Contribution of Extensive Farming Practices to the Supply of Floral Resources for Pollinators
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Fields
2.2. Floral Resources
2.3. Insect–Flower Interactions
2.4. Statistical Analyses
3. Results
3.1. Nectar Sugar Production
3.2. Pollinator Observations
4. Discussion
4.1. Nectar Resource Variation in Space and Time
4.2. Extensive Agriculture May Alleviate the June Nectar Resource Gap
4.3. Nectar Availability only Partly Explained Insect Visitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Henle, K.; Alard, D.; Clitherow, J.; Cobb, P.; Firbank, L.; Kull, T.; McCracken, D.; Moritz, R.F.A.; Niemelä, J.; Rebane, M.; et al. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—A review. Agric. Ecosyst. Environ. 2008, 124, 60–71. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Isbell, F.; Cowles, J.M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 471–493. [Google Scholar] [CrossRef]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the netherlands. Science 2006, 313, 351. [Google Scholar] [CrossRef]
- Corbet, S.A.; Williams, I.H.; Osborne, J.L. Bees and the pollination of crops and wild flowers in the European community. Bee World 1991, 72, 47–59. [Google Scholar] [CrossRef]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Aizen, M.A.; Cunningham, S.; Klein, A.M. Pollinator shortage and global crop yield. Commun. Integr. Biol. 2009, 2, 37–39. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Vanbergen, A.J.; Garratt, M.P.; Vanbergen, A.J.; Baude, M.; Biesmeijer, J.C.; Britton, N.F.; Brown, M.J.F.F.M.; Brown, M.J.F.F.M.; Bryden, J.; Budge, G.E.; et al. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B. Economic valuation of the vulnerability of world agriculture confronted to pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Brown, M.J.F.; Paxton, R.J. The conservation of bees: A global perspective. Apidologie 2009, 40, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Goulson, D.; Nicholls, E.; Botias, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Richner, N.; Holderegger, R.; Linder, H.P.; Walter, T. Reviewing change in the arable flora of Europe: A meta-analysis. Weed Res. 2015, 55, 1–13. [Google Scholar] [CrossRef]
- Wesche, K.; Krause, B.; Culmsee, H.; Leuschner, C. Fifty years of change in Central European grassland vegetation: Large losses in species richness and animal-pollinated plants. Biol. Conserv. 2012, 150, 76–85. [Google Scholar] [CrossRef]
- Hodgson, J.G.; Grime, J.P.; Wilson, P.J.; Thompson, K.; Band, S.R. The impacts of agricultural change (1963–2003) on the grassland flora of Central England: Processes and prospects. Basic Appl. Ecol. 2005, 6, 107–118. [Google Scholar] [CrossRef]
- Clout, H. The recomposition of rural Europe: A review. Ann. Géographie 1991, 100, 714–729. [Google Scholar] [CrossRef]
- Poschlod, P.; Braun-Reichert, R. Small natural features with large ecological roles in ancient agricultural landscapes of Central Europe—History, value, status, and conservation. Biol. Conserv. 2017, 211, 60–68. [Google Scholar] [CrossRef]
- Baude, M.; Kunin, W.E.; Boatman, N.D.; Conyers, S.; Davies, N.; Gillespie, M.A.K.; Morton, R.D.; Smart, S.M.; Memmott, J. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 2016, 530, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Carvell, C.; Roy, D.B.; Smart, S.M.; Pywell, R.F.; Preston, C.D.; Goulson, D. Declines in forage availability for bumblebees at a national scale. Biol. Conserv. 2006, 132, 481–489. [Google Scholar] [CrossRef]
- Ouvrard, P.; Transon, J.; Jacquemart, A.-L.L. Flower-strip agri-environment schemes provide diverse and valuable summer flower resources for pollinating insects. Biodivers. Conserv. 2018, 27, 2193–2216. [Google Scholar] [CrossRef]
- Müller, A.; Diener, S.; Schnyder, S.; Stutz, K.; Sedivy, C.; Dorn, S. Quantitative pollen requirements of solitary bees: Implications for bee conservation and the evolution of bee–flower relationships. Biol. Conserv. 2006, 130, 604–615. [Google Scholar] [CrossRef]
