Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biology of Whitefly Endosymbionts
2.1. Classification and Function
2.2. Morphology, Localization, and Transmission
2.3. Effects on Whitefly Fitness
3. Whitefly Endosymbiont Evolution and Diversity
3.1. Bemisia tabaci Cryptic Species
3.2. Primary Endosymbiont Ca. Portiera aleyrodidarum
3.3. Secondary Endosymbionts
4. Whitefly Endosymbiont-Plant Virus Interactions
4.1. Modes of Virus Transmission
4.2. Endosymbiont Expressed GroEL
4.3. Hamiltonella
4.4. Rickettsia
4.5. Other Secondary Endosymbionts
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Legg, J.P.; Owor, B.; Sseruwagi, P.; Ndunguru, J. Cassava mosaic virus disease in East and Central Africa: Epidemiology and management of a regional pandemic. Adv. Virus Res. 2006, 67, 355–418. [Google Scholar] [PubMed]
- Abd-Rabou, S.; Simmons, A.M. Survey of reproductive host plants of Bemisia tabaci (Hemiptera: Aleyrodidae) in Egypt, including new host records. Entomol. News 2010, 121, 456–465. [Google Scholar] [CrossRef]
- Xu, J.; De Barro, P.J.; Liu, S.S. Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bull. Entomol. Res. 2010, 100, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.R. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 2003, 109, 195–219. [Google Scholar] [CrossRef]
- Polston, J.E.; Barro, P.D.; Boykin, L.M. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Manag. Sci. 2014, 70, 1547–1552. [Google Scholar] [CrossRef]
- Douglas, A.E. Nutritional interactions in insect-iicrobial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 1998, 43, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 2005, 59, 155–189. [Google Scholar] [CrossRef]
- Byrne, D.N.; Miller, W.B. Carbohydrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci. J. Insect Physiol. 1990, 36, 433–439. [Google Scholar] [CrossRef]
- Chen, W.; Hasegawa, D.K.; Kaur, N.; Kliot, A.; Pinheiro, P.V.; Luan, J.; Stensmyr, M.C.; Zheng, Y.; Liu, W.; Sun, H.; et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 2016, 14, 110. [Google Scholar] [CrossRef]
- Thao, M.L.; Baumann, P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl. Environ. Microbiol. 2004, 70, 3401–3406. [Google Scholar] [CrossRef] [Green Version]
- Gueguen, G.; Vavre, F.; Gnankine, O.; Peterschmitt, M.; Charif, D.; Chiel, E.; Gottlieb, Y.; Ghanim, M.; Zchori-Fein, E.; Fleury, F. Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Mol. Ecol. 2010, 19, 4365–4376. [Google Scholar] [CrossRef] [PubMed]
- Zchori-Fein, E.; Brown, J.K. Diversity of Prokaryotes Associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann. Entomol. Soc. Am. 2002, 95, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, Y.; Ghanim, M.; Chiel, E.; Gerling, D.; Portnoy, V.; Steinberg, S.; Tzuri, G.; Horowitz, A.R.; Belausov, E.; Mozes-Daube, N.; et al. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl. Environ. Microbiol. 2006, 72, 3646–3652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nirgianaki, A.; Banks, G.K.; Frohlich, D.R.; Veneti, Z.; Braig, H.R.; Miller, T.A.; Bedford, I.D.; Markham, P.G.; Savakis, C.; Bourtzis, K. Wolbachia infections of the whitefly Bemisia tabaci. Curr. Microbiol. 2003, 47, 0093–0101. [Google Scholar] [CrossRef]
- Weeks, A.R.; Velten, R.; Stouthamer, R. Incidence of a new sexratiodistorting endosymbiotic bacterium among arthropods. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everett, K.D.E.; Thao, M.; Horn, M.; Dyszynski, G.E.; Baumann, P. Novel chlamydiae in whiteflies and scale insects: Endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int. J. Syst. Evol. Microbiol. 2005, 55, 1581–1587. [Google Scholar] [CrossRef] [Green Version]
- Bing, X.-L.; Yang, J.; Zchori-Fein, E.; Wang, X.-W.; Liu, S.-S. Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Appl. Environ. Microbiol. 2013, 79, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Morin, S.; Ghanim, M.; Zeidan, M.; Czosnek, H.; Verbeek, M.; van den Heuvel, J.F.J.M. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of Tomato yellow leaf curl virus. Virology 1999, 256, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Buchner, P. Endosymbiosis of Animals and Plant Microorganisms; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Moran, N.A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. USA 2007, 104, 8627–8633. [Google Scholar] [CrossRef] [Green Version]
