J.F.; Figeira-Mansur, J.; Santos, A.S.; Santos-Junior, H.; Ramos, I.B.; de Medeiros, M.N.; Machado, E.A.; Kaiser, C.R.; Muthukrishnan, S.; Masuda, H.; et al. The effect of lufenuron, a chitin synthesis inhibitor, on oogenesis of Rhodnius prolixus. Pestic. Biochem. Physiol. 2010, 98, 59–67. [Google Scholar] [CrossRef]
- Joseph, S.V. Transovarial effects of insect growth regulators on Stephanitis pyrioides (Hemiptera: Tingidae). Pest Manag. Sci. 2019, 75, 2182–2187. [Google Scholar] [CrossRef] [PubMed]
- Guillebeau, L.P.; All, J.N.; Javid, A.M. Influence of weather on efficacy of pyrethroid insecticides for boll weevil (Coleoptera: Curculionidae) and bollworm (Lepidoptera: Noctuidae) in cotton. J. Econ. Entomol. 1989, 82, 291–296. [Google Scholar] [CrossRef]
- Hayasaka, D.; Korenaga, T.; Sánchez-Bayo, F.; Goka, K. Differences in ecological impacts of systemic insecticides with different physicochemical properties on biocenosis of experimental paddy fields. Ecotoxicology 2012, 21, 191–201. [Google Scholar] [CrossRef]
- Kitsiou, V.; Filippidis, N.; Mantzavinos, D.; Poulios, I. Heterogeneous and homogeneous photocatalytic degradation of the insecticide imidacloprid in aqueous solutions. Appl. Catal. B 2009, 86, 27–35. [Google Scholar] [CrossRef]
- Cutler, G.C.; Scott-Dupree, C.D.; Tolman, J.H.; Harris, C.R. Field efficacy of novaluron for control of Colorado potato beetle (Coleoptera: Chrysomelidae) on potato. Crop Prot. 2007, 26, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.A.; Reyes, Y.A. Initial results in controlling Euprosterna elaesa Dyar a leaf-eating pest on oil palm (Elaeis guineensis jacq) using triflumuron and teflubenzuron, chitin synthesis inhibitors. Oléagineux 1991, 46, 139–145. [Google Scholar]
- Ghoneim, K.S.; Al-Dali, A.G.; Abdel-Ghaffar, A.A. Effectiveness of lufenuron (CGA-184699) and diofenolan (CGA-59205) on the general body metabolism of the red palm weevil, Rhynchophorus ferrugineus (Curculionidae: Coleoptera). Pak. J. Biol. Sci. 2003. [Google Scholar]
- Hussain, A.; AlJabr, A.M.; Al-Ayedh, H. Development-disrupting chitin synthesis inhibitor, novaluron, reprogramming the chitin degradation mechanism of red palm weevils. Molecules 2019, 24, 4304. [Google Scholar] [CrossRef] [Green Version]
- Sampson, B.J.; Marshall, D.A.; Smith, B.J.; Stringer, S.J.; Werle, C.T.; Magee, D.J.; Adamczyk, J.J. Erythritol and Lufenuron detrimentally alter age structure of wild Drosophila suzukii (Diptera: Drosophilidae) populations in blueberry and blackberry. J. Econ. Entomol. 2017, 110, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Cutler, C.G.; Scott-Dupree, C.D.; Tolman, J.H.; Harris, R.C. Acute and sublethal toxicity of novaluron, a novel chitin synthesis inhibitor, to Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Pest Manag. Sci. 2005, 61, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Al-Mokhlef, A.A.; Mariy, F.M.; Emam, A.K.; Ali, G.M. Effect of teflubenzuron on ultrastructure and components of the integument in Schistocerca gregaria (Forskal) 5th instar nymphs. Ann. Agric. Sci. 2012, 57, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Gull, S. Susceptibility of armyworm Spodoptera litura (Lepidoptera: Noctuidae) to novel insecticides in Pakistan. Can. Entomol. 2017, 149, 649–661. [Google Scholar] [CrossRef]
