Distribution and Habitat Preferences of the Newly Rediscovered Telmatogeton magellanicus (Jacobs, 1900) (Diptera: Chironomidae) on Navarino Island, Chile
Abstract
1. Introduction
1.1. Terrestrial Invertebrates in the Magellan Strait
1.2. Telmatogeton Magellanicus
2. Materials and Methods
2.1. Study Site Description
2.2. Habitat Characterisation at Róbalo Bay
2.3. Environmental Variability within Low- and High-Tide Limits
2.4. Statistical Analyses
2.5. Presence of T. magellanicus across the Three Tidal Zones
2.6. Prediction of T. magellanicus Presence within the Mid-Tide Zone
3. Results
3.1. Island-Wide Distribution
3.2. Environmental Variability within Low- and High-Tide Limits
3.3. Difference in the Presence of Telmatogeton magellanicus between the Three Tidal Zones
3.4. Prediction of the Presence of T. magellanicus within the Mid-Tide Zone
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Selkirk, P.M. The nature and importance of the Sub-Antarctic. Pap. Proc. R. Soc. Tasman. 2007, 141, 1–6. [Google Scholar] [CrossRef]
- Chown, S.L.; Convey, P. Antarctic entomology. Annu. Rev. Entomol. 2016, 61, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Rozzi, R.; Armesto, J.J.; Gutiérrez, J.; Massardo, F.; Likens, G.; Anderson, C.B.; Poole, A.; Moses, K.; Hargrove, G.; Mansilla, A.; et al. Integrating ecology and environmental ethics: Earth stewardship in the southern end of the Americas. BioScience 2012, 62, 226–236. [Google Scholar] [CrossRef]
- Contador, T.; Rosenfeld, S.; Ojeda, J.; Kennedy, J. Historia Natural de los Invertebrados Acuáticos del Cabo de Hornos, 1st ed.; LOM Impresores: Punta Arenas, Chile, 2015; p. 201. [Google Scholar]
- Morrone, J.J. Biogeographical regionalisation of the Andean region. Zootaxa 2015, 3936, 207–236. [Google Scholar] [CrossRef] [PubMed]
- Roig-Juñent, S. Historia biogeográfica de América del Sur austral. Multequina 1994, 3, 167–203. [Google Scholar]
- Roig-Juñent, S. Revisión sistemática de los Creobina de América del Sur (Coleoptera: Carabidae: Broscini). Acta Entomológica Chil. 1995, 19, 51–74. [Google Scholar]
- Roig-Juñent, S. Los Migadopini (Coleoptera: Carabidae) de América del Sur: Descripción de las estructuras genitales Masculinas y femeninas y consideraciones filogenéticas y biogeográficas. Acta Entomológica Chil. 2004, 28, 7–29. [Google Scholar]
- Morrone, J.J. Revisión sistemática, análisis cladístico y biogeografía histórica de los géneros Falklandius Enderlein y Lanteriella gen. nov. (Coleoptera: Curculionidae). Acta Entomológica Chil. 1992, 17, 157–174. [Google Scholar]
- Morrone, J.J. Cladistic and biogeographic analyses of the weevil genus Listroderes Schoenherr (Coleoptera: Curculionidae). Cladistics 1993, 9, 397–411. [Google Scholar] [CrossRef]
- Morrone, J.J.; Anderson, R.S. The Falklandius generic group: Cladistic analysis with description of new taxa (Coleoptera: Curculionidae: Rhytirrhinini). Am. Mus. Novit. 1995, 3121, 1–14. [Google Scholar]
- Morrone, J.J.; Roig-Juñent, S. The Diversity of Patagonian Weevils: An Illustrated Checklist of the Patagonian Curculionoidea (Insecta: Coleoptera); L.O.L.A.: Buenos Aires, Argentina, 1995; p. 189. [Google Scholar]
- Durante, S.P.; Abrahamovich, A. New leafcutting bee species of the subgenus Megachile (Dasymegachile) (Hymenoptera, Megachilidae) from Magellanic Forest province, in Patagonia Argentina. Trans. Am. Entomol. Soc. 2002, 128, 361–366. [Google Scholar]
- Angulo, A. Paraeuxoa Forbes, 1933, versus Caphornia Koehler, 1958 (Lepidoptera: Noctuidae): Sinonimia de dos géneros andino-patagónicos. Rev. Chil. De Entomol. 1990, 18, 13–17. [Google Scholar]