- Sloan, D.B.; Moran, N.A. Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol. Lett. 2012, 8, 986–989. [Google Scholar] [CrossRef] [Green Version]
- Moran, N.A. Tracing the evolution of gene loss in obligate bacterial symbionts. Curr. Opin. Microbiol. 2003, 6, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-L.; Lei, T.; Wang, X.-W.; Maruthi, M.N.; Zhu, D.-T.; Cameron, S.L.; Rao, Q.; Shan, H.-W.; Colvin, J.; Liu, Y.-Q.; et al. A newly recorded Rickettsia of the Torix group is a recent intruder and an endosymbiont in the whitefly Bemisia tabaci. Environ. Microbiol. 2020, 22, 1207–1221. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.Z.; Barro, P.J.D.; Ren, S.-X.; Greeff, J.M.; Qiu, B.-L. Evidence for horizontal transmission of secondary endosymbionts in the Bemisia tabaci cryptic species complex. PLoS ONE 2013, 8, e53084. [Google Scholar] [CrossRef] [PubMed]
- Ankrah, N.Y.D.; Luan, J.; Douglas, A.E. Cooperative metabolism in a three-partner insect-bacterial symbiosis revealed by metabolic modeling. J. Bacteriol. 2017, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, J.-B.; Chen, W.; Hasegawa, D.K.; Simmons, A.M.; Wintermantel, W.M.; Ling, K.-S.; Fei, Z.; Liu, S.-S.; Douglas, A.E. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol. Evol. 2015, 7, 2635–2647. [Google Scholar] [CrossRef] [Green Version]
- Rao, Q.; Rollat-Farnier, P.-A.; Zhu, D.-T.; Santos-Garcia, D.; Silva, F.J.; Moya, A.; Latorre, A.; Klein, C.C.; Vavre, F.; Sagot, M.-F.; et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genom. 2015, 16, 226. [Google Scholar] [CrossRef] [Green Version]
- Santos-Garcia, D.; Juravel, K.; Freilich, S.; Zchori-Fein, E.; Latorre, A.; Moya, A.; Morin, S.; Silva, F.J. To B or not to B: Comparative genomics suggests arsenophonus as a source of B vitamins in whiteflies. Front. Microbiol. 2018, 9, 2254. [Google Scholar] [CrossRef]
- Opatovsky, I.; Santos-Garcia, D.; Ruan, Z.; Lahav, T.; Ofaim, S.; Mouton, L.; Barbe, V.; Jiang, J.; Zchori-Fein, E.; Freilich, S. Modeling trophic dependencies and exchanges among insects’ bacterial symbionts in a host-simulated environment. BMC Genom. 2018, 19, 402. [Google Scholar] [CrossRef] [Green Version]
- Ogata, H.; Scola, B.L.; Audic, S.; Renesto, P.; Blanc, G.; Robert, C.; Fournier, P.-E.; Claverie, J.-M.; Raoult, D. Genome sequence of Rickettsia bellii illuminates the role of Amoebae in gene exchanges between intracellular pathogens. PLoS Genet. 2006, 2, e76. [Google Scholar] [CrossRef]
- Blanc, G.; Ogata, H.; Robert, C.; Audic, S.; Suhre, K.; Vestris, G.; Claverie, J.-M.; Raoult, D. Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 2007, 3, e14. [Google Scholar] [CrossRef] [Green Version]
- Weinert, L.A.; Werren, J.H.; Aebi, A.; Stone, G.N.; Jiggins, F.M. Evolution and diversity of Rickettsiabacteria. BMC Biol. 2009, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Bing, X.-L.; Ruan, Y.-M.; Rao, Q.; Wang, X.-W.; Liu, S.-S. Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci. Insect Sci. 2013, 20, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Santos-Garcia, D.; Rollat-Farnier, P.-A.; Beitia, F.; Zchori-Fein, E.; Vavre, F.; Mouton, L.; Moya, A.; Latorre, A.; Silva, F.J. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci. Genome Biol. Evol. 2014, 6, 1013–1030. [Google Scholar] [CrossRef] [PubMed]
- Costa, H.S.; Westcot, D.M.; Ullman, D.E.; Johnson, M.W. Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum. Protoplasma 1993, 176, 106–115. [Google Scholar] [CrossRef]
- Clark, M.A.; Baumann, L.; Munson, M.A.; Baumann, P.; Campbell, B.C.; Duffus, J.E.; Osborne, L.S.; Moran, N.A. The eubacterial endosymbionts of whiteflies (Homoptera: Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr. Microbiol. 1992, 25, 119–123. [Google Scholar] [CrossRef]
- Dinsdale, A.; Cook, L.; Riginos, C.; Buckley, Y.M.; De Barro, P. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 2010, 103, 196–208. [Google Scholar] [CrossRef]
- De Barro, P.J.; Liu, S.-S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A Statement of species status. Annu. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Costa, H.S.; Westcot, D.M.; Ullman, D.E.; Rosell, R.; Brown, J.K.; Johnson, M.W. Morphological variation in Bemisia endosymbionts. Protoplasma 1995, 189, 194–202. [Google Scholar] [CrossRef]
