Metabolic Cost of a Nutritional Symbiont Manifests in Delayed Reproduction in a Grain Pest Beetle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. General Insect Rearing and Symbiont Elimination
2.2. Symbiont Influence on Development
2.3. Variability of Symbiont Titer Assessed by Fluorescence in Situ Hybridization (FISH)
2.4. Symbiont Influence on Adult Mortality and Reproduction
2.5. Statistical Analyses
3. Results
3.1. Symbiont Titer during Development
3.2. Symbiont Influence on Development
3.3. Symbiont Influence on Adult Life Span and Reproduction
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moran, N.A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. USA 2007, 104, 8627–8633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klepzig, K.D.; Adams, A.S.; Handelsman, J.; Raffa, K.F. Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ. Entomol. 2009, 38, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, A.E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 2009, 23, 38–47. [Google Scholar] [CrossRef]
- Feldhaar, H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol. Entomol. 2011, 36, 533–543. [Google Scholar] [CrossRef]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Loso, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [Green Version]
- Oliver, K.M.; Martinez, A.J. How resident microbes modulate ecologically important traits of insects. Curr. Opin. Insect Sci. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Florez, L.V.; Biedermann, P.H.W.; Engl, T.; Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 2015, 32, 904–936. [Google Scholar] [CrossRef] [Green Version]
- Corbin, C.; Heyworth, E.R.; Ferrari, J.; Hurst, G.D.D. Heritable symbionts in a world of varying temperature. Heredity 2017, 118, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Sudakaran, S.; Kost, C.; Kaltenpoth, M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017, 25, 375–390. [Google Scholar] [CrossRef]
- Van den Bosch, T.J.M.; Welte, C.U. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 2017, 10, 531–540. [Google Scholar] [CrossRef]
- Engl, T.; Kaltenpoth, M. Influence of microbial symbionts on insect pheromones. Nat. Prod. Rep. 2018, 35, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Renoz, F.; Pons, I.; Hance, T. Evolutionary responses of mutualistic insect–bacterial symbioses in a world of fluctuating temperatures. Curr. Opin. Insect Sci. 2019, 35, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, M.; Engl, T.; Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 2020, 39, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Bénard, A.; Vavre, F.; Kremer, N. Stress, Symbiosis: Heads pr Tails? Front. Ecol. Evol. 2020, 8, 167. [Google Scholar] [CrossRef]
- Oliver, K.M.; Campos, J.; Moran, N.A.; Hunter, M.S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. Lond. B Biol. Sci. 2008, 275, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Harmon, J.P.; Moran, N.A.; Ives, A.R. Species Response to Environmental Change: Impacts of Food Web Interactions and Evolution. Science 2009, 323, 1347–1350. [Google Scholar] [CrossRef] [Green Version]
- Oliver, K.M.; Smith, A.H.; Russell, J.A. Defensive symbiosis in the real world -advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 2014, 28, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Husnik, F.; McCutcheon, J.P. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc. Natl. Acad. Sci. USA 2016, 113, E5416–E5424. [Google Scholar] [CrossRef] [Green Version]
- Roff, D.A. The Evolution of Life Histories: Theory and Analysis; Chapman, Hall: New York, NY, USA, 1992. [Google Scholar]
- Stearns, S.C. The Evolution of Life Histories; Oxford University Press: London, UK, 1993. [Google Scholar]
- Douglas, A.E. The Symbiotic Habit; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Vigneron, A.; Masson, F.; Vallier, A.; Balmand, S.; Rey, M.; Vincent-Monegat, C.; Aksoy, E.; Aubailly-Giraud, E.; Zaidman-Remy, A.; Heddi, A. Insects recycle endosymbionts when the benefit is over. Curr. Biol. 2014, 24, 2267–2273. [Google Scholar] [CrossRef] [Green Version]
- Koch, A. Symbiosestudien. II. Experimentelle Untersuchungen an Oryzaephilus surinamensis L. (Cucujidae, Coleoptera). Z. Morphol. Okol. Tiere 1936, 32, 137–180. [Google Scholar] [CrossRef]
- Huger, A. Experimentelle Untersuchungen über die künstliche Symbiontenelimination bei Vorratsschädlingen: Rhizopertha dominica F. (Bostrychidae) und Oryzaephilus surinamensis L. (Cucujidae). Z. Morphol. Okol. Tiere 1956, 44, 626–701. [Google Scholar] [CrossRef]
- Montllor, C.B.; Maxmen, A.; Purcell, A.H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 2002, 27, 189–195. [Google Scholar] [CrossRef]
- Burke, G.R.; McLaughlin, H.J.; Simon, J.C.; Moran, N.A. Dynamics of a recurrent Buchnera mutation that affects thermal tolerance of pea aphid hosts. Genetics 2010, 186, U367–U577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernegreen, J.J. Mutualism meltdown in insects: Bacteria constrain thermal adaptation. Curr. Opin. Microbiol. 2012, 15, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, Y.; Tada, A.; Musolin, D.L.; Hari, N.; Hosokawa, T.; Fujisaki, K.; Fukatsu, T. Collapse of insect gut symbiosis under simulated climate change. mBio 2016, 7, e01578–e01616. [Google Scholar] [CrossRef] [Green Version]
- Brucker, R.M.; Bordenstein, S.R. Speciation by symbiosis. Trends Ecol. Evol. 2012, 27, 443–451. [Google Scholar] [CrossRef]
- Shropshire, J.D.; Bordenstein, S.R. Speciation by symbiosis: The microbiome and behavior. mBio 2016, 7, 01785–01815. [Google Scholar] [CrossRef] [Green Version]
- McCutcheon, J.P.; Moran, N.A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 2012, 10, 13–26. [Google Scholar] [CrossRef]
- Moran, N.A.; Bennett, G.M. The tiniest tiny genomes. Annu. Rev. Microbiol. 2014, 68, 195–215. [Google Scholar] [CrossRef]
- Bennett, G.M.; Moran, N.A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. USA 2015, 