Assessment of Lethal, Sublethal, and Transgenerational Effects of Beauveria bassiana on the Demography of Aedes albopictus (Culicidae: Diptera)
Abstract
:1. Introduction
2. Material and Method
2.1. Rearing of Ae. albopictus
2.2. Fungi Culture
2.3. Bioassay
2.3.1. Screening of Beauveria bassiana Isolates
2.3.2. Selection of Beauveria bassiana Isolate
2.3.3. Assay of Blood-Fed Females
2.3.4. Validation of Lethal (LC50) and Sublethal (LC20) Concentrations
2.3.5. Influence of Beauveria bassiana on Longevity and Fecundity of Filial Generation (F0)
2.3.6. Transgenerational Effect of Beauveria bassiana on First Filial Generation (F1)
2.4. Statistical Analysis
3. Results
3.1. Screening of Beauveria bassiana Isolate
3.2. Selection of Beauveria bassiana Isolate
3.3. Assay of Blood-Fed Females
3.4. Validation of Lethal (LC50) and Sublethal (LC20) Concentrations
3.5. Influence of Beauveria bassiana on Longevity and Fecundity of Filial Generation (F0)
3.6. Effect of Beauveria bassiana on First Filial Generation (F1)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tauil, P.L. Critical aspects of dengue control in Brazil. Cad. Saúde Pública 2002, 18, 867–871. [Google Scholar] [CrossRef] [Green Version]
- Gratz, N. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.I. Pesticides and public health: Integrated methods of mosquito management. Emerg. Infect. Dis. 2001, 7, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Relyea, R.; Hoverman, J. Assessing the ecology in ecotoxicology: A review and synthesis in freshwater systems. Ecol. Lett. 2006, 9, 1157–1171. [Google Scholar] [CrossRef]
- Fleeger, J.W.; Carman, K.R.; Nisbet, R.M. Indirect effects of contaminants in aquatic ecosystems. Sci. Total Environ. 2003, 317, 207–233. [Google Scholar] [CrossRef]
- Forson, D.D.; Storfer, A. Atrazine increases ranavirus susceptibility in the tiger salamander, Ambystoma tigrinum. Ecol. Appl. 2006, 16, 2325–2332. [Google Scholar] [CrossRef] [Green Version]
- Forson, D.; Storfer, A. Effects of atrazine and iridovirus infection on survival and life-history traits of the long-toed salamander (Ambystoma macrodactylum). Environ. Toxicol. Chem. 2006, 25, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Muturi, E.J.; Kim, C.H.; Alto, B.W.; Berenbaum, M.R.; Schuler, M.A. Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Trop. Med. Int. Health 2011, 16, 955–964. [Google Scholar] [CrossRef]
- Blaustein, A.R.; Romansic, J.M.; Kiesecker, J.M.; Hatch, A.C. Ultraviolet radiation, toxic chemicals and amphibian population declines. Divers. Distrib. 2003, 9, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Freed, S.; Shoukat, R.F.; Ahmad, K.W. Efficacy of Entomopathogenic Fungi with Insecticides Mixtures against Oxycarenus hyalinipennis (Costa)(Lygaeidae: Hemiptera). Pak. J. Zool. 2020, 52, 573–583. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Saeed, M.; Nawaz, A.; Usman, M.; Shoukat, R.F.; Li, S.; Zhang, Y.; Zeng, L.; Zafar, J.; Akash, A. Monitoring of quantitative and qualitative losses by lepidopteran, and homopteran pests in different crop production systems of Brassica oleracea L. J. Entomol. Zool. Stud. 2018, 6, 6–12. [Google Scholar]
- Khan, B.A.; Freed, S.; Zafar, J.; Farooq, M.; Shoukat, R.F.; Ahmad, K.W.; Li, S.; Zhang, Y.; Hua, Y.; Shoukat, R.F. Efficacy of different entomopathogenic fungi on biological parameters of pulse beetle Callosobruchus chinensis L. (Coleoptera: Bruchidae). J. Entomol. Zool. Stud. 2018, 6, 1972–1976. [Google Scholar]
- Zafar, J.; Freed, S.; Khan, B.A.; Farooq, M. Effectiveness of Beauveria bassiana Against Cotton Whitefly, Bemisia tabaci (Gennadius)(Aleyrodidae: Homoptera) on Different Host Plants. Pak. J. Zool. 2016, 48, 91–99. [Google Scholar]
- Rizvi, S.A.H.; Ling, S.; Tian, F.; Liu, J.; Zeng, X. Interference mechanism of Sophora alopecuroides L. alkaloids extract on host finding and selection of the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Environ. Sci. Pollut. Res. 2018. [Google Scholar] [CrossRef]
- Shakeel, M.; Farooq, M.; Nasim, W.; Akram, W.; Khan, F.Z.A.; Jaleel, W.; Zhu, X.; Yin, H.; Li, S.; Fahad, S. Environment polluting conventional chemical control compared to an environmentally friendly IPM approach for control of diamondback moth, Plutella xylostella (L.), in China: A review. Environ. Sci. Pollut. Res. 2017, 24, 14537–14550. [Google Scholar] [CrossRef]
- Ahmad, K.W.; Freed, S.; Shoukat, R.F. Efficacy of entomopathogenic fungi and botanicals on development of Musca domestica. J. Entomol. Zool. Stud. 2017, 5, 593–599. [Google Scholar]
- Akmal, M.; Freed, S.; Naeem, M.; Tahira, H. Efficacy of Beauveria bassiana (Deuteromycotina: Hypomycetes) Against Different Aphid Species under Laboratory Conditions. Pak. J. Zool. 2013, 45, 71–78. [Google Scholar]
- Farooq, M.; Steenberg, T.; Castberg, D.; Freed, S.; Kristensen, M. Impact of sequential exposure of Beauveria bassiana and imidacloprid against susceptible and resistant strains of Musca domestica. BioControl 2018, 63, 707–718. [Google Scholar] [CrossRef]
- Farooq, M.; Freed, S. Insecticidal activity of toxic crude proteins secreted by entomopathogenic fungi against Musca domestica L. (Diptera: Muscidae). KUWAIT J. SCI. 2018, 45, 64–74. [Google Scholar]
- Farooq, M.; Freed, S. Mortality, Biological, and Biochemical Response of Musca domestica (Diptera: Muscidae) to Selected Insecticides 1. J. Entomol. Sci. 2018, 53, 27–45. [Google Scholar]
- Freed, S.; Saleem, M.A.; Khan, M.; Naeem, M. Prevalence and effectiveness of Metarhizium anisopliae against Spodoptera exigua (Lepidoptera: Noctuidae) in southern Punjab, Pakistan. Pak. J. Zool. 2012, 44, 753. [Google Scholar]
- Shoukat, R.F.; Freed, S.; Ahmad, K.W.; Rehman, A.-U. Assessment of Binary Mixtures of Entomopathogenic Fungi and Chemical Insecticides on Biological Parameters of Culex pipiens (Diptera: Culicidae) under Laboratory and Field Conditions. Pak. J. Zool. 2018, 50, 299. [Google Scholar] [CrossRef]
- Shoukat, R.F.; Freed, S.; Ahmad, K.W. Evaluation of binary mixtures of entomogenous fungi and botanicals on biological parameters of Culex pipiens (Diptera: Culicidae) under laboratory and field conditions. Int. J. Mosq. Res. 2016, 3, 17–24. [Google Scholar]
- Freed, S.; Feng Liang, J.; Shun Xiang, R. Intraspecific Variability among the Isolates of Metarhizium anisopliae var. anisopliae by RAPD Markers. Int. J. Agric. Biol. 2014, 16, 899–904. [Google Scholar]
- Huang, Y.-B.; Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 2012, 19, 263–273. [Google Scholar] [CrossRef]
- Saeed, M.; Shoukat, R.F.; Zafar, J. Population dynamics of natural enemies and insect pest in different Brassica oleracea (cabbage) growing seasons with different production systems. J. Entomol. Zool. Stud. 2017, 5, 1669–1674. [Google Scholar]
- Breeland, S.G.; Jeffery, G.M.; Lofgren, C.S.; Weidhaas, D.E. Release of Chemosterilized Males for the Control of Anopheles Albimanus in El Salvador. Am. J. Trop. Med. Hyg. 1974, 23, 274–281. [Google Scholar] [CrossRef]
- Malik, S.U.; Zia, K.; Ajmal, M.; Shoukat, R.F.; Li, S.; Saeed, M.; Zafar, J.; Shoukat, R.F. Comparative efficacy of different insecticides and estimation of yield losses on BT and non-BT cotton for thrips, red cotton bug, and dusky cotton bug. J. Entomol. Zool. Stud. 2018, 6, 505–512. [Google Scholar]