- Gottlieb, Y.; Ghanim, M.; Gueguen, G.; Kontsedalov, S.; Vavre, F.; Fleury, F.; Zchori-Fein, E. Inherited intracellular ecosystem: Symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 2008, 22, 2591–2599. [Google Scholar] [CrossRef] [Green Version]
- Santos-Garcia, D.; Silva, F.J.; Moya, A.; Latorre, A. No exception to the rule: Candidatus Portiera aleyrodidarum cell wall revisited. FEMS Microbiol. Lett. 2014, 360, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Rana, V.S.; Singh, S.T.; Priya, N.G.; Kumar, J.; Rajagopal, R. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PLoS ONE 2012, 7, e42168. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; He, Z.; Li, S.; An, X.; Lv, N.; Ghanim, M.; Cuthbertson, A.G.S.; Ren, S.-X.; Qiu, B.-L. Wolbachia has two different localization patterns in whitefly Bemisia tabaci AsiaII7 species. PLoS ONE 2016, 11, e0162558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaljac, M.; Zanic, K.; Ban, S.G.; Kontsedalov, S.; Ghanim, M. Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol. 2010, 10, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Škaljac, M.; Žanić, K.; Hrnčić, S.; Radonjić, S.; Perović, T.; Ghanim, M. Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea. Bull. Entomol. Res. 2013, 103, 48–59. [Google Scholar] [CrossRef]
- Marubayashi, J.M.; Kliot, A.; Yuki, V.A.; Rezende, J.A.M.; Krause-Sakate, R.; Pavan, M.A.; Ghanim, M. Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PLoS ONE 2014, 9, e108363. [Google Scholar] [CrossRef]
- Costa, H.S.; Toscano, N.C.; Henneberry, T.J. Mycetocyte inclusion in the oocytes of Bemisia argentifolii (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 1996, 89, 694–699. [Google Scholar] [CrossRef]
- Tremblay, E. Osservazioni sulla simbiosi endocellulare di alcuni Aleyrodidae (Bemisia tabaci Gennad., Aleurolobus ovivinus Silv., Trialeurodes vaporariorum (West.). Boll. Lab. Entomol. Agric. 1959, 17, 210–246. [Google Scholar]
- Brumin, M.; Levy, M.; Ghanim, M. Transovarial transmission of Rickettsia spp. and organ-specific infection of the whitefly Bemisia tabaci. Appl. Environ. Microbiol. 2012, 78, 5565–5574. [Google Scholar] [CrossRef] [Green Version]
- Caspi-Fluger, A.; Inbar, M.; Mozes-Daube, N.; Katzir, N.; Portnoy, V.; Belausov, E.; Hunter, M.S.; Zchori-Fein, E. Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc. R. Soc. B Biol. Sci. 2012, 279, 1791–1796. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-J.; Ahmed, M.Z.; Lv, N.; Shi, P.-Q.; Wang, X.-M.; Huang, J.-L.; Qiu, B.-L. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J. 2017, 11, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-H.; Ahmed, M.Z.; Li, S.-J.; Lv, N.; Shi, P.-Q.; Chen, X.-S.; Qiu, B.-L. Plant-mediated horizontal transmission of Rickettsia endosymbiont between different whitefly species. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.Z.; Li, S.-J.; Xue, X.; Yin, X.-J.; Ren, S.-X.; Jiggins, F.M.; Greeff, J.M.; Qiu, B.-L. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog. 2015, 11, e1004672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, L.-D.; Sun, J.-T.; Hong, X.-Y.; Li, Y.-X. Diversity and phylogenetic analyses reveal horizontal transmission of endosymbionts between whiteflies and their parasitoids. J. Econ. Entomol. 2019, 112, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Chiel, E.; Inbar, M.; Mozes-Daube, N.; White, J.A.; Hunter, M.S.; Zchori-Fein, E. Assessments of fitness effects by the facultative symbiont Rickettsia in the sweetpotato whitefly (Hemiptera: Aleyrodidae). Ann. Entomol. Soc. Am. 2009, 102, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Brumin, M.; Kontsedalov, S.; Ghanim, M. Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci. 2011, 18, 57–66. [Google Scholar] [CrossRef]
- Himler, A.G.; Adachi-Hagimori, T.; Bergen, J.E.; Kozuch, A.; Kelly, S.E.; Tabashnik, B.E.; Chiel, E.; Duckworth, V.E.; Dennehy, T.J.; Zchori-Fein, E.; et al. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 2011, 332, 254–256. [Google Scholar] [CrossRef] [Green Version]