- Monserrat, V.J. Revisión del genero Megalomus de Latinoamerica (Neuroptera, Hemerobiidae). Fragm. Entomol. 1997, 29, 123–206. [Google Scholar]
- Convey, P. The influence of environmental characteristics on the life history attributes of Antarctic terrestrial biota. Biol. Rev. 1996, 71, 191–225. [Google Scholar] [CrossRef]
- Gibbs, A.G.; Chippindale, A.K.; Rose, M.R. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J. Exp. Biol. 1997, 200, 1821–1832. [Google Scholar]
- Gaston, K.J.; Chown, S.L. Geographic range size and speciation. In Evolution of Biological Diversity; Magurran, A.E., May, R.M., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 236–259. [Google Scholar]
- Hayward, S.A.L.; Worland, M.R.; Convey, P.; Bale, J.S. Habitat moisture availability and the local distribution of the Antarctic Collembola Cryptopygus antarcticus and Friesea grisea. Soil Biol. Biochem. 2004, 36, 927–934. [Google Scholar] [CrossRef]
- Convey, P.; Chown, S.L.; Clarke, A.; Barnes, D.K.A.; Bokhorst, S.; Cummings, V.; Ducklow, H.W.; Frati, F.; Allan Green, T.G.; Gordon, S.; et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 2014, 84, 203–244. [Google Scholar] [CrossRef]
- Convey, P.; Bowman, V.; Chown, S.L.; Francis, J.; Fraser, C.; Smellie, J.L.; Storey, B.; Terauds, A. Ice-bound Antarctica: Biotic consequences of the shift from a temperate to a polar climate. In Mountains, Climate and Biodiversity; Hoorn, C., Perrigo, A., Antonelli, A., Eds.; John Wiley & Sons: Oxford, UK, 2018; pp. 355–373. [Google Scholar]
- Bartlett, J.C.; Convey, P.; Hayward, S.A.L. Life cycle and phenology of an Antarctic invader: The flightless chironomid midge, Eretmoptera murphyi. Polar Biol. 2018, 42, 115–130. [Google Scholar] [CrossRef]
- Bartlett, J.C.; Convey, P.; Hayward, S.A.L. Not so free range? Oviposition microhabitat and egg clustering affects Eretmoptera muprhyi (Diptera: Chironomidae) reproductive success. Polar Biol. 2018, 42, 271–284. [Google Scholar] [CrossRef]
- Allegrucci, G.; Carchini, G.; Todisco, V.; Convey, P.; Sbordoni, V. A molecular phylogeny of Antarctic Chironomidae and its implications for biogeographical history. Polar Biol. 2006, 29, 320–326. [Google Scholar] [CrossRef]
- Allegrucci, G.; Carchini, G.; Convey, P.; Sbordoni, V. Evolutionary geographic relationships among orthocladine chironomid midges from maritime Antarctic and sub-Antarctic islands. Biol. J. Linn. Soc. 2012, 106, 258–274. [Google Scholar] [CrossRef]
- Lee, R.E.; Baust, J.G. Absence of metabolic cold adaptation and compensatory acclimation in the Antarctic fly, Belgica antarctica. J. Insect Physiol. 1982, 28, 725–729. [Google Scholar] [CrossRef]
- Convey, P. Aspects of the biology of the midge. Eretmoptera murphyi Schaeffer (Diptera: Chironomidae), introduced to Signy Island, maritime Antarctic. Polar Biol. 1992, 12, 653–657. [Google Scholar] [CrossRef]
- Hughes, K.A.; Convey, P. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: A review of current systems and practices. Glob. Environ. Chang. 2010, 20, 96–112. [Google Scholar] [CrossRef]
- Hughes, K.A.; Convey, P. Determining the native/non-native status of newly discovered terrestrial and freshwater species in Antarctica—Current knowledge, methodology and management action. J. Environ. Manag. 2012, 93, 52–66. [Google Scholar] [CrossRef]
- Hughes, K.A.; Worland, M.R. Spatial distribution, habitat preference and colonization status of two alien terrestrial Invertebrate species in Antarctica. Antarct. Sci. 2010, 22, 221–231. [Google Scholar] [CrossRef][Green Version]
- Worland, M.R. Eretmoptera murphyi: Pre-adapted to survive a colder climate. Physiol. Entomol. 2010, 35, 140–147. [Google Scholar] [CrossRef]