- Leslie, P.H. On the use of matrices in certain population mathematics. Biometrika 1945, 33, 183–212. [Google Scholar] [CrossRef]
- Rueda, L.; Patel, K.; Axtell, R.; Stinner, R. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 1990, 27, 892–898. [Google Scholar] [CrossRef]
- Edman, J.; Scott, T.; Costero, A.; Morrison, A.; Harrington, L.; Clark, G. Aedes aegypti (Diptera: Culicidae) movement influenced by availability of oviposition sites. J. Med. Entomol. 1998, 35, 578–583. [Google Scholar] [CrossRef]
- Tejerina, E.F.; Almeida, F.F.L.; Almirón, W.R. Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Misiones province, northeastern Argentina. Acta Trop. 2009, 109, 45–49. [Google Scholar] [CrossRef]
- Chi, H. Timing of control based on the stage structure of pest populations: A simulation approach. J. Econ. Entomol. 1990, 83, 1143–1150. [Google Scholar] [CrossRef]
- Yu, J.-Z.; Chi, H.; Chen, B.-H. Life Table and Predation of Lemnia biplagiata (Coleoptera: Coccinellidae) Fed on Aphis gossypii (Homoptera: Aphididae) with a Proof on Relationship Among Gross Reproduction Rate, Net Reproduction Rate, and Preadult Survivorship. Ann. Entomol. Soc. Am. 2005, 98, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.-L. Life table studies of Aedes albopictus (Skuse). In Sterility Principle for Insect Control or Eradication. Proceedings of the Symposium on the Sterility Principle for Insect Control or Eradication Jointly Organized by the IAEA and FAO, Athens, Greece, 14–18 September 1970; International Atomic Energy Agency: Vienna, Austria, 1971; pp. 131–143. [Google Scholar]
- Rozilawati, H.; Masri, M.; Tanaselvi, K.; TH, M.Z.; Zairi, J.; Nazni, W.; Lee, H. Life table characteristics of Malaysian strain Aedes albopictus (Skuse). Serangga 2018, 5, 1–22. [Google Scholar]
- Freed, S.; Jin, F.-L.; Ren, S.-X. Determination of genetic variability among the isolates of Metarhizium anisopliae var. anisopliae from different geographical origins. World J. Microbiol. Biotechnol. 2011, 27, 359–370. [Google Scholar] [CrossRef]
- Butt, T.; Ibrahim, L.; Ball, B.; Clark, S. Pathogenicity of the entomogenous fungi Metarhizium anisopliae and Beauveria bassiana against crucifer pests and the honey bee. Biocontrol Sci. Technol. 1994, 4, 207–214. [Google Scholar] [CrossRef]
- Darbro, J.M.; Thomas, M.B. Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. Am. J. Trop. Med. Hyg. 2009, 80, 992–997. [Google Scholar] [CrossRef]
- Scholte, E.-J.; Takken, W.; Knols, B.G. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop. 2007, 102, 151–158. [Google Scholar] [CrossRef]
- Scholte, E.-J.; Knols, B.G.; Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 2006, 91, 43–49. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.; Yu, X.; Yu, C.; Liu, F.; Mu, W. Sublethal and transgenerational effects of thiamethoxam on the demographic fitness and predation performance of the seven-spot ladybeetle Coccinella septempunctata L.(Coleoptera: Coccinellidae). Chemosphere 2019, 216, 168–178. [Google Scholar] [CrossRef] [PubMed]
- LeOra, S. Poloplus, a User’s Guide to Probit or Logit Analysis; LeOra Software: Berkeley, CA, USA, 2003. [Google Scholar]
- Chi, H.; Su, H.-Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead)(Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer)(Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Chi, H. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates Among Individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. 2015, Volume 197. Available online: http://140.120.197.173/ecology/Download/00-How%20to%20use%20TWOSEX.pdf (accessed on 4 March 2020).