- Hendry, T.A.; Hunter, M.S.; Baltrus, D.A. The facultative symbiont rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae Strains. Appl. Environ. Microbiol. 2014, 80, 7161–7168. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Xie, W.; Wang, S.; Wu, Q.; Liu, B.; Fang, Y.; Xu, B.; Zhang, Y. The endosymbiont Hamiltonella increases the growth rate of its host Bemisia tabaci during periods of nutritional stress. PLoS ONE 2014, 9, e89002. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Oliver, K.M.; Xie, W.; Wu, Q.; Wang, S.; Zhang, Y. The whitefly-associated facultative symbiont Hamiltonella defensa suppresses induced plant defences in tomato. Funct. Ecol. 2015, 29, 1007–1018. [Google Scholar] [CrossRef]
- Kontsedalov, S.; Zchori-Fein, E.; Chiel, E.; Gottlieb, Y.; Inbar, M.; Ghanim, M. The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag. Sci. 2008, 64, 789–792. [Google Scholar] [CrossRef]
- Raina, H.S.; Rawal, V.; Singh, S.; Daimei, G.; Shakarad, M.; Rajagopal, R. Elimination of Arsenophonus and decrease in the bacterial symbionts diversity by antibiotic treatment leads to increase in fitness of whitefly, Bemisia tabaci. Infect. Genet. Evol. 2015, 32, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Bouvaine, S.; Richardson, S.C.W.; Ghanim, M.; Maruthi, M.N. Fitness costs associated with infections of secondary endosymbionts in the cassava whitefly species Bemisia tabaci. J. Pest Sci. 2018, 91, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, H.S.; Ullman, D.E.; Johnson, M.W.; Tabashnik, B.E. Antibiotic oxytetracycline interferes with Bemisia tabaci (Homoptera: Aleyrodidae) oviposition, development, and ability to induce squash silverleaf. Ann. Entomol. Soc. Am. 1993, 86, 740–748. [Google Scholar] [CrossRef]
- Costa, H.S.; Enneberry, T.J.; Toscano, N.C. Effects of antibacterial materials on Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition, growth, survival, and sex ratio. J. Econ. Entomol. 1997, 90, 333–339. [Google Scholar] [CrossRef]
- Ahmed, M.Z.; Ren, S.; Xue, X.; Li, X.-X.; Jin, G.; Qiu, B.-L. Prevalence of endosymbionts in Bemisia tabaci populations and their in vivo sensitivity to antibiotics. Curr. Microbiol. 2010, 61, 322–328. [Google Scholar] [CrossRef]
- Lv, Z.-H.; Wei, X.-Y.; Tao, Y.-L.; Chu, D. Differential susceptibility of whitefly-associated bacteria to antibiotic as revealed by metagenomics analysis. Infect. Genet. Evol. 2018, 63, 24–29. [Google Scholar] [CrossRef]
- Zhao, D.-X.; Zhang, Z.-C.; Niu, H.-T.; Guo, H.-F. Selective and stable elimination of endosymbionts from multiple-infected whitefly Bemisia tabaci by feeding on a cotton plant cultured in antibiotic solutions. Insect Sci. 2020, 27, 964–974. [Google Scholar] [CrossRef]
- Ruan, Y.-M.; Xu, J.; Liu, S.-S. Effects of antibiotics on fitness of the B biotype and a non-B biotype of the whitefly Bemisia tabaci. Entomol. Exp. Appl. 2006, 121, 159–166. [Google Scholar] [CrossRef]
- Xue, X.; Li, S.-J.; Ahmed, M.Z.; Barro, P.J.D.; Ren, S.-X.; Qiu, B.-L. Inactivation of Wolbachia reveals its biological roles in whitefly host. PLoS ONE 2012, 7, e48148. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Li, Z.-X. Influences of tetracycline on the reproduction of the B biotype of Bemisia tabaci (Homoptera: Aleyrodidae). Appl. Entomol. Zool. 2013, 48, 241–246. [Google Scholar] [CrossRef]
- Zhang, C.-R.; Shan, H.-W.; Xiao, N.; Zhang, F.-D.; Wang, X.-W.; Liu, Y.-Q.; Liu, S.-S. Differential temporal changes of primary and secondary bacterial symbionts and whitefly host fitness following antibiotic treatments. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, H.-W.; Zhang, C.-R.; Yan, T.-T.; Tang, H.-Q.; Wang, X.-W.; Liu, S.-S.; Liu, Y.-Q. Temporal changes of symbiont density and host fitness after rifampicin treatment in a whitefly of the Bemisia tabaci species complex. Insect Sci. 2016, 23, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Santos-Garcia, D.; Mestre-Rincon, N.; Zchori-Fein, E.; Morin, S. Inside out: Microbiota dynamics during host-plant adaptation of whiteflies. ISME J. 2020, 14, 847–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, H.S.; Brown, J.K. Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci, and the association of one population with silverleaf symptom induction. Entomol. Exp. Appl. 1991, 61, 211–219. [Google Scholar] [CrossRef]
- Bellows, T.S.; Perring, T.M.; Gill, R.J.; Headrick, D.H. Description of a species of Bemisia (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 1994, 87, 195–206. [Google Scholar] [CrossRef]
- Frohlich, D.R.; Torres-Jerez, I.; Bedford, I.D.; Markham, P.G.; Brown, J.K. A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Mol. Ecol. 1999, 8, 1683–1691. [Google Scholar] [CrossRef]
- Lee, W.; Park, J.; Lee, G.-S.; Lee, S.; Akimoto, S. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS ONE 2013, 8, e63817. [Google Scholar] [CrossRef] [Green Version]
- Kanakala, S.; Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 2019, 14, e0213946. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Russell, L. Failure of Bemisia tabaci to breed on cassava plants in Brazil (Homoptera: Aleyrodidae). Cienc. Cult. 1975, 27, 388–390. [Google Scholar]
- Costa, H.S.; Brown, J.K.; Sivasupramaniam, S.; Bird, J. Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Int. J. Trop. Insect Sci. 1993, 14, 255–266. [Google Scholar] [CrossRef]
- Bird, J.; Sánchez, J. Whitefly-transmitted viruses in Puerto Rico. J. Agric. Univ. Puerto Rico 1971, 55, 461–467. [Google Scholar] [CrossRef]
- Santos-Garcia, D.; Latorre, A.; Moya, A.; Gibbs, G.; Hartung, V.; Dettner, K.; Kuechler, S.M.; Silva, F.J. Small but powerful, the primary endosymbiont of Moss bugs, Candidatus Evansia muelleri, Holds a reduced genome with large biosynthetic capabilities. Genome Biol. Evol. 2014, 6, 1875–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thao, M.L.; Moran, N.A.; Abbot, P.; Brennan, E.B.; Burckhardt, D.H.; Baumann, P. Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl. Environ. Microbiol. 2000, 66, 2898–2905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaulding, A.W.; von Dohlen, C.D. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol. Biol. 2001, 10, 57–67. [Google Scholar] [CrossRef]
- Moran, N.A.; Dale, C.; Dunbar, H.; Smith, W.A.; Ochman, H. Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ. Microbiol. 2003, 5, 116–126. [Google Scholar] [CrossRef]
- Thao, M.L.; Gullan, P.J.; Baumann, P. Secondary (γ-Proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl. Environ. Microbiol. 2002, 68, 3190–3197. [Google Scholar] [CrossRef] [Green Version]
- Wernegreen, J.J. Genome evolution in bacterial endosymbionts of insects. Nat. Rev. Genet. 2002, 3, 850–861. [Google Scholar] [CrossRef]
- Sloan, D.B.; Moran, N.A. The evolution of genomic instability in the obligate endosymbionts of whiteflies. Genome Biol. Evol. 2013, 5, 783–793. [Google Scholar] [CrossRef]
- Santos-Garcia, D.; Vargas-Chavez, C.; Moya, A.; Latorre, A.; Silva, F.J. Genome evolution in the primary endosymbiont of whiteflies sheds light on their divergence. Genome Biol. Evol. 2015, 7, 873–888. [Google Scholar] [CrossRef] [Green Version]
- Tamames, J.; Gil, R.; Latorre, A.; Peretó, J.; Silva, F.J.; Moya, A. The frontier between cell and organelle: Genome analysis of Candidatus Carsonella ruddii. BMC Evol. Biol. 2007, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- McCutcheon, J.P.; Moran, N.A. Functional convergence in reduced genomes of bacterial symbionts spanning 200 my of evolution. Genome Biol. Evol. 2010, 2, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Sloan, D.B.; Nakabachi, A.; Richards, S.; Qu, J.; Murali, S.C.; Gibbs, R.A.; Moran, N.A. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol. Biol. Evol. 2014, 31, 857–871. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.C.C.; Ashton, P.D.; Calevro, F.; Charles, H.; Colella, S.; Febvay, G.; Jander, G.; Kushlan, P.F.; Macdonald, S.J.; Schwartz, J.F.; et al. Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol. Biol. 2010, 19, 249–258. [Google Scholar] [CrossRef]
- Hansen, A.K.; Moran, N.A. Aphid genome expression reveals host–symbiont cooperation in the production of amino acids. Proc. Natl. Acad. Sci. USA 2011, 108, 2849–2854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thao, M.L.; Baumann, P. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr. Microbiol. 2004, 48, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.; Cilia, M.; Ghanim, M. Circulative, “nonpropagative” virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Adv. Virus Res. 2014, 89, 141–199. [Google Scholar] [PubMed]