- Vaudo, A.D.; Tooker, J.F.; Grozinger, C.M.; Patch, H.M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 2015, 10, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, E.; Manning, P.; Alt, F.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Grassein, F.; Hölzel, N.; Klaus, V.H.; et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 2015, 18, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Ollerton, J.; Erenler, H.; Edwards, M.; Crockett, R. Pollinator declines. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 2014, 346, 1360–1362. [Google Scholar] [CrossRef] [Green Version]
- Timberlake, T. Mind the Gap: The Importance of flowering Phenology in Pollinator Conservation. Ph.D. Thesis, University of Bristol, Bristol, UK, 2019. [Google Scholar]
- Morandin, L.A.; Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 2013, 23, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Batáry, P.; Báldi, A.; Sárospataki, M.; Kohler, F.; Verhulst, J.; Knop, E.; Herzog, F.; Kleijn, D. Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agric. Ecosyst. Environ. 2010, 136, 35–39. [Google Scholar] [CrossRef]
- Bretagnolle, V.; Gaba, S. Weeds for bees? A review. Agron. Sustain. Dev. 2015, 35, 891–909. [Google Scholar] [CrossRef] [Green Version]
- Cole, L.J.; Brocklehurst, S.; Robertson, D.; Harrison, W.; McCracken, D.I. Exploring the interactions between resource availability and the utilization of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 2017, 246, 157–167. [Google Scholar] [CrossRef]
- Westphal, C.; Steffan-Dewenter, I.; Tscharntke, T. Mass flowering crops enhance pollinator densities at a landscape scale: Flowering crops enhance pollinator densities. Ecol. Lett. 2003, 6, 961–965. [Google Scholar] [CrossRef]
- Holzschuh, A.; Dormann, C.F.; Tscharntke, T.; Steffan-Dewenter, I. Mass-flowering crops enhance wild bee abundance. Oecologia 2013, 172, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, J.H.; Roitberg, B.D. Impacts of flight distance on sex ratio and resource allocation to offspring in the leafcutter bee, Megachile rotundata. Behav. Ecol. Sociobiol. 2006, 59, 589–596. [Google Scholar] [CrossRef]
- Rands, S.A.; Whitney, H.M. Field margins, foraging distances and their impacts on nesting pollinator success. PLoS ONE 2011, 6, e25971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurbuchen, A.; Cheesman, S.; Klaiber, J.; Müller, A.; Hein, S.; Dorn, S. Long foraging distances impose high costs on offspring production in solitary bees. J. Anim. Ecol. 2010, 79, 674–681. [Google Scholar] [CrossRef]
- Timberlake, T.P.; Vaughan, I.P.; Memmott, J. Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. J. Appl. Ecol. 2019, 56, 1585–1596. [Google Scholar] [CrossRef]
- Williams, N.M.; Regetz, J.; Kremen, C. Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 2012, 93, 1049–1058. [Google Scholar] [CrossRef]
- Horn, J.; Becher, M.A.; Kennedy, P.J.; Osborne, J.L.; Grimm, V. Multiple stressors: Using the honeybee model BEEHAVE to explore how spatial and temporal forage stress affects colony resilience. Oikos 2016, 125, 1001–1016. [Google Scholar] [CrossRef] [Green Version]
- Roger, N.; Michez, D.; Wattiez, R.; Sheridan, C.; Vanderplanck, M. Diet effects on bumblebee health. J. Insect Physiol. 2017, 96, 128–133. [Google Scholar] [CrossRef]
- Mandelik, Y.; Winfree, R.; Neeson, T.; Kremen, C. Complementary habitat use by wild bees in agro-natural landscapes. Ecol. Appl. 2012, 22, 1535–1546. [Google Scholar] [CrossRef]
- The Common Agricultural Policy at a Glance. Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en (accessed on 4 October 2020).
- Wood, T.J.; Holland, J.M.; Goulson, D. Providing foraging resources for solitary bees on farmland: Current schemes for pollinators benefit a limited suite of species. J. Appl. Ecol. 2017, 54, 323–333. [Google Scholar] [CrossRef]
- Natagriwal Liste des MAEC. Available online: https://www.natagriwal.be/fr/mesures-agro-environnementales/liste-des-mae/fiches (accessed on 22 May 2020).
