Trade-off Investment between Tonic Immobility and Mate Search in the Sweetpotato Weevil, Cylas formicarius (Coleoptera: Brentidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects Culture
2.2. Observations of TI Behavior
2.3. Artificial Selection
2.4. Y-Tube Olfactometer
2.5. Experiment 1: Ability of Searching Mates in Different Period
2.6. Experiment 2: Effects on TI
2.7. Experiment 3: Effects on Mate Searching
2.8. Statistical Analysis
3. Results
3.1. Experiment 1: Ability of Searching Mate
3.2. Experiment 2: Effects on TI
3.3. Experiment 3: Effect on Mate Searching
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Humphreys, R.K.; Ruxton, G.D. A review of thanatosis (death feigning) as an anti-predator behavior. Behav. Ecol. Sociobiol. 2018, 72, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weygoldt, P. Coexistence of two species of whip spiders (Genus Heterophrynus) in the neotropical rain forest (Arachnida, Amblypygi). Oecologia 1997, 27, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Shreeve, T.G.; Dennis, R.L.H.; Wakeham-Dawson, A. Phylogenetic, habitat, and behavioral aspects of possum behavior in European Lepidoptera. J. Res. Lepid. 2006, 39, 80–85. [Google Scholar]
- Wolfenbarger, D.O. Some notes on the citrus root weevil. Fla. Entomol. 1952, 35, 139–142. [Google Scholar] [CrossRef]
- Conner, J.; Camazine, S.; Aneshansley, D.; Eisner, T. Mammalian breath: Trigger of defensive chemical response in a tenebrionid beetle (Bolitotherus cornutus). Behav. Ecol. Sociobiol. 1985, 16, 115–118. [Google Scholar] [CrossRef]
- Miyatake, T. Diurnal periodicity of death-feigning in Cylas formicarius (Coleoptera: Brentidae). J. Insect Behav. 2001, 14, 421–432. [Google Scholar] [CrossRef]
- Williams, C.E.; Dunkle, S.W. The larva of Neurocordulia zanthosoma (Odonata: Corduliidae). Fla. Entomol. 1976, 59, 429–433. [Google Scholar] [CrossRef]
- Cassill, D.L.; Vo, K.; Becker, B. Young fire ant workers feign death and survive aggressive neighbors. Naturwissenschaften 2008, 95, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Ratner, S.D.; Thompson, R.W. Immobility reactions (fear) of domestic fowl as a function of age and prior experience. Anim. Behav. 1960, 8, 186–191. [Google Scholar] [CrossRef]
- Sargeant, A.B.; Eberhardt, L.E. Death feigning by ducks in response to predation by red foxes (Vulpes fulva). Am. Midl. Nat. 1975, 94, 108–119. [Google Scholar] [CrossRef]
- Howe, J.C. Field observations of death feigning in the convict tang, Acanthurus triostegus (Linnaeus), with comments on the nocturnal color pattern in juvenile specimens. J. Aquaricul. Aquat. Sci. 1991, 4, 13–15. [Google Scholar]
- Sanchéz-Paniagua, K.; Abarca, J.G. Thanatosis in four poorly known toads of the genus Incilius (Amphibia: Anura) from the highlands of Costa Rica. Mesoam. Herpetol. 2016, 3, 135–140. [Google Scholar]
- Mutoh, A. Death-feigning behavior of the Japanese colubrid snake Rhabdophis tigrinus. Herpetologica 1983, 39, 78–80. [Google Scholar]
- Burghardt, G.M.; Greene, H. Predator simulation and duration of death feigning in neonate hognose snakes Heterodon platirhinos. Anim. Behav. 1988, 36, 1842–1844. [Google Scholar] [CrossRef]
- Abrams, P.A. The evolution of predator-prey interactions: Theory and evidence. Annu. Rev. Ecol. Syst. 2000, 31, 79–105. [Google Scholar] [CrossRef]
- Endler, J.A. Interactions between predators and prey. In Behavioral Ecology: An Evolutionary Approach; Krebs, J.R., Davies, N.B., Eds.; Blackwell Science Publications: Oxford, UK, 1991; pp. 169–196. [Google Scholar]
- Caro, T. Antipredator Defenses in Birds and Mammals; University Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Leslie, A.P.; Michael, J.W. Geographic and genetic variation in death-feigning behavior in the flour beetle, Tribolium castaneum. Behav. Genet. 1981, 11, 395–401. [Google Scholar]
- Kuriwada, T.; Kumano, N.; Shiromoto, K.; Haraguchi, D. Copulation reduces the duration of death-feigning behavior in the sweetpotato weevil, Cylas formicarius. Anim. Behav. 2009, 78, 1145–1151. [Google Scholar] [CrossRef]
- Miyatake, T.; Nakayama, S.; Nishi, Y.; Nakajima, S. Tonically immobilized selfish prey can survive by sacrificing others. Proc. R. Soc. B Biol. Sci. 2009, 276, 2763–2767. [Google Scholar] [CrossRef] [Green Version]
- Michael, J.A.; Robbie, S.W.; Carlos, A.N.; Rob, S.J. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol. Evol. 2003, 18, 234–240. [Google Scholar]
- Sherman, M.; Tamashiro, M. The sweet potato weevils in Hawaii: Their biology and control. Hawaii Agric. Exp. Sta. Res. Bull. 1954, 23, 1–36. [Google Scholar]
- Cockerham, K.L.; Deen, O.T.; Christian, M.B.; Newsom, L.D. The biologyof the sweet potato weevil. La. Agric. Exp. Stn. Tech. Bull. 1954, 483, 1–30. [Google Scholar]