- Chiel, E.; Gottlieb, Y.; Zchori-Fein, E.; Mozes-Daube, N.; Katzir, N.; Inbar, M.; Ghanim, M. Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull. Entomol. Res. 2007, 97, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, D.; Gao, C.S.; Barro, P.D.; Zhang, Y.J.; Wan, F.H.; Khan, I.A. Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: Comparison of secondary symbionts from biotypes B and Q in China. Bull. Entomol. Res. 2011, 101, 477–486. [Google Scholar] [CrossRef]
- Pan, H.; Li, X.; Ge, D.; Wang, S.; Wu, Q.; Xie, W.; Jiao, X.; Chu, D.; Liu, B.; Xu, B.; et al. Factors Affecting Population Dynamics of Maternally Transmitted endosymbionts in Bemisia tabaci. PLoS ONE 2012, 7, e30760. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Jahan, S.M.H.; Song, W.-G.; Lee, H.; Lee, Y.-S.; Choi, H.-S.; Lee, K.-S.; Kim, C.-S.; Lee, S.; Lee, K.-Y. Identification of biotypes and secondary endosymbionts of Bemisia tabaci in Korea and relationships with the occurrence of TYLCV disease. J. Asia Pac. Entomol. 2012, 15, 186–191. [Google Scholar] [CrossRef]
- Tsagkarakou, A.; Mouton, L.; Kristoffersen, J.B.; Dokianakis, E.; Grispou, M.; Bourtzis, K. Population genetic structure and secondary endosymbionts of Q Bemisia tabaci (Hemiptera: Aleyrodidae) from Greece. Bull. Entomol. Res. 2012, 102, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Tajebe, L.S.; Guastella, D.; Cavalieri, V.; Kelly, S.E.; Hunter, M.S.; Lund, O.S.; Legg, J.P.; Rapisarda, C. Diversity of symbiotic bacteria associated with Bemisia tabaci (Homoptera: Aleyrodidae) in cassava mosaic disease pandemic areas of Tanzania. Ann. Appl. Biol. 2015, 166, 297–310. [Google Scholar] [CrossRef]
- Ghosh, S.; Bouvaine, S.; Maruthi, M. Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa. BMC Microbiol. 2015, 15, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaljac, M.; Kanakala, S.; Zanic, K.; Puizina, J.; Pleic, I.L.; Ghanim, M. Diversity and phylogenetic analyses of bacterial symbionts in three whitefly species from Southeast Europe. Insects 2017, 8, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paredes-Montero, J.R.; Zia-Ur-Rehman, M.; Hameed, U.; Haider, M.S.; Herrmann, H.-W.; Brown, J.K. Genetic variability, community structure, and horizontal transfer of endosymbionts among three Asia II-Bemisia tabaci mitotypes in Pakistan. Ecol. Evol. 2020, 10, 2928–2943. [Google Scholar] [CrossRef] [Green Version]
- Rossitto De Marchi, B.; Smith, H.A. Bacterial endosymbiont diversity among Bemisia tabaci (Hemiptera: Aleyrodidae) populations in Florida. Insects 2020, 11, 179. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Wong, A.C.-N.; Chaston, J.M.; Colvin, J.; McKenzie, C.L.; Douglas, A.E. The bacterial communities in plant phloem-sap-feeding insects. Mol. Ecol. 2014, 23, 1433–1444. [Google Scholar] [CrossRef]
- Zchori-Fein, E.; Lahav, T.; Freilich, S. Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-L.; Lei, T.; Xia, W.-Q.; Cameron, S.L.; Liu, Y.-Q.; Zhang, Z.; Gowda, M.M.N.; De Barro, P.; Navas-Castillo, J.; Omongo, C.A.; et al. Insight into the microbial world of Bemisia tabaci cryptic species complex and its relationships with its host. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. Insect vector-mediated transmission of plant viruses. Virology 2015, 479–480, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Iwaki, M.; Thongmeearkom, P.; Prommin, M.; Honda, Y.; Hibi, T. Whitefly transmission and some properties of cowpea mild mottle virus on soybean in Thailand. Plant Dis. 1982, 66, 365–368. [Google Scholar] [CrossRef]
- Wisler, G.C.; Duffus, J.E.; Liu, H.-Y.; Li, R.H. Ecology and epidemiology of whitefly-transmitted Closteroviruses. Plant Dis. 1998, 82, 270–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbeek, M.; van Bekkum, P.J.; Dullemans, A.M.; van der Vlugt, R.A.A. Torradoviruses are transmitted in a semi-persistent and stylet-borne manner by three whitefly vectors. Virus Res. 2014, 186, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Van den Heuvel, J.F.J.M.; Verbeek, M.; van der Wilk, F. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J. Gen. Virol. 1994, 75, 2559–2565. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H. Host-symbiont interactions in the protein synthesis in the pea aphid, Acyrthosiphon pisum. Insect Biochem. 1982, 12, 613–622. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Verbeek, M.; Hans, F.; Houterman, P.M.; Fortass, M.; van der Wilk, F.; Huttinga, H.; Van Den Heuvel, J.F.J.M. Molecular bases of the interactions between luteoviruses and aphids. Agronomie 1996, 16, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Van den Heuvel, J.F.; Bruyère, A.; Hogenhout, S.A.; Ziegler-Graff, V.; Brault, V.; Verbeek, M.; van der Wilk, F.; Richards, K. The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol. 1997, 71, 7258–7265. [Google Scholar] [CrossRef] [Green Version]