- Carvell, C.; Meek, W.R.; Pywell, R.F.; Goulson, D.; Nowakowski, M. Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins: Effects of agri-environment schemes on bumble bees. J. Appl. Ecol. 2006, 44, 29–40. [Google Scholar] [CrossRef]
- Ouvrard, P.; Jacquemart, A.-L. Agri-environment schemes targeting farmland bird populations also provide food for pollinating insects. Agric. Forest Entomol. 2018, 20, 558. [Google Scholar] [CrossRef]
- Kohler, F.; Verhulst, J.; Knop, E.; Herzog, F.; Kleijn, D. Indirect effects of grassland extensification schemes on pollinators in two contrasting European countries. Biol. Conserv. 2007, 135. [Google Scholar] [CrossRef]
- Tuck, S.; Winqvist, C.; Mota, F.; Ahnström, J.; Turnbull, L.; Bengtsson, J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 2013, 51. [Google Scholar] [CrossRef]
- Carvell, C.; Bourke, A.F.G.; Dreier, S.; Freeman, S.N.; Hulmes, S.; Jordan, W.C.; Redhead, J.W.; Sumner, S.; Wang, J.; Heard, M.S. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 2017, 543, 547–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallinger, R.E.; Gibbs, J.; Gratton, C. Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods. Landsc. Ecol. 2016, 31, 1523–1535. [Google Scholar] [CrossRef]
- Redhead, J.W.; Woodcock, B.A.; Pocock, M.J.O.; Pywell, R.F.; Vanbergen, A.J.; Oliver, T.H. Potential landscape-scale pollinator networks across Great Britain: Structure, stability and influence of agricultural land cover. Ecol. Lett. 2018, 21, 1821–1832. [Google Scholar] [CrossRef] [Green Version]
- Scherber, C.; Beduschi, T.; Tscharntke, T. Novel approaches to sampling pollinators in whole landscapes: A lesson for landscape-wide biodiversity monitoring. Landsc. Ecol. 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Senapathi, D.; Goddard, M.A.; Kunin, W.E.; Baldock, K.C.R. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 2017, 31, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Steffan-Dewenter, I.; Kruess, A.; Thies, C. Contribution of small habitat fragment to conservation of insect communities of grassland-cropland landscapes. Ecol. Appl. 2002, 12, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Zurbuchen, A.; Landert, L.; Klaiber, J.; Müller, A.; Hein, S.; Dorn, S. Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances. Biol. Conserv. 2010, 143, 669–676. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Bugg, R.L.; Fay, J.P.; Thorp, R.W. The area requirements of an ecosystem service: Crop pollination by native bee communities in California. Ecol. Lett. 2004, 7, 1109–1119. [Google Scholar] [CrossRef]
- Piqueray, J.; Rouxhet, S.; Hendrickx, S.; Mahy, G. Changes in the vegetation of hay meadows under an agri-environment scheme in South Belgium. Conserv. Evid. 2016, 13, 47–50. [Google Scholar]
- Willmer, P. Pollination and Floral Ecology; Princeton University Press: Princeton, NJ, USA, 2011; ISBN 9781400838943. [Google Scholar]
- Hicks, D.M.; Ouvrard, P.; Baldock, K.C.R.; Baude, M.; Goddard, M.A.; Kunin, W.E.; Mitschunas, N.; Memmott, J.; Morse, H.; Nikolitsi, M.; et al. Food for Pollinators: Quantifying the nectar and pollen resources of urban flower meadows. PLoS ONE 2016, 11, e0158117. [Google Scholar] [CrossRef] [Green Version]
- Terzo, M.; Rasmont, P. MALVAS Méthodes AgroEnvironnementales Liées à la Valorisation des Abeilles Sauvages—Suivi, étude et vulgarisation sur l’interaction entre les MAE et les abeilles sauvages; Université de Mons-Hainaut—Région Wallonne—Direction générale de l’agriculture: Mons, Namur, 2007; 77p. [Google Scholar]