- Meyer, J.S.; Ingersoll, C.G.; McDonald, L.L.; Boyce, M.S. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 1986, 67, 1156–1166. [Google Scholar] [CrossRef] [Green Version]
- Tuan, S.-J.; Li, N.-J.; Yeh, C.-C.; Tang, L.-C.; Chi, H. Effects of green manure cover crops on Spodoptera litura (Lepidoptera: Noctuidae) populations. J. Econ. Entomol. 2014, 107, 897–905. [Google Scholar] [CrossRef] [Green Version]
- Tuan, S.J.; Lee, C.C.; Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 2014, 70, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Christophers, S.R. Aedes Aegypti: The Yellow Fever Mosquito; CUP Archive: Cambridge, UK, 1960. [Google Scholar]
- Crovello, T.J.; Hacker, C.S. Evolutionary strategies in life table characteristics among feral and urban strains of Aedes aegypti (L.). Evolution 1972, 2, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Southwood, T.; Murdie, G.; Yasuno, M.; Tonn, R.J.; Reader, P. Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ. 1972, 46, 211. [Google Scholar]
- Lansdowne, C.; Hacker, C.S. The effect of fluctuating temperature and humidity on the adult life table characteristics of five strains of Aedes aegypti. J. Med. Entomol. 1975, 11, 723–733. [Google Scholar] [CrossRef]
- Harcourt, D. The development and use of life tables in the study of natural insect populations. Annu. Rev. Entomol. 1969, 14, 175–196. [Google Scholar] [CrossRef]
- Kakde, V.; Dipke Vaishali, G. Status of Vector Borne Disease, Dengue in Buldana Town-A study report. Int. J. Life Sci. 2014, 2, 410–412. [Google Scholar]
- Lee, S.J.; Kim, S.; Yu, J.S.; Kim, J.C.; Nai, Y.-S.; Kim, J.S. Biological control of Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae) using Metarhizium anisopliae JEF-003 millet grain. J. Asia-Pac. Entomol. 2015, 18, 217–221. [Google Scholar] [CrossRef]
- Shoukat, R.F.; Hassan, B.; Shakeel, M.; Zafar, J.; Li, S.; Freed, S.; Xu, X.; Jin, F. Pathogenicity and Transgenerational Effects of Metarhizium anisopliae on the Demographic Parameters of Aedes albopictus (Culicidae: Diptera). J. Med Entomol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Boldo, J.T.; Junges, A.; Do Amaral, K.B.; Staats, C.C.; Vainstein, M.H.; Schrank, A. Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus. Curr. Genet. 2009, 55, 551–560. [Google Scholar] [CrossRef]
- Zimmermann, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- Jin, K.; Peng, G.; Liu, Y.; Xia, Y. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genet. Biol. 2015, 77, 61–67. [Google Scholar] [CrossRef]
- Peng, G.; Jin, K.; Liu, Y.; Xia, Y. Enhancing the utilization of host trehalose by fungal trehalase improves the virulence of fungal insecticide. Appl. Microbiol. Biotechnol. 2015, 99, 8611–8618. [Google Scholar] [CrossRef]
- Leles, R.N.; D’Alessandro, W.B.; Luz, C. Effects of Metarhizium anisopliae conidia mixed with soil against the eggs of Aedes aegypti. Parasitol. Res. 2012, 110, 1579–1582. [Google Scholar] [CrossRef]
- Luz, C.; Tai, M.; Santos, A.; Rocha, L.; Albernaz, D.; Silva, H. Ovicidal activity of entomopathogenic hyphomycetes on Aedes aegypti (Diptera: Culicidae) under laboratory conditions. J. Med. Entomol. 2007, 44, 799–804. [Google Scholar] [CrossRef]