Insecticide | Lethal Concentration | Estimated Concentration (ppm) | 95% Confidence Interval (ppm) | Slope ± SE | χ2 (p-Value) |
---|---|---|---|---|---|
Lufenuron | 25 | 1.042 | 8.504–1.231 | 2.28 ± 0.16 | 3.70(0.44) |
50 | 2.054 | 1.789–2.339 | |||
75 | 4.049 | 3.528–4.742 | |||
900 | 7.456 | 6.208–9.381 | |||
Novaluron | 25 | 0.221 | 0.112–0.342 | 2.93 ± 0.45 | 6.54(0.16) |
50 | 0.558 | 0.366–0.743 | |||
75 | 1.407 | 1.121–1.716 | |||
900 | 3.233 | 2.604–4.298 | |||
Teflubenzuron | 25 | 0.778 | 0.597–0.958 | 1.96 ± 0.15 | 7.45(0.11) |
50 | 1.715 | 1.449–1.892 | |||
75 | 3.777 | 3.246–4.488 | |||
900 | 7.689 | 6.264–9.983 | |||
Triflumuron | 25 | 1.181 | 0.966–1.392 | 2.21 ± 0.39 | 2.30(0.68) |
50 | 2.383 | 2.076–2.716 | |||
75 | 4.812 | 4.178–5.659 | |||
900 | 9.055 | 7.501–1.145 |
Parameter | Control | Lufenuron | Novaluron | Teflubenzuron | Triflumuron |
---|---|---|---|---|---|
Female emergence (adults) | 48.71 ± 0.76a | 44.59 ± 1.08b | 38.23 ± 1.23d | 42.26 ± 0.55c | 45.66 ± 0.67b |
Male emergence (adults) | 48.46 ± 0.61a | 42.35 ± 1.03b | 37.46 ± 1.32d | 39.85 ± 0.49c | 41.23 ± 0.32b |
Female longevity (days) | 36.81 ± 0.78a | 30.79 ± 1.36c | 24.76 ± 0.81d | 29.28 ± 0.94c | 33.82 ± 0.46b |
Male longevity (days) | 31.54 ± 0.78a | 24.76 ± 0.81b | 19.45 ± 0.81c | 26.28 ± 0.87b | 27.71 ± 1.62b |
Fecundity (eggs/female) | 86.65 ± 1.88a | 72.30 ± 0.86c | 58.15 ± 1.98d | 68.85 ± 1.18c | 79.80 ± 1.22b |
Fertility (nymphs/female) | 84.15 ± 0.97a | 70.81 ± 0.87b | 55.15 ± 1.32d | 66.35 ± 0.96c | 74.10 ± 0.49b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, L.C.; Plata-Rueda, A.; Serrão, J.E. Effect of Benzoylphenyl Ureas on Survival and Reproduction of the Lace Bug, Leptopharsa gibbicarina. Insects 2021, 12, 34. https://doi.org/10.3390/insects12010034
Martínez LC, Plata-Rueda A, Serrão JE. Effect of Benzoylphenyl Ureas on Survival and Reproduction of the Lace Bug, Leptopharsa gibbicarina. Insects. 2021; 12(1):34. https://doi.org/10.3390/insects12010034
Chicago/Turabian StyleMartínez, Luis Carlos, Angelica Plata-Rueda, and José Eduardo Serrão. 2021. "Effect of Benzoylphenyl Ureas on Survival and Reproduction of the Lace Bug, Leptopharsa gibbicarina" Insects 12, no. 1: 34. https://doi.org/10.3390/insects12010034
APA StyleMartínez, L. C., Plata-Rueda, A., & Serrão, J. E. (2021). Effect of Benzoylphenyl Ureas on Survival and Reproduction of the Lace Bug, Leptopharsa gibbicarina. Insects, 12(1), 34. https://doi.org/10.3390/insects12010034