- Filichkin, S.A.; Brumfield, S.; Filichkin, T.P.; Young, M.J. In vitro interactions of the aphid endosymbiotic SymL chaperonin with Barley yellow dwarf virus. J. Virol. 1997, 71, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Czosnek, H.; Ghanim, M.; Ghanim, M. The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci—Insights from studies with Tomato yellow leaf curl virus. Ann. Appl. Biol. 2002, 140, 215–231. [Google Scholar] [CrossRef]
- Morin, S.; Ghanim, M.; Sobol, I.; Czosnek, H. The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible Begomoviruses in the yeast two-hybrid system. Virology 2000, 276, 404–416. [Google Scholar] [CrossRef] [Green Version]
- Van den Heuvel, J.F.J.M.; Hogenhout, S.A.; van der Wilk, F. Recognition and receptors in virus transmission by arthropods. Trends Microbiol. 1999, 7, 71–76. [Google Scholar] [CrossRef]
- Gray, S.; Gildow, F.E. Luteovirus-aphid interactions. Annu. Rev. Phytopathol. 2003, 41, 539–566. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, Y.; Zchori-Fein, E.; Mozes-Daube, N.; Kontsedalov, S.; Skaljac, M.; Brumin, M.; Sobol, I.; Czosnek, H.; Vavre, F.; Fleury, F.; et al. The transmission efficiency of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J. Virol. 2010, 84, 9310–9317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Q.; Pan, H.; Liu, B.; Chu, D.; Xie, W.; Wu, Q.; Wang, S.; Xu, B.; Zhang, Y. Insect symbiont facilitates vector acquisition, retention and transmission of plant virus. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bello, V.H.; Watanabe, L.F.M.; Santos, B.R.; Marubayashi, J.M.; Yuki, V.A.; De Marchi, B.R.; Pavan, M.A.; Krause-Sakate, R. Evidence for increased efficiency of virus transmission by populations of Mediterranean species of Bemisia tabaci with high Hamiltonella prevalence. Phytoparasitica 2019, 47, 293–300. [Google Scholar] [CrossRef]
- De Marchi, B.R.; Kinene, T.; Wainaina, J.M.; Krause-Sakate, R.; Boykin, L. Comparative transcriptome analysis reveals genetic diversity in the endosymbiont Hamiltonella between native and exotic populations of Bemisia tabaci from Brazil. PLoS ONE 2018, 13, e0201411. [Google Scholar] [CrossRef] [Green Version]
- De Marchi, B.R.; Marubayashi, J.M.; Favara, G.M.; Yuki, V.A.; Watanabe, L.F.M.; Barbosa, L.F.; Pavan, M.A.; Krause-Sakate, R. Comparative transmission of five viruses by Bemisia tabaci NW2 and MEAM1. Trop. Plant Pathol. 2017, 42, 495–499. [Google Scholar] [CrossRef]
- Kliot, A.; Cilia, M.; Czosnek, H.; Ghanim, M. Implication of the bacterial endosymbiont Rickettsia spp. in interactions of the whitefly Bemisia tabaci with Tomato yellow leaf curl virus. J. Virol. 2014, 88, 5652–5660. [Google Scholar] [CrossRef] [Green Version]
- Kliot, A.; Kontsedalov, S.; Lebedev, G.; Czosnek, H.; Ghanim, M. Combined infection with Tomato yellow leaf curl virus and Rickettsia influences fecundity, attraction to infected plants and expression of immunity-related genes in the whitefly Bemisia tabaci. J. Gen. Virol. 2019, 100, 721–731. [Google Scholar] [CrossRef]
- Lei, T.; Zhao, J.; Wang, H.-L.; Liu, Y.-Q.; Liu, S.-S. Impact of a novel Rickettsia symbiont on the life history and virus transmission capacity of its host whitefly (Bemisia tabaci). Insect Sci. 2020. [Google Scholar] [CrossRef]
- Hunter, W.B.; Hiebert, E.; Webb, S.E.; Tsai, J.H.; Polston, J.E. Location of Geminiviruses in the whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Plant Dis. 1998, 82, 1147–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, D.K.; Chen, W.; Zheng, Y.; Kaur, N.; Wintermantel, W.M.; Simmons, A.M.; Fei, Z.; Ling, K.S. Comparative transcriptome analysis reveals networks of genes activated in the whitefly, Bemisia tabaci when fed on tomato plants infected with Tomato yellow leaf curl virus. Virology 2018, 513, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Jiao, X.; Xie, W.; Wang, S.; Wu, Q.; Shi, X.; Chen, G.; Su, Q.; Yang, X.; Pan, H.; et al. Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Sci. Rep. 2013, 3, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Delafuente, A.; Garzo, E.; Moreno, A.; Fereres, A. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS ONE 2013, 8, e61543. [Google Scholar] [CrossRef]