- Alves, S.; Alves, L.; Lopes, R.; Pereira, R.; Vieira, S. Potential of some Metarhizium anisopliae isolates for control of Culex quinquefasciatus (Dipt., Culicidae). J. Appl. Entomol. 2002, 126, 504–509. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Cali, A. Vairimorpha necatrix (Microsporida: Burenellidae) affects growth and development of Heliothis zea (Lepidoptera: Noctuidae) raised at various temperatures. J. Econ. Entomol. 1994, 87, 933–940. [Google Scholar] [CrossRef]
- Henn, M.W.; Solter, L.F. Food utilization values of gypsy moth Lymantria dispar (Lepidoptera: Lymantriidae) larvae infected with the microsporidium Vairimorpha sp. (Microsporidia: Burenellidae). J. Invertebr. Pathol. 2000, 76, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Tian, M.Y.; He, Y.R.; Ahmed, S. Entomopathogenic fungi disturbed the larval growth and feeding performance of Ocinara varians (Lepidoptera: Bombycidae) larvae. Insect Sci. 2009, 16, 511–517. [Google Scholar] [CrossRef]
- Lecuona, R.E.; Turica, M.; Tarocco, F.; Crespo, D.C. Microbial control of Musca domestica (Diptera: Muscidae) with selected strains of Beauveria bassiana. J. Med Entomol. 2005, 42, 332–336. [Google Scholar] [CrossRef]
- Scholte, E.-J.; Ng’Habi, K.; Kihonda, J.; Takken, W.; Paaijmans, K.; Abdulla, S.; Killeen, G.F.; Knols, B.G. An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 2005, 308, 1641–1642. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.B.; Read, A.F. Can fungal biopesticides control malaria? Nat. Rev. Microbiol. 2007, 5, 377. [Google Scholar] [CrossRef]
- Thomas, A.; Mazigo, H.D.; Manjurano, A.; Morona, D.; Kweka, E.J. Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae (sensu lato). Parasite Vectors 2017, 10, 411. [Google Scholar] [CrossRef] [Green Version]
- Aw, K.M.S.; Hue, S.M. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. J. Fungi 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Enserink, M. A Mosquito Goes Global; American Association for the Advancement of Science: Washington, DC, USA, 2008. [Google Scholar] [CrossRef]
- Enserink, M. Source of New Hope against Malaria is in Short Supply; American Association for the Advancement of Science: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Hanley, K.A.; Goddard, L.B.; Gilmore, L.E.; Scott, T.W.; Speicher, J.; Murphy, B.R.; Pletnev, A.G. Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors. Vector-Borne Zoonotic Dis. 2005, 5, 1–10. [Google Scholar] [CrossRef]
- Michalakis, Y.; Renaud, F. Malaria: Fungal allies enlisted. Nature 2005, 435, 891. [Google Scholar] [CrossRef]
- Sagheer, M.; Sahi, S.T. Bio-efficacy of entomopathogenic fungus Beauveria bassiana (BALS.) against Trogoderma granarium (EVERTS) AND Tribolium castaneum (HERBST). Pak. J. Agric. Sci. 2019, 56, 429–434. [Google Scholar]
- Yasin, M.; Wakil, W.; Ghazanfar, M.U.; Qayyum, M.A.; Tahir, M.; Bedford, G.O. Virulence of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against red palm weevil, Rhynchophorus ferrugineus (Olivier). Entomol. Res. 2019, 49, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Ocampo, C.B.; Salazar-Terreros, M.J.; Mina, N.J.; McAllister, J.; Brogdon, W. Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Trop. 2011, 118, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Blanford, S.; Chan, B.H.; Jenkins, N.; Sim, D.; Turner, R.J.; Read, A.F.; Thomas, M.B. Fungal pathogen reduces potential for malaria transmission. Science 2005, 308, 1638–1641. [Google Scholar] [CrossRef] [PubMed]
Isolates | LC50 | LC20 | Slop ± SE | χ2 | p-Value | df |