- Everatt, M.J.; Worland, M.R.; Bale, J.S.; Convey, P.; Hayward, S.A.L. Pre-adapted to the maritime Antarctic? -Rapid cold hardening of the midge, Eretmoptera murphyi. J. Insect Physiol. 2012, 58, 1104–1111. [Google Scholar] [CrossRef]
- Pertierra, L.R.; Bartlett, J.C.; Duffy, G.A.; Vega, G.C.; Hughes, K.A.; Hayward, S.A.L.; Convey, P.; Olalla-Tarraga, M.A.; Aragon, P. Combining correlative and mechanistic niche models with human activity data to elucidate the invasive potential of a sub-Antarctic insect. J. Biogeog. 2019. [Google Scholar] [CrossRef]
- Jacobs, C. Diagnoses d’insectes recueillis par l’Expédition ant-arctique Belge. Diptera. Ann. De La Société Entomol. De Belg. 1900, 44, 106–107. [Google Scholar]
- Convey, P.; Block, W. Antarctic Diptera: Ecology, physiology and distribution. Eur. J. Entomol. 1996, 93, 1–13. [Google Scholar]
- Rübsaamen, E.H. Diptera, Chironomidae. In: Severin, Expédition Antarct. Belg. Rapp. Sci. Zool. Ins. 1906, 8, 75–85. [Google Scholar]
- Edwards, F.W. On marine Chironomidae (Diptera); with descriptions of a new genus and four new species from Samoa. Proc. Zool. Soc. Lond. 1926, 96, 779–806. [Google Scholar] [CrossRef]
- Edwards, F.W. A note on Telmatogeton Schin and related genera (Diptera, Chironomidae). Konowia 1928, 7, 234–237. [Google Scholar]
- Wirth, W.W. A revision of the Clunionine midges with descriptions of a new genus and four new species (Diptera: Tendipedidae). Univ. Calif. Publ. Entomol. 1949, 8, 151–182. [Google Scholar]
- Sublette, J.E.; Wirth, W.W. The Chironomidae and Ceratopogonidae (Diptera) of New Zealand’s subantarctic islands. N. Z. J. Zool. 1980, 7, 299–378. [Google Scholar] [CrossRef]
- Tokunaga, M. Chironomidae from Japan (Diptera), IV. The early stages of a marine midge, Telmatogeton japonicus Tokunaga. Philipp. J. Sci. 1935, 57, 491–511. [Google Scholar]
- Wirth, W.W. A review of the genus Telmatogeton Schiner, with descriptions of three new Hawaiian species (Diptera: Tendipedidae). Proc. Hawaii. Entomol. Soc. 1947, 13, 143–191. [Google Scholar]
- Brundin, L. Insects of Macquarie Island. Diptera: Chironomidae. Pac. Insects 1962, 4, 945–954. [Google Scholar]
- Brodin, Y.; Andersson, M.H. The marine splash midge Telmatogeton japonicus (Diptera; Chironomidae)-extreme and alien? Biol. Invasions 2009, 11, 1311–1317. [Google Scholar] [CrossRef]
- Neumann, D. Diel eclosion rhythm of a sublittoral population of the marine insect Pontomyia pacifica. Mar. Biol. 1986, 90, 461–465. [Google Scholar] [CrossRef]
- Neumann, D. Temperature compensation of circa-semilunar timing in the intertidal insect Clunio. J. Comp. Physiol. A: Neuroethol. Sens. NeuralBehav. Physiol. 1988, 163, 671–676. [Google Scholar] [CrossRef]
- Soong, K.; Leu, Y. Adaptive mechanism of the bimodal emergence dates in the intertidal midge Pontomyia oceana. Mar. Ecol. Prog. Ser. 2005, 286, 107–114. [Google Scholar] [CrossRef][Green Version]
- Soong, K.; Chen, J.; Tsao, C.-H. Adaptation for accuracy or for precision? Diel emergence timing of the intertidal insect Pontomyia oceana (Chironomidae). Mar. Biol. 2006, 150, 173–181. [Google Scholar] [CrossRef]
- Soong, K.; Lee, Y.-J.; Chang, I.-H. Short-lived intertidal midge Pontomyia oceana have semilunar eclosion rhythm entrained by night light. Mar. Ecol. Prog. Ser. 2011, 433, 121–130. [Google Scholar] [CrossRef][Green Version]
- Dirección General de Aeronáutica Civil, Dirección Meterológica de Chile—Meteorological Station 550001. Available online: https://climatologia.meteochile.gob.cl/application/index/menuTematicoEmas (accessed on 31 January 2020).