- Moquet, L.; Mayer, C.; Michez, D.; Wathelet, B.; Jacquemart, A.-L. Early spring floral foraging resources for pollinators in wet heathlands in Belgium. J. Insect Conserv. 2015, 19, 837–848. [Google Scholar] [CrossRef]
- Kells, A.; Goulson, D. Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biol. Conserv. 2003, 109, 165–174. [Google Scholar] [CrossRef]
- Diekötter, T.; Peter, F.; Jauker, B.; Wolters, V.; Jauker, F. Mass-flowering crops increase richness of cavity-nesting bees and wasps in modern agro-ecosystems. GCB Bioenergy 2014, 6, 219–226. [Google Scholar] [CrossRef]
- Ouvrard, P.; Quinet, M.; Jacquemart, A.-L. Breeding System and Pollination Biology of Belgian Oilseed Rape Cultivars (Brassica napus). Crop Sci. 2017, 57, 1–9. [Google Scholar] [CrossRef]
- Jauker, F.; Peter, F.; Wolters, V.; Diekötter, T. Early reproductive benefits of mass-flowering crops to the solitary bee Osmia rufa outbalance post-flowering disadvantages. Basic Appl. Ecol. 2012, 13, 268–276. [Google Scholar] [CrossRef]
- Noordijk, J.; Raemakers, I.; Schaffers, A.P.; Sýkora, K.V. Arthropod richness in roadside verges in the Netherlands. Terr. Arthropod Rev. 2009, 2. [Google Scholar] [CrossRef]
- Pywell, R.F.; Warman, E.A.; Carvell, C.; Sparks, T.H.; Dicks, L.V.; Bennett, D.; Wright, A.; Critchley, C.N.R.; Sherwood, A. Providing foraging resources for bumblebees in intensively farmed landscapes. Biol. Conserv. 2005, 121, 479–494. [Google Scholar] [CrossRef]
- Nichols, R.N.; Goulson, D.; Holland, J.M. The best wildflowers for wild bees. J. Insect Conserv. 2019, 23, 819–830. [Google Scholar] [CrossRef] [Green Version]
- Haaland, C.; Naisnit, R.E.; Bersier, L.-F. Sown wildflower strips for insect conservation: A review. Insect Conserv. Divers. 2011, 4, 60–80. [Google Scholar] [CrossRef]
- Aupinel, P.; Genissel, A.; Tasei, J.-N.; Poncet, J.; Gomond, S. Collection of Spring Pollens by Bombus terrestris Queens.Assessment of Attractiveness and Nutritive Value of Pollen Diets. Acta Hortic. 2001, 101–105. [Google Scholar] [CrossRef]
- Vanderplanck, M.; Gilles, H.; Nonclercq, D.; Duez, P.; Gerbaux, P. Asteraceae Paradox: Chemical and Mechanical Protection of Taraxacum Pollen. Insects 2020, 11, 304. [Google Scholar] [CrossRef]
- Rivest, S.; Forrest, J.R.K. Defence compounds in pollen: Why do they occur and how do they affect the ecology and evolution of bees? New Phytol. 2020, 225, 1053–1064. [Google Scholar] [CrossRef] [Green Version]
- Vaudo, A.D.; Tooker, J.F.; Patch, H.M.; Biddinger, D.J.; Coccia, M.; Crone, M.K.; Fiely, M.; Francis, J.S.; Hines, H.M.; Hodges, M.; et al. Pollen protein: Lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 2020, 11, 132. [Google Scholar] [CrossRef] [Green Version]
- Genissel, A.; Aupinel, P.; Bressac, C.; Tasei, J.-N.; Chevrier, C. Influence of pollen origin on Bombus terrestris micro-colonies. Entomol. Exp. Appl. 2002, 104, 329–336. [Google Scholar] [CrossRef]
- Chauzat, M.-P.; Faucon, J.-P.; Martel, A.-C.; Lachaize, J.; Cougoule, N.; Aubert, M. A Survey of Pesticide Residues in Pollen Loads Collected by Honey Bees in France. J. Econ. Entomol. 2006, 99, 253–262. [Google Scholar] [CrossRef]
- Somme, L.; Vanderplanck, M.; Michez, D.; Lombaerde, I.; Moerman, R.; Wathelet, B.; Wattiez, R.; Lognay, G.; Jacquemart, A.L. Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 2015, 46, 92–106. [Google Scholar] [CrossRef]