- Kuriwada, T.; Kumano, N.; Shiromoto, K.; Haraguchi, D. Age-dependent investment in death-feigning behavior in the sweetpotato weevil Cylas formicarius. Physiol. Entomol. 2011, 36, 149–154. [Google Scholar] [CrossRef]
- Miyatake, T. Effects of starvation on death-feigning in adults of Cylas formicarius (Coleoptera: Brentidae). Ann. Entomol. Soc. Am. 2001, 94, 612–616. [Google Scholar] [CrossRef]
- Robin, A.S.; Brian, P.L.; Mariana, F.W. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 2016, 61, 239–256. [Google Scholar]
- Patrick, A.G. Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: A meta-analysis. Biol. Rev. Camb. Philos. Soc. 2011, 86, 813–835. [Google Scholar]
- Alexander, R.D.; Marshall, D.C.; Cooley, J.R. Evolutionary perspectives on insect mating. In The Evolution of Mating Systems in Insects and Arachnids; Choe, J.C., Crespi, B.J., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 4–31. [Google Scholar]
- Proctor, H.C. Effect of food-deprivation on mate searching and spermato-phore production in male water mites (Acari, Unionicolidae). Funct. Ecol. 1992, 6, 661–665. [Google Scholar] [CrossRef]
- Byers, J.A.; Wiseman, P.A.; Jones, L.; Roffe, T.J. A large cost of female mate sampling in pronghorn. Am. Nat. 2005, 166, 661–668. [Google Scholar] [CrossRef]
- Gwynne, D.T. Sex-biased predation and the risky mate-locating behavior of male tick-tock cicadas (Homoptera, Cicadidae). Anim. Behav. 1987, 35, 571–576. [Google Scholar] [CrossRef]
- Hedrick, A.V.; Dill, L. Mate choice by female crickets is influenced by predation risk. Anim. Behav. 1993, 46, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Kraus, C.; Eberle, M.; Kappeler, P.M. The costs of risky male behavior: Sex differences in seasonal survival in a small sexually monomorphic primate. R. Soc. B Biol. Sci. 2008, 275, 1635–1644. [Google Scholar]
- Kasumovic, M.M.; Bruce, M.J.; Herberstein, M.E.; Andrade, M.C.B. Risky mate search and mate preference in the golden orb-web spider (Nephila plumipes). Behav. Ecol. 2007, 18, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Heath, R.R.; Coffelt, J.A.; Sonnet, P.E.; Proshold, F.I.; Dueben, B.; Tumlinson, J.H. Identification of sex pheromone produced by female sweetpotato weevil, Cylas formicarius elegantulus (Summers). J. Chem. Ecol. 1986, 12, 1489–1503. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.M.; Simpson, S.J. Thanatosis. Curr. Biol. 2014, 24, R1031–R1033. [Google Scholar] [CrossRef] [Green Version]
- Brooks, E.J.; Sloman, K.A.; Liss, S.; Hassan-Hassanein, L.; Danylchuk, A.J.; Cooke, S.J.; Mandelman, J.W.; Skomal, G.B.; Sims, D.W.; Suski, C.D. The stress physiology of extended duration tonic immobility in the juvenile lemon shark, Negaprion brevirostris (Poey 1868). J. Exp. Mar. Biol. Ecol. 2011, 409, 351–360. [Google Scholar] [CrossRef]
- Krams, I.; Kivleniece, I.; Kuusik, A.; Krama, T.; Freeberg, T.M.; Mänd, R.; Vrublevska, J.; Rantala, M.J.; Mänd, M. Predation selects for low resting metabolic rate and consistent individual differences in anti-predator behavior in a beetle. Acta Ethol. 2013, 16, 163–172. [Google Scholar] [CrossRef]
- Miyatake, T.; Tabuchi, K.; Sasaki, K.; Okada, K.; Katayama, K.; Moriya, S. Pleiotropic antipredator strategies, fleeing and feigning death, correlated with dopamine levels in Tribolium castaneum. Anim. Behav. 2008, 75, 113–121. [Google Scholar] [CrossRef]
- Sakuratani, Y.; Sugimoto, T.; Setokuchi, O.; Kamikado, T.; Kiritani, K.; Okada, T. Diurnal changes in micro-habitat usage and behavior of Cylas formicarius (Fabricius) (Coleoptera: Curculionidae) adults. Appl. Entomol. Zool. 1994, 29, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Mullen, M.A. Sweetpotato weevil Cylas formicarius eleganulus (Summers), development, fecundity and longevity. Ann. Entomol. Sci. Am. 1981, 74, 478–481. [Google Scholar] [CrossRef]
- Miyatake, T.; Katayama, K.; Takeda, Y.; Nakashima, A.; Sugita, A.; Mizumoto, M. Is death-feigning adaptive? Heritable variation in fitness difference of death-feigning behavior. R. Soc. B Biol. Sci. 2004, 271, 2293–2296. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, S.; Miyatake, T. Genetic trade-off between abilities to avoid attack and to mate: A cost of tonic immobility. Biol. Lett. 2010, 6, 18–20. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilike, C.; Woo, K.; Yutani, H.; Dunnington, D. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics; 2020. Available online: https://ggplot2.tidyverse.org/ (accessed on 9 August 2020).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B.; Scheipl, F.; Grothendieck, G.; Green, P.; et al. lme4: Linear Mixed-Effects Models Using “Eigen” and S4; 2020. Available online: http://cran.r-project.org/web/packages/lme4/index.html (accessed on 8 November 2020).