- Servicio Hidrográfico y Oceanográfico de la Armada. Available online: http://www.shoa.cl/php/inicio (accessed on 31 January 2020).
- Benedetti-Cecchi, L.; Cinelli, F. Spatial distribution of algae and invertebrates in the rocky intertidal zone of the Strait of Magellan: Are patterns general? Polar Biol. 1997, 18, 337–343. [Google Scholar] [CrossRef]
- Anderson, M.; Gorley, R.N.; Clarke, K.R. PERMANOVA + for PRIMER User Manual. 2008, Volume 1. Available online: http://updates.primer-e.com/primer7/manuals/PERMANOVA+_manual.pdf (accessed on 23 June 2020).
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial, 1st ed.; Plymouth: Auckland, New Zealand, 2015. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 23 June 2020).
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 23 June 2020).
- Pearson, R.G.; Connolly, N.; Benson, L.J.; Cairns, A.; Clayton, P.; Crossland, M.; Hortle, K.G.; Leonard, K.; Nolen, J. Invertebrate responses to land use in tropical streams: Discrimination of impacts enhanced by analysis of discrete areas. Mar. Freshw. Res. 2019, 70, 563–575. [Google Scholar] [CrossRef]
- Kao, C.-C.; Chen, J.; Chen, G.-F.; Soong, K. Variable swarming time of an intertidal midge (Pontomyia oceana Tokunaga, 1964) controlled by a circadian clock and temperature. Mar. Freshw. Behav. Physiol. 2010, 43, 1–9. [Google Scholar] [CrossRef]
- Huang, D.; Cranston, P.S.; Cheng, L. A complete species phylogeny of the marine midge Pontomyia (Diptera: Chironomidae) reveals a cosmopolitan species and a new synonym. Invertebr. Syst. 2014, 28, 277–286. [Google Scholar] [CrossRef]
- Gañán Mora, M.; Contador, T.A.; Kennedy, J.H. La vida en los extremos: El uso de SIG para estudiar la distribución dela mosca antártica alada, Parochlus steinenii (Diptera: Chironomidae), en las Islas Shetland del Sur (Antártica marítima). In Análisis Espacial y Representación Geográfica: Innovación y Aplicación; De la Riva, J., Ibarra, P., Montorio, R., Rodrigues, M., Eds.; Universidad de Zaragoza-AGE: Zaragoza, Spain, 2015; pp. 1599–1608. [Google Scholar]
- Fabri-Ruiz, S.; Danis, B.; David, B.; Saucède, T. Can we generate robust species distribution models at the scale of the Southern Ocean? Divers. Distrib. 2018, 25, 21–37. [Google Scholar] [CrossRef]
- Vega, G.C.; Convey, P.; Hughes, K.A.; Olalla-Tárraga, M.A. Humans and wind, shaping Antarctic soil arthropod biodiversity. Insect Conserv. Divers. 2020, 13, 63–76. [Google Scholar] [CrossRef]
Pairwise Test | Environmental Conditions (12 Variables) | ||
---|---|---|---|
t | Unique Perms | p (Perm) | |
High vs. Low | 2.7567 | 9939 | 0.0001 *** |
High vs. Mid | 2.8884 | 9925 | 0.0001 *** |
Low vs. Mid | 1.723 | 9934 | 0.0011 ** |
Tide Level | Environ. Variable | Av. Value | Sq. Dist/SD | Contrib.% | Cum.% |
---|---|---|---|---|---|
Low | Bostrychia spp. | 0.04 | 0.20 | 0.01 | 0.01 |
Adenocystis spp. | 0.04 | 0.20 | 0.01 | 0.01 | |
Porphyra spp. | 0.04 | 0.20 | 0.01 | 0.02 | |
Other | 1.00 | 0.37 | 0.54 | 0.56 | |
Ulva intestinalis | 0.93 | 0.26 | 1.19 | 1.75 | |
Water | 6.26 | 0.50 | 7.12 | 8.87 | |
Gravel | 10.80 | 0.57 | 13.95 | 22.82 | |
Ulva Lactuca | 6.63 | 0.49 | 14.22 | 37.04 | |
Stone | 15.6 | 0.53 | 14.36 | 51.40 | |
Boulder | 14.7 | 0.54 | 14.70 | 66.11 | |
Bivalves | 9.7 | 0.55 | 15.62 | 81.73 | |
Mid | Porphyra spp. | 1.75 | 0.31 | 2.97 | 2.97 |
Adenocystis spp. | 2.18 | 0.28 | 4.45 | 7.41 | |
Water | 5.43 | 0.44 | 5.41 | 12.82 | |
Bostrychia spp. | 5.25 | 0.43 | 6.48 | 19.30 | |
Ulva Lactuca | 6.11 | 0.45 | 6.63 | 25.93 | |
Ulva intestinalis | 4.68 | 0.42 | 7.67 | 33.60 | |
Stone | 15.60 | 0.51 | 7.77 | 41.38 | |
Boulder | 12.60 | 0.54 | 8.08 | 49.46 | |
Gravel | 9.18 | 0.56 | 10.67 | 60.12 | |
Sand | 10.10 | 0.55 | 12.42 | 72.54 | |
Bivalves | 13.5 | 0.57 | 13.32 | 85.86 | |
High | Porphyra spp. | 0.036 | 0.19 | 0.01 | 0.01 |
Bostrychia spp. | 0.71 | 0.27 | 0.02 | 0.04 | |
Adenocystis spp. | 0.71 | 0.19 | 0.05 | 0.09 | |
Water | 0.11 | 0.19 | 0.12 | 0.21 | |
Ulva Lactuca | 1.18 | 0.31 | 3.10 | 3.31 | |
Stone | 22.20 | 0.45 | 4.20 | 7.51 | |
Bivalves | 2.00 | 0.26 | 8.93 | 16.43 | |
Sand | 3.04 | 0.40 | 13.54 | 29.97 | |
Other | 3.32 | 0.34 | 16.60 | 46.57 | |
Gravel | 13.4 | 0.54 | 24.84 | 71.41 |
Variable | Pseudo-F | p | Prop. |
---|---|---|---|
Boulder | 4.39 | 0.03 * | 0.05 |
Stone | 0.02 | 0.91 | 0.00 |
Gravel | 1.78 | 0.16 | 0.02 |
Sand | 8.17 | 0.003 ** | 0.09 |
Bivalves | 11.42 | 0.002 ** | 0.12 |
Water | 1.52 | 0.24 | 0.02 |
Bostrychia spp. | 30.12 | 0.001 *** | 0.27 |
Ulva lactuca | 10.68 | 0.004 ** | 0.12 |
Ulva intestinalis | 9.48 | 0.01 * | 0.10 |
Adenocystis spp. | 4.77 | 0.04 * | 0.06 |
Porphyra spp. | 1.74 | 0.13 | 0.02 |
Other | 0.03 | 0.86 | 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenz Simões, F.; Contador-Mejías, T.; Rendoll-Cárcamo, J.; Pérez-Troncoso, C.; Hayward, S.A.L.; Turner, E.; Convey, P. Distribution and Habitat Preferences of the Newly Rediscovered Telmatogeton magellanicus (Jacobs, 1900) (Diptera: Chironomidae) on Navarino Island, Chile. Insects 2020, 11, 442. https://doi.org/10.3390/insects11070442
Lorenz Simões F, Contador-Mejías T, Rendoll-Cárcamo J, Pérez-Troncoso C, Hayward SAL, Turner E, Convey P. Distribution and Habitat Preferences of the Newly Rediscovered Telmatogeton magellanicus (Jacobs, 1900) (Diptera: Chironomidae) on Navarino Island, Chile. Insects. 2020; 11(7):442. https://doi.org/10.3390/insects11070442
Chicago/Turabian StyleLorenz Simões, Felipe, Tamara Contador-Mejías, Javier Rendoll-Cárcamo, Carolina Pérez-Troncoso, Scott A. L. Hayward, Edgar Turner, and Peter Convey. 2020. "Distribution and Habitat Preferences of the Newly Rediscovered Telmatogeton magellanicus (Jacobs, 1900) (Diptera: Chironomidae) on Navarino Island, Chile" Insects 11, no. 7: 442. https://doi.org/10.3390/insects11070442
APA StyleLorenz Simões, F., Contador-Mejías, T., Rendoll-Cárcamo, J., Pérez-Troncoso, C., Hayward, S. A. L., Turner, E., & Convey, P. (2020). Distribution and Habitat Preferences of the Newly Rediscovered Telmatogeton magellanicus (Jacobs, 1900) (Diptera: Chironomidae) on Navarino Island, Chile. Insects, 11(7), 442. https://doi.org/10.3390/insects11070442