- Requier, F.; Odoux, J.-F.; Tamic, T.; Moreau, N.; Henry, M.; Decourtye, A.; Bretagnolle, V. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 2015, 25, 881–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couvillon, M.J.; Schürch, R.; Ratnieks, F.L.W. Waggle dance distances as integrative indicators of seasonal foraging challenges. PLoS ONE 2014, 9, e93495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, S.; Unternährer, D.; Arlettaz, R.; Humbert, J.-Y.; Menz, M.H.M. Promoting diverse communities of wild bees and hoverflies requires a landscape approach to managing meadows. Agric. Ecosyst. Environ. 2017, 239, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, M.; Duelli, P.; Müller, C.; Kleijn, D.; Schmid, B. The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. J. Appl. Ecol. 2007, 44, 813–822. [Google Scholar] [CrossRef]
- Holzschuh, A.; Steffan-Dewenter, I.; Tscharntke, T. Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 2008, 117, 354–361. [Google Scholar] [CrossRef]
- Bellanger, S. Etude de la Biologie d’une Messicole en Régression: Le Bleuet (Centaurea cyanus L.). Ph.D. Thesis, Université de Bourgogne, Dijon, France, 2011. [Google Scholar]
- Lemoine, C.; Sérusiaux, E.; Mahy, G.; Piqueray, J. Agro-environmental scheme for segetal plant conservation in Wallonia (Belgium): An assessment in conventional and organic fields. Biotechnol. Agron. Soc. Environ. 2018, 22, 35–44. [Google Scholar]
- Ulber, L.; Steinmann, H.-H.; Klimek, S. Using selective herbicides to manage beneficial and rare weed species in winter wheat. J. Plant Dis. Prot. 2010, 117, 233–239. [Google Scholar] [CrossRef]
- Géneau, C.E.; Wäckers, F.L.; Luka, H.; Daniel, C.; Balmer, O. Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic Appl. Ecol. 2012, 13, 85–93. [Google Scholar] [CrossRef]
- Drossart, M.; Rasmont, P.; Vanormelingen, P.; Dufrene, M.; Folschweiller, M.; Pauly, A.; Vereecken, N.; Vray, S.; Zambra, E.; Haeseleer, J.; et al. Belgian Red List of Bees; University of Mons: Mons, Belgium, 2019; 140p, ISBN 978-2-87325-114-7. [Google Scholar]
- Brittain, C.; Bommarco, R.; Vighi, M.; Settele, J.; Potts, S.G. Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biol. Conserv. 2010, 143, 1860–1867. [Google Scholar] [CrossRef]
- Scheper, J.; Holzschuh, A.; Kuussaari, M.; Potts, S.G.; Rundlöf, M.; Smith, H.G.; Kleijn, D. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss —A meta-analysis. Ecol. Lett. 2013, 16, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Dyer, F.C. The biology of the dance language. Annu. Rev. Entomol. 2002, 47, 917–949. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, S.D.; Blüthgen, N. The same, but different: Pollen foraging in honeybee and bumblebee colonies. Apidologie 2012, 43, 449–464. [Google Scholar] [CrossRef]
- De Pierpont, A.; Jacquemart, A.-L.; Radoux, J.; Piqueray, J.; Hecq, F. Dynamique Spatio-Temporelle de la Disponibilité des Ressources Florales de Milieux Agricoles Contrastés. Unpublished Master’s Thesis, Université catholique de Louvain, Louvain-La-Neuve, Belgium, 2020. Available online: http://hdl.handle.net/2078.1/thesis:26455 (accessed on 19 November 2020).
- Fussell, M.; Corbet, S.A. Flower usage by bumble-bees: A basis for forage plant management. J. Appl. Ecol. 1992, 29, 451–465. [Google Scholar] [CrossRef]
- Carvell, C.; Meek, B.; Broughton, R.; Sparks, T.; Pywell, R.; Westrich, P.; Nowakowski, M. Utilisation of Pollen Resources by Bumblebees in an Enhanced Arable Landscape. NERC/Centre for Ecology & Hydrology, 32pp. (CEH Project number: C02362) (Unpublished) 2004. Available online: http://nora.nerc.ac.uk/id/eprint/7381 (accessed on 19 November 2020).
- Clarke, D.; Morley, E.; Robert, D. The bee, the flower, and the electric field: Electric ecology and aerial electroreception. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2017, 203, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Raguso, R.A. Wake Up and Smell the Roses: The Ecology and Evolution of Floral Scent. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 549–569. [Google Scholar] [CrossRef]
- Burger, H.; Dötterl, S.; Ayasse, M. Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct. Ecol. 2010, 24, 1234–1240. [Google Scholar] [CrossRef]
- Patiny, S. Evolution of Plant-Pollinator Relationships; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-1-139-50407-2. [Google Scholar]
- Junker, R.R.; Blüthgen, N.; Brehm, T.; Binkenstein, J.; Paulus, J.; Schaefer, H.M.; Stang, M. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 2013, 27, 329–341. [Google Scholar] [CrossRef]
- Kleijn, D.; Raemakers, I. A retrospective analysis of pollen host Plant use by stable and declining bumble bee species. Ecology 2008, 89, 1811–1823. [Google Scholar] [CrossRef]
- Kwon, Y.; Saeed, S. Effect of temperature on the foraging activity of Bombus terrestris L. (Hymenoptera: Apidae) on greenhouse hot pepper (Capsicum annuum L.). Appl. Entomol. Zool. 2003, 38, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Peat, J.; Goulson, D. Effects of experience and weather on foraging rate and pollen versus nectar collection in the bumblebee, Bombus terrestris. Behav. Ecol. Sociobiol. 2005, 58, 152–156. [Google Scholar] [CrossRef]
- Proesmans, W.; Bonte, D.; Smagghe, G.; Meeus, I.; Decocq, G.; Spicher, F.; Kolb, A.; Lemke, I.; Diekmann, M.; Bruun, H.H.; et al. Small forest patches as pollinator habitat: Oases in an agricultural desert? Landsc. Ecol. 2019, 34, 487–501. [Google Scholar] [CrossRef] [Green Version]
- Sobek, S.; Tscharntke, T.; Scherber, C.; Schiele, S.; Steffan-Dewenter, I. Canopy vs. understory: Does tree diversity affect bee and wasp communities and their natural enemies across forest strata? Forest Ecol. Manag. 2009, 258, 609–615. [Google Scholar] [CrossRef]
- Gaston, K.J.; Smith, R.M.; Thompson, K.; Warren, P.H. Urban domestic gardens (II): Experimental tests of methods for increasing biodiversity. Biodivers. Conserv. 2005, 14, 395–413. [Google Scholar] [CrossRef]
- Osborne, J.L.; Martin, A.P.; Shortall, C.R.; Todd, A.D.; Goulson, D.; Knight, M.E.; Hale, R.J.; Sanderson, R.A. Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J. Appl. Ecol. 2007, 45, 784–792. [Google Scholar] [CrossRef]
Extensive Landscapes | Intensive Landscapes | ||||||
---|---|---|---|---|---|---|---|
Location | Ychippe ext. | Houyet ext. | Wellin ext. | Ychippe int. | Houyet int. | Wellin int. | |
5°08′18.61″ | 4°57′41.62″ | 5°04′37.94″ | 5°06′15.64″ | 4°55′54.19″ | 5°07′42.38″ | ||
50°14′49.00″ | 50°10′18.51″ | 50°04′43.61″ | 50°14′51.32″ | 50°09′37.62″ | 50°04′27.10″ | ||
Studied site surface [ha] | 195 | 170 | 195 | 251 | 175 | 115 | |
Planar landscape elements [%] | |||||||
