Next Article in Journal
Habitat and Seasonality Affect Mosquito Community Composition in the West Region of Cameroon
Previous Article in Journal
Insecticidal Activity of Bacillus thuringiensis Strains on the Nettle Caterpillar, Euprosterna elaeasa (Lepidoptera: Limacodidae)
Open AccessArticle

Biochemical Mechanisms, Cross-resistance and Stability of Resistance to Metaflumizone in Plutella xylostella

1
College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang 464000, China
2
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Insects 2020, 11(5), 311; https://doi.org/10.3390/insects11050311
Received: 29 April 2020 / Revised: 9 May 2020 / Accepted: 13 May 2020 / Published: 15 May 2020
The diamondback moth, Plutella xylostella (L.) is an important pest of cruciferous crops worldwide. It has developed resistance to many conventional and novel insecticide classes. Metaflumizone belongs to the new chemical class of semicarbazone insecticides. To delay the development of metaflumizone resistance in P. xylostella and to guide insecticide use in the field, the biochemical mechanisms, cross-resistance spectrum, and stability of resistance to metaflumizone were studied in a laboratory-selected resistant strain (metaflu-SEL). Synergism tests with the carboxylesterase inhibitor triphenyl phosphate (TPP), the glutathione S-transferase depletor diethyl maleate (DEM), and the P450 inhibitor piperonyl butoxide(PBO) had no obvious effect on metaflumizone in the metaflu-SEL strain and the susceptible strain (SS) of P. xylostella, with synergism ratios that ranged from 1.02 to 1.86. Biochemical studies revealed that the cytochrome P450-dependent monooxygenase increased only 1.13-fold in the metaflu-SEL strain compared with the UNSEL stain; meanwhile, carboxylesterase and glutathione S-transferase activity showed no difference. These results suggest that these detoxification enzymes may be not actively involved in metaflumizone resistance. Furthermore, the metaflu-SEL population showed a moderate level of cross-resistance to indoxacarb (11.63-fold), but only very low cross-resistance to spinosad (1.75-fold), spinetoram (3.52-fold), abamectin (2.81-fold), beta-cypermethrin (0.71-fold), diafenthiuron (0.79-fold), chlorantraniliprole (2.16-fold), BT (WG-001) (3.34-fold), chlorfenapyr (0.49-fold), and chlorfluazuron (0.97-fold). Moreover, metaflumizone resistance decreased from 1087.85- to 1.23-fold in the metaflu-SEL strain after 12 generations without exposure to metaflumizone. These results are useful for formulating insecticide resistance management strategies to control P. xylostella and to delay the development of metaflumizone resistance in the field. View Full-Text
Keywords: detoxification enzymes; cross-resistance; metaflumizone; Plutella xylostella; resistance detoxification enzymes; cross-resistance; metaflumizone; Plutella xylostella; resistance
Show Figures

Figure 1

MDPI and ACS Style

Shen, J.; Li, Z.; Li, D.; Wang, R.; Zhang, S.; You, H.; Li, J. Biochemical Mechanisms, Cross-resistance and Stability of Resistance to Metaflumizone in Plutella xylostella. Insects 2020, 11, 311.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop