Fungicides Reduce the Abundance of Yeast-like Symbionts and Survival of White-Backed Planthopper Sogatella furcifera (Homoptera: Delphacidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects and Fungicides
2.2. Nested PCR, DGGE, and Sequence-based Analysis of YLS Diversity in WBPH
2.3. Foliar Spray of Rice Plants with Fungicides
2.4. Quantification of YLS and WBPH Survival Rate
2.5. Absolute Quantitative Real-time PCR Analysis of YLS Species
2.6. Statistical Analysis
3. Results
3.1. YLS Diversity in WBPH
3.2. Effect of Fungicides on YLS Abundance and WBPH Survival Rate
3.3. Effect of Fungicides on the Abundance of Two YLS Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagadhara, D.; Ramesh, S.; Pasalu, I.C.; Rao, Y.K.; Sarma, N.P.; Reddy, V.D.; Rao, K.V. Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper (Sogatella furcifera). Theor. Appl. Genet. 2004, 109, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.T.; Deng, Y.; Jia, H.K.; Liu, Y.D.; Hou, M.L. Proteomic analysis of watery saliva secreted by white-backed planthopper, Sogatella furcifera. PLoS ONE 2018, 13, e0193831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasu, S. Studies on some leafhoppers and planthoppers which transmit virus diseases of rice plant in Japan. Bull. Kynshu Agric. Exp. Stn. 1963, 8, 153–349. [Google Scholar]
- Gomez-Polo, P.; Ballinger, M.J.; Lalzar, M.; Malik, A.; Ben-Dov, Y.; Mozes-Daube, N.; Perlman, S.J.; Iasur-Kruh, L.; Chiel, E. An exceptional family: Ophiocordyceps-allied fungus dominates the microbiome of soft scale insects (Hemiptera: Sternorrhyncha: Coccidae). Mol. Ecol. 2017, 26, 5855–5868. [Google Scholar] [CrossRef] [PubMed]
- Kobiałka, M.; Michalik, A.; Walczak, M.; Szklarzewicz, T. Dual “bacterial-fungal” symbiosis in deltocephalinae leafhoppers (Insecta, Hemiptera, Cicadomorpha: Cicadellidae). Microb. Ecol. 2018, 75, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, Y.; Moriyama, M.; Łukasik, P.; Vanderpool, D.; Tanahashi, M.; Meng, X.-Y.; McCutcheon, J.P.; Fukatsu, T. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl. Acad. Sci. USA 2018, 115, E5970–E5979. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Ma, Z.; Dong, S.Z.; Chen, Y.H.; Yu, X.P. Analysis of yeast-like symbiote diversity in the brown planthopper (BPH), Nilaparvata lugens Stål, using a novel nested PCR-DGGE protocol. Curr. Microbiol. 2013, 67, 263–270. [Google Scholar] [CrossRef]
- Dong, S.Z.; Pang, K.; Bai, X.; Yu, X.P.; Hao, P.Y. Identification of two species of yeast-like symbiotes in the brown planthopper, Nilaparvata lugens. Curr. Microbiol. 2011, 62, 1133–1138. [Google Scholar] [CrossRef]
- Cao, W.; Ma, Z.; Chen, Y.H.; Yu, X.P. Pichia anomala, a new species of yeast-like endosymbionts and its variation in small brown planthopper (Laodelphax striatellus). J. Biosci. Bioeng. 2015, 119, 669–673. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, X.; Tong, Z.; Lu, Z.; Chen, J.; Yu, X.; Tao, L. Effects of insecticides on the symbiotes in brown planthopper. Acta Agric. Zhejiangensis 2000, 12, 126–128. [Google Scholar]
- Zhang, X.; Yu, X.; Chen, J. High Temperature Effects on Yeast-like Endosymbiotes and Pesticide Resistance of the Small Brown Planthopper, Laodelphax striatellus. Rice Sci. 2008, 15, 326–330. [Google Scholar] [CrossRef]
- Nasu, S.; Kusumi, T.; Suwa, Y.; Kita, H. Symbiotes of planthoppers: II. isolation of intracellular symbiotic microorganisms from the brown planthopper, Nilaparata lugens Stål, and immunological comparison of the symbiotes associated with rice planthoppers (Hemiptera: Delphacidae). Appl. Entomol. Zool. 1981, 16, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Noda, H.; Kawahara, N. Electrophoretic karyotype of intracellular yeast-like symbiotes in rice planthoppers and anobiid beetles. J. Invertebr. Pathol. 1995, 65, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Noda, H.; Nakashima, N.; Koizumi, M. Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA sequences. Insect Biochem. Mol. Biol. 1995, 25, 639–646. [Google Scholar] [CrossRef]
- Suh, S.O.; Noda, H.; Blackwell, M. Insect symbiosis: Derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol. Biol. Evol. 2001, 18, 995–1000. [Google Scholar] [CrossRef]
- Yu, H.; Ji, R.; Ye, W.; Chen, H.; Lai, W.; Fu, Q.; Lou, Y. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice. PLoS ONE 2014, 9, e88528. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Zhou, X.; Zhang, C.X.; Yu, L.L.; Fan, H.W.; Wang, Z.; Xu, H.J.; Xi, Y.; Zhu, Z.R.; Zhou, W.W.; et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 2014, 15, 521. [Google Scholar] [CrossRef] [Green Version]
- Noda, H.; Koizumi, Y. Sterol biosynthesis by symbiotes: Cytochrome P450 sterol C-22 desaturase genes from yeast-like symbiotes of rice planthoppers and anobiid beetles. Insect Biochem. Mol. Biol. 2003, 33, 649–658. [Google Scholar] [CrossRef]
- Sasaki, T.; Kawamura, M.; Ishikawa, H. Nitrogen recycling in the brown planthopper, Nilaparvata lugens: Involvement of yeast-like endosymbionts in uric acid metabolism. J. Insect Physiol. 1996, 42, 125–129. [Google Scholar] [CrossRef]
- Bai, X.; Dong, S.Z.; Pang, K.; Bian, Y.L.; Yu, X.P. Identification of one yeast-like symbiont from the small brown planthopper, Laodelphax striatellus (Fallén) (Homoptera: Delphacidae). Acta Entomol. Sin. 2010, 7, 590–594. [Google Scholar] [CrossRef]
- Su, J.; Wang, Z.; Zhang, K.; Tian, X.; Yin, Y.; Zhao, X.; Shen, A.; Gao, C.F. Status of Insecticide Resistance of the Whitebacked Planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Fla. Entomol. 2013, 96, 948–956. [Google Scholar] [CrossRef]
- Shentu, X.P.; Li, D.T.; Xu, J.F.; She, L.; Yu, X.P. Effects of fungicides on the yeast-like symbiotes and their host, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pestic. Biochem. Physiol. 2016, 128, 16–21. [Google Scholar] [CrossRef]
- Shentu, X.P.; Wang, X.L.; Xiao, Y.; Yu, X.P. Effects of fungicide propiconazole on the yeast-like symbiotes in brown planthopper (BPH, Nilaparvata lugens Stål) and its role in controlling BPH infestation. Front. Physiol. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Mukherjee, I.; Gopal, M.; Chatterjee, S.C. Persistence and Effectiveness of Iprodione against Alternaria blight in Mustard. Bull. Environ. Contam. Toxicol. 2003, 70, 0586–0591. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Mansour, M.F.; Gabler, F.M.; Goodwine, W.R. The effectiveness of pyrimethanil to inhibit germination of Penicillium digitatum and to control citrus green mold after harvest. Postharvest Biol. Technol. 2006, 42, 75–85. [Google Scholar] [CrossRef]
- Pan, L.; Lai, D. Ameliorative effects of Propineb WP on sheath blight and brown spot disease of rice. Guangxi Agric. Sci. 2009, 40, 1160–1162. [Google Scholar]
- Hu, J.; Hong, C.; Stromberg, E.L.; Moorman, G.W. Effects of propamocarb hydrochloride on mycelial growth, sporulation, and infection by Phytophthora nicotianae isolates from Virginia nurseries. Plant Dis. 2007, 91, 414–420. [Google Scholar] [CrossRef]
- Mohapatra, S.; Ahuja, A.K.; Deepa, M.; Jagadish, G.; Prakash, G.; Kumar, S. Behaviour of trifloxystrobin and tebuconazole on grapes under semi-arid tropical climatic conditions. Pest Manage. Sci. 2010, 66, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zheng, M.A.; Xiao-Ping, Y.U. Isolation and sensitivity to fungicides of the yeast-like symbiont Pichia anomala (Hemiascomycetes: Saccharomycetaceae) from Laodelphax striatellus (Hemiptera: Delphacidae). Acta Entomol. Sin. 2015, 58, 271–280. [Google Scholar]
- Doaré-Lebrun, E.; El Arbi, A.; Charlet, M.; Guérin, L.; Pernelle, J.-J.; Ogier, J.-C.; Bouix, M. Analysis of fungal diversity of grapes by application of temporal temperature gradient gel electrophoresis–potentialities and limits of the method. J. Appl. Microbiol. 2006, 101, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Noda, H.; Omura, T. Purification of yeast-like symbiotes of planthoppers. J. Invertebr. Pathol. 1992, 59, 104–105. [Google Scholar] [CrossRef]
- Liang, H.W.; Wang, C.Z.; Li, Z.; Luo, X.; Zou, G. Improvement of the silver-stained technique of polyacrylamide gel electrophoresis. Hereditas 2008, 30, 1379–1382. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.L.; Barrett, T.; Benson, D.A.; Bryant, S.H.; Canese, K.; Chetvernin, V.; Church, D.M.; DiCuccio, M.; Edgar, R.; Federhen, S.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2007, 36, D13–D21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.C.; Cheng, L.L.; Hou, R.F. Studies on the intracellular yeast-like symbiote in the Brown Planthopper, Nilaparvata lugens Stål: II. Effects of antibiotics and elevated temperature on the symbiotes and their host. Z. Angew. Entomol. 1981, 92, 440–449. [Google Scholar] [CrossRef]
- Pang, K.; Dong, S.Z.; Hou, Y.; Bian, Y.L.; Yang, K.; Yu, X.P. Cultivation, identification and quantification of one species of yeast-like symbiotes, Candida, in the rice brown planthopper, Nilaparvata lugens. Insect Sci. 2012, 19, 477–484. [Google Scholar] [CrossRef]
- Chang, X.-N.; Wei, H.; Xiao, N.-W.; Li, J.-S.; Han, L.; Chen, F.-J. Effects of elevated CO2 and transgenic Bt rice on yeast-like endosymbiote and its host brown planthopper. J. Appl. Entomol. 2011, 135, 333–342. [Google Scholar] [CrossRef]
- Ying, H.L.; Hou, R.F. Physiological roles of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugens Stål. J. Insect Physiol. 1987, 33, 851–860. [Google Scholar] [CrossRef]
- Chen, J.M.; He, Y.P.; Zhang, J.F.; Na, L.; Chen, L.Z.; Yu, X.P. Effects of insecticides and fungicides on growth of endosymbiotes isolated from the brown planthopper, Nilaparvata lugens. Plant Prot. 2009, 35, 47–51. [Google Scholar]
First-round PCR | |
NS5 | 5′-AACTTAAAGGAATTGACGGAAG-3′ |
ITS4 | 5′-TCCTCCGCTTATTGATATGC-3′ |
Second round PCR | |
GCclampITS1 | 5′-CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCAC GGGGGGCCGTAGGTGAACCTGCGG-3′ |
ITS2 | 5′-GCTGCGTTCTTCATCGATGC-3′ |
GCclampITS3 | 5′-CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCAC GGGGGGCATCGATGAAGAACGCAGC-3′ |
ITS4 | 5′-TCCTCCGCTTATTGATATGC-3′ |
Absolute quantitative real-time PCR | |
Ascomycetes symbiotes 1f(as1f) | 5′-CACCCGAGGGGTCGAGGTGA-3′ |
Ascomycetes symbiotes 1r(as1r) | 5′-GCAGCGAAATGCGATAAGTAATGTGAAT-3′ |
Cladosporium halotolerans 1f (ch1f) | 5′-GCACCCTTTAGCGAATAGTT-3′ |
Cladosporium halotolerans 1r (ch1r) | 5′-CGAGCGTCATTTCACCAC-3′ |
No. | Length | Closest Related Species | Ident. | GenBank Accession No. | Primers |
---|---|---|---|---|---|
1 | 283 | Alternaria alternata isolate Alt-C71 | 100.00% | MN044804.1 | a |
2 | 274 | Periconia macrospinosa isolate A10E | 100.00% | JQ781723.1 | a |
3 | 244 | Alternaria alternata strain PB-56 | 100.00% | MK333976.1 | a |
4 | 302 | Uncultured Alternaria clone FUN55 | 100.00% | KC920881.1 | a |
5 | 338 | Fusarium sp. strain FSP | 100.00% | MN200310.1 | b |
6 | 337 | Cladosporium halotolerans FCG 1829 | 100.00% | LC414361.1 | b |
7 | 407 | Naganishia albida isolate KDLYL12-1 | 100.00% | JX174413.1 | b |
8 | 469 | Uncultured fungus clone S44T_39 | 99.15% | KU164594.1 | b |
9 | 463 | Uncultured marine fungus clone S2D3-21 | 99.35% | JX269268.1 | b |
10 | 461 | Uncultured fungus clone | 99.57% | MF510813.1 | b |
11 | 273 | Uncultured fungus clone ZSH201205-35 | 100.00% | KX515492.1 | b |
12 | 438 | Sogatella furcifera yeast-like symbiont (Ascomycetes symbiotes) 18S-ITS | 92.05% | JF732896.1 | b |
Fungicide | Dose/L | Day 1 | Day 3 | Day 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SE YLS Count (×104/Insect) | Ratio Index (%) | Survival (%) | Mean ± SE YLS Count (×104/Insect) | Ratio Index (%) | Survival (%) | Mean ± SE YLS Count (×104/Insect) | Ratio Index (%) | Survival (%) | ||
Water | - | 17.43 ± 0.603 a | 100.0 | 100.0 | 18.31 ± 1.332 a | 100.0 | 97.8 | 21.97 ± 1.562 a | 100.0 | 95.6 |
PR | 4.28 g | 9.83 ± 1.527 c | 56.4 | 95.6 | 10.88 ± 0.601 b | 59.4 | 88.9 | 5.29 ± 0.317 b | 24.1 | 71.1 |
PH | 2.00 mL | 14.08 ± 1.010 b | 80.8 | 93.3 | 10.20 ± 0.198 bc | 55.7 | 86.7 | 5.08 ± 1.627 b | 23.2 | 57.8 |
TT | 0.30 g | 8.46 ± 0.301 c | 48.6 | 91.1 | 8.83 ± 0.654 c | 48.2 | 75.6 | 4.16 ± 1.816 bc | 19.1 | 51.1 |
PY | 1.88 mL | 16.08 ± 0.144 ab | 92.3 | 95.6 | 4.00 ± 0.500 d | 21.8 | 77.8 | 2.75 ± 0.433 c | 12.7 | 48.9 |
IP | 2.00 mL | 4.16 ± 0.144 d | 23.9 | 93.3 | 2.91 ± 1.100 d | 15.9 | 71.1 | 2.02 ± 0.202 c | 9.2 | 42.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, K.; Dong, S.; Hao, P.; Chen, T.; Wang, X.; Yu, X.; Lin, H. Fungicides Reduce the Abundance of Yeast-like Symbionts and Survival of White-Backed Planthopper Sogatella furcifera (Homoptera: Delphacidae). Insects 2020, 11, 209. https://doi.org/10.3390/insects11040209
Pang K, Dong S, Hao P, Chen T, Wang X, Yu X, Lin H. Fungicides Reduce the Abundance of Yeast-like Symbionts and Survival of White-Backed Planthopper Sogatella furcifera (Homoptera: Delphacidae). Insects. 2020; 11(4):209. https://doi.org/10.3390/insects11040209
Chicago/Turabian StylePang, Kun, Shengzhang Dong, Peiying Hao, Tongtong Chen, Xinlong Wang, Xiaoping Yu, and Huafeng Lin. 2020. "Fungicides Reduce the Abundance of Yeast-like Symbionts and Survival of White-Backed Planthopper Sogatella furcifera (Homoptera: Delphacidae)" Insects 11, no. 4: 209. https://doi.org/10.3390/insects11040209
APA StylePang, K., Dong, S., Hao, P., Chen, T., Wang, X., Yu, X., & Lin, H. (2020). Fungicides Reduce the Abundance of Yeast-like Symbionts and Survival of White-Backed Planthopper Sogatella furcifera (Homoptera: Delphacidae). Insects, 11(4), 209. https://doi.org/10.3390/insects11040209