Crops | 44.6 | 34.6 | 13.0 | 44.8 | 42.8 | 40.4 | |
Organic crops | 2.6 | 11.7 | 1.0 | 0 | 0.6 | 0.9 | |
Intensive grasslands | 39.4 | 41.1 | 56.1 | 53.4 | 54.3 | 56.0 | |
Extensive grasslands | 11.0 | 9.0 | 25.7 | 0 | 0 | 0 | |
Linear landscape elements [%] | |||||||
Hedgerows | 0.4 | 1.8 | 2.4 | 0.5 | 0.7 | 0.7 | |
Forest edges | 1.1 | 1.2 | 0.8 | 0.5 | 0.9 | 1.4 | |
Road verges | 1.0 | 0.7 | 1.0 | 0.8 | 0.7 | 0.6 |
Month | Element Type | Landscape Element | Nectar Sugar Contribution (g ha−1) | Nectar Sugar Production (g ha−1) |
---|---|---|---|---|
April | ||||
Linear | Hedgerows | 16.0 ± 30.0 bc | 1005 ± 1207 ab | |
Forest edges | 13.0 ± 9.2 ab | 1254.0 ± 767 a | ||
Road verges | 0.7 ± 1.5 c | 71 ± 159 cd | ||
Planar | Intensive grasslands | 49.0 ± 36.0 a | 94 ± 62 bc | |
Extensive grasslands | 0.3 ± 0.3 c | 2.7 ± 4 d | ||
Intensive crops | 2.4 ± 2.2 bc | 10 ± 14 d | ||
Organic crops | 0.2 ± 0.3 c | 22 ± 37 d | ||
May | ||||
Linear | Hedgerows | 2.2 ± 3.4 c | 156 ± 121 ab | |
Forest edges | 1.2 ± 0.9 c | 140 ± 131 ab | ||
Road verges | 2.4 ± 2.0 bc | 332 ± 300 a | ||
Planar | Intensive grasslands | 312.0 ± 120.0 a | 615 ± 197 a | |
Extensive grasslands | 20.0 ± 4.0 b | 157 ± 86 ab | ||
Intensive crops | 60.0 ± 71.0 b | 138 ± 156 bc | ||
Organic crops | 0.1 ± 0.1 c | 6 ± 4 | ||
June | ||||
Linear | Hedgerows | 1.0 ± 0.9 b | 81 ± 57 cd | |
Forest edges | 1.3 ± 1.3 b | 125 ± 90 abc | ||
Road verges | 0.8 ± 0.2 b | 112 ± 41 bc | ||
Planar | Intensive grasslands | 66.0 ± 38.0 a | 124 ± 53 abc | |
Extensive grasslands | 212.0 ± 121.0 a | 1617 ± 1450 ab | ||
Intensive crops | 9.9 ± 1.9 b | 27 ± 55 d | ||
Organic crops | 62.0 ± 79.0 a | 2052 ± 1240 a |
Extensive Landscapes | Intensive Landscapes | |
---|---|---|
Mean ± SD | Mean ± SD | |
Daily nectar sugar production (g ha−1 day−1) | ||
April | 105 ± 99 | 58 ± 34 |
May | 409 ± 113 | 366 ± 39 |
June | 375 ± 198 | 82 ± 41 |
All | 296 ± 190 | 169 ± 152 |
Pollinator abundance per site | ||
April | 44 ± 18 | 50 ± 31 |
May | 62 ± 9 | 31 ± 16 |
June | 93 ± 45 | 88 ± 31 |
All | 66 ± 32 | 56 ± 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langlois, A.; Jacquemart, A.-L.; Piqueray, J. Contribution of Extensive Farming Practices to the Supply of Floral Resources for Pollinators. Insects 2020, 11, 818. https://doi.org/10.3390/insects11110818
Langlois A, Jacquemart A-L, Piqueray J. Contribution of Extensive Farming Practices to the Supply of Floral Resources for Pollinators. Insects. 2020; 11(11):818. https://doi.org/10.3390/insects11110818
Chicago/Turabian StyleLanglois, Alban, Anne-Laure Jacquemart, and Julien Piqueray. 2020. "Contribution of Extensive Farming Practices to the Supply of Floral Resources for Pollinators" Insects 11, no. 11: 818. https://doi.org/10.3390/insects11110818
APA StyleLanglois, A., Jacquemart, A.-L., & Piqueray, J. (2020). Contribution of Extensive Farming Practices to the Supply of Floral Resources for Pollinators. Insects, 11(11), 818. https://doi.org/10.3390/insects11110818