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Pavlová, V.; Berec, L.; Boukal, D.S. Caught between two Allee effects: Trade-off between reproduction and predation risk. J. Theor. Biol. 2010, 3, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Wickman, P.; Jansson, P. An estimate of female mate searching costs in the lekking butterfly Coenonympha pamphilus. Behav. Ecol. Sociobiol. 1997, 40, 321–328. [Google Scholar] [CrossRef]
- Michelleden, H.; Darryl, T.G. Female fitness consequences of male harassment and copulation in seed beetles, Callosobruchus maculatus. Anim. Behav. 2009, 78, 1061–1070. [Google Scholar]
- Harano, K.; Sasaki, K.; Nagao, T.; Sasaki, M. Influence of age and juvenile hormone on brain dopamine level in male honeybee (Apis mellifera): Association with reproductive maturation. J. Insect Physiol. 2008, 54, 848–853. [Google Scholar] [CrossRef]
- Liu, T.; Dartevelle, L.; Yuan, C.; Wei, H.; Wang, Y.; Ferveur, J.F.; Guo, A. Increased dopamine level enhances male-male courtship in Drosophila. J. Neurosci. 2008, 28, 5539–5546. [Google Scholar] [CrossRef] [Green Version]
- Pendleton, R.G.; Rsheed, A.; Sardina, T.; Tully, T.; Hillman, R. Effects of Tyrosine Hydroxylase Mutants on Locomoto Activity in Drosophila: A Study in Functional Genomics. Behav. Genet. 2002, 32, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Abrieux, A.; Debernard, S.; Maria, A.; Gaertner, C.; Anton, S.; Gadenne, C.; Duportets, L. Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect. PLoS ONE 2013, 8, e72785. [Google Scholar] [CrossRef] [Green Version]
Period | Probability of Orienting to Females (%) |
---|---|
00:00–02:59 | 73.3 ± 11.4 a |
03:00–05:59 | 46.7 ± 12.9 b |
06:00–08:59 | 40.0 ± 12.6 b |
09:00–11:59 | 20.0 ± 10.3 b |
12:00–14:59 | 26.7 ± 11.4 b |
15:00–17:59 | 13.3 ± 8.8 b |
18:00–20:59 | 26.7 ± 11.4 b |
21:00–23:59 | 66.7 ± 12.1a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, H.; Wu, P.; Zhang, R.; Haseeb, M. Trade-off Investment between Tonic Immobility and Mate Search in the Sweetpotato Weevil, Cylas formicarius (Coleoptera: Brentidae). Insects 2020, 11, 774. https://doi.org/10.3390/insects11110774
Ouyang H, Wu P, Zhang R, Haseeb M. Trade-off Investment between Tonic Immobility and Mate Search in the Sweetpotato Weevil, Cylas formicarius (Coleoptera: Brentidae). Insects. 2020; 11(11):774. https://doi.org/10.3390/insects11110774
Chicago/Turabian StyleOuyang, Haoyong, Pengxiang Wu, Runzhi Zhang, and Muhammad Haseeb. 2020. "Trade-off Investment between Tonic Immobility and Mate Search in the Sweetpotato Weevil, Cylas formicarius (Coleoptera: Brentidae)" Insects 11, no. 11: 774. https://doi.org/10.3390/insects11110774
APA StyleOuyang, H., Wu, P., Zhang, R., & Haseeb, M. (2020). Trade-off Investment between Tonic Immobility and Mate Search in the Sweetpotato Weevil, Cylas formicarius (Coleoptera: Brentidae). Insects, 11(11), 774. https://doi.org/10.3390/insects11110774