- Whitten, M.M.A.; Facey, P.D.; Del Sol, R.; Fernández-Martínez, L.T.; Evans, M.C.; Mitchell, J.J.; Bodger, O.G.; Dyson, P.J. Symbiont-mediated RNA interference in insects. Proc. R. Soc. B 2016, 283, 20160042. [Google Scholar] [CrossRef] [Green Version]
Endosymbiont | Symbiosis | Phylum | Order | Bemisia tabaci Species | Localization | Genome Size (Mb) | Assembly Level | Protein Coding Genes | Assembly Accession # | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Ca. Portiera aleyrodiarum | Obligate | Proteobacteria | Oceanospirillales | MEAM1 | Bacteriome | 0.36 | Complete | 258 | GCA_000292685 | [21] |
Ca. Hamiltonella defensa | Facultative | Proteobacteria | Enterobacterales | MEAM1 | Bacteriome | 1.74 | Complete | 1466 | GCA_002285855 | [9] |
Ca. Arsenophonus | Facultative | Proteobacteria | Enterobacterales | Asia II 3 | Bacteriome, salivary glands, midgut | 2.33 | Contig | 1691 | GCA_004118055 | PRJNA327006 |
Ca. Cardinium hertigii | Facultative | Bacteroidetes | Cytophagales | China | Bacteriome, abdomen, head | 1.00 | Scaffold | 768 | GCA_004300865 | PRJNA299728 |
Ca. Fritschea bemisiae | Facultative | Chlamydiae | Parachlamydiales | - | Bacteriome | - | - | - | - | - |
Ca. Hemipteriphilus asiaticus | Facultative | Proteobacteria | Rickettsiales | - | Bacteriome | - | - | - | - | - |
Ca. Rickettsia Bellii | Facultative | Proteobacteria | Rickettsiales | MEAM1 | Bacteriome or external to bacteriome | 1.38 | Complete | 1278 | GCA_002285905 | [9] |
Ca. Rickettsia Torix | Facultative | Proteobacteria | Rickettsiales | Asia II 7 | Bacteriome, midgut, salivary gland, ovaries, testes | 1.12 | Scaffold | 1301 | GCA_013435745 | [23] |
Ca. Wolbachia | Facultative | Proteobacteria | Rickettsiales | China 1 | Bacteriome and/or external to bacteriome | 1.31 | Chromosome | 979 | GCA_003999585 | PRJNA327485 |
Bemisia tabaci species | Endosymbiont(s) | Endosymbiont Product | Virus Names a | Effect on Transmission | Reference |
---|---|---|---|---|---|
MEAM1 | Undetermined | GroEL chaperone | Tomato yellow leaf curl virus | Facilitatory | [18,121] |
MEAM1 | Undetermined | GroEL chaperone | Abutilon mosaic virus b | ~ | [121] |
MEAM1 | Hamiltonella | GroEL chaperone | Tomato yellow leaf curl virus | Facilitatory | [124] |
MED | Hamiltonella | Unspecified | Tomato yellow leaf curl virus | Facilitatory | [125] |
MED | Hamiltonella | Unspecified | Cowpea mild mottle virus, bean golden mosaic virus, tomato chlorosis virus | Increased transmission | [126] |
MEAM1 | Rickettsia | Unspecified | Tomato yellow leaf curl virus | Increased acquisition and transmission | [129] |
MEAM1 | Rickettsia | Unspecified | Tomato yellow leaf curl virus | Down-regulation of whitefly immunity genes | [130] |
Asia II 1 | Rickettsia (Torix) | Hypothesized secretory proteins | Cotton leaf curl Multan virus | Increased virus titer and transmission | [131] |
Asia II | Arsenophonus | GroEL chaperone | Cotton leaf curl virus | Undetermined | [42] |
SSA1-SG3 | Arsenophonus, Rickettsia | Undetermined | East African cassava mosaic virus-Uganda | Reduced acquisition and retention | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreason, S.A.; Shelby, E.A.; Moss, J.B.; Moore, P.J.; Moore, A.J.; Simmons, A.M. Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions. Insects 2020, 11, 775. https://doi.org/10.3390/insects11110775
Andreason SA, Shelby EA, Moss JB, Moore PJ, Moore AJ, Simmons AM. Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions. Insects. 2020; 11(11):775. https://doi.org/10.3390/insects11110775
Chicago/Turabian StyleAndreason, Sharon A., Emily A. Shelby, Jeanette B. Moss, Patricia J. Moore, Allen J. Moore, and Alvin M. Simmons. 2020. "Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions" Insects 11, no. 11: 775. https://doi.org/10.3390/insects11110775
APA StyleAndreason, S. A., Shelby, E. A., Moss, J. B., Moore, P. J., Moore, A. J., & Simmons, A. M. (2020). Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions. Insects, 11(11), 775. https://doi.org/10.3390/insects11110775