---|---|---|---|---|---|---|
Bb-01 | 3.0 × 106 | 2.1 × 103 | 0.296 + 0.042 | 1.023 | 0.796 | 4 |
Bb-10 | 1.4 × 107 | 3.2 × 104 | 0.515 + 0.048 | 16.477 | 0.001 | 4 |
Parameters | Means ± SE | ||
---|---|---|---|
Control | B. Bassiana (LC20) | B. Bassiana (LC50) | |
Adult mortality (days) | 1.9 ± 0.17 c | 23.11 ± 1.11 b | 51.54 ± 0.98 a |
Male longevity (n = 50) | 29.91 ± 1.20 a | 26.09 ± 2.01 b | 21.33 ± 3.21 c |
Female longevity (n = 50) | 30.07 ± 0.41 a | 27.65 ± 1.77b | 22.22 ± 1.21c |
Fecundity (1/50) | 357.33 ± 9.30a | 230.47 ± 9.32b | 189.31 ± 8.11c |
Parameters | Control | LC20 Treated | LC50 Treated |
---|---|---|---|
Means ± SE | Means ± SE | Means ± SE | |
Percent hatching | 100 ± 0.00 a | 100 ± 0.00 a | 95 ± 2.11 b |
Egg duration | 2.00 ± 0.01 a | 2.00 ± 0.00 a | 1.95 ± 0.54 b |
L1 | 2.00 ± 0.02 b | 1.99 ± 0.00 b | 2.31 ± 0.71 a |
L2 | 1.99 ± 0.11 b | 1.99 ± 0.10 b | 2.02 ± 0.61 a |
L3 | 1.99 ± 0.10 a | 1.99 ± 0.10 a | 1.99 ± 0.54 a |
L4 | 2.00 ± 0.02 b | 2.00 ± 0.00 b | 2.06 ± 0.59 a |
Total Larval duration | 7.89 ± 0.03 c | 7.97 ± 0.01 b | 8.38 ± 0.16 a |
Pupal duration | 3.00 ± 0.11 a | 3.00 ± 0.59 a | 2.55 ± 0.59 b |
Pre-oviposition period | 13.00 ± 0.00 a | 13.01 ± 0.00 a | 12.95 ± 0.59 b |
Female longevity | 32.95 ± 0.53 a | 32.00 ± 2.79 a | 29.00 ± 2.81 b |
Male longevity | 30.00 ± 1.67 a | 30.10 ± 1.53 a | 27.00 ± 3.45 b |
Fecundity | 380.27 ± 11.12 a | 349.87 ± 7.31 b | 320.00 ± 5.42 c |
Parameters | Control | LC20 Treated | LC50 Treated |
---|---|---|---|
Means ± SE | Means ± SE | Means ± SE | |
Intrinsic rate of increase (r) | 0.2744 ± 0.007 a | 0.2506 ± 0.002 b | 0.2295 ± 0.005 c |
Net reproduction rate (Ro) | 133.0 ± 16.21 a | 89.16 ± 9.31 b | 50.62 ± 8.31 c |
Mean length of a generation (T) | 17.83 ± 0.12 a | 17.80 ± 0.16 a | 17.09 ± 0.09 c |
Finite rate of increase (λ) | 1.316 ± 0.01 a | 1.285 ± 0.02 b | 1.258 ± 0.06 c |
Birth rate (at SASD) | 0.319 ± 0.12 a | 0.2883 ± 0.21 b | 0.264 ± 0.21 c |
Survival rate (at SASD) | 0.997 ± 0.02 a | 0.997 ± 0.03 a | 0.995 ± 0.01 b |
Death rate (at SASD) | 3.206 ± 1.03 c | 3.491 ± 1.04 b | 5.499 ± 1.07 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoukat, R.F.; Zafar, J.; Shakeel, M.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Assessment of Lethal, Sublethal, and Transgenerational Effects of Beauveria bassiana on the Demography of Aedes albopictus (Culicidae: Diptera). Insects 2020, 11, 178. https://doi.org/10.3390/insects11030178
Shoukat RF, Zafar J, Shakeel M, Zhang Y, Freed S, Xu X, Jin F. Assessment of Lethal, Sublethal, and Transgenerational Effects of Beauveria bassiana on the Demography of Aedes albopictus (Culicidae: Diptera). Insects. 2020; 11(3):178. https://doi.org/10.3390/insects11030178
Chicago/Turabian StyleShoukat, Rana Fartab, Junaid Zafar, Muhammad Shakeel, Yuxin Zhang, Shoaib Freed, Xiaoxia Xu, and Fengliang Jin. 2020. "Assessment of Lethal, Sublethal, and Transgenerational Effects of Beauveria bassiana on the Demography of Aedes albopictus (Culicidae: Diptera)" Insects 11, no. 3: 178. https://doi.org/10.3390/insects11030178
APA StyleShoukat, R. F., Zafar, J., Shakeel, M., Zhang, Y., Freed, S., Xu, X., & Jin, F. (2020). Assessment of Lethal, Sublethal, and Transgenerational Effects of Beauveria bassiana on the Demography of Aedes albopictus (Culicidae: Diptera). Insects, 11(3), 178. https://doi.org/10.3390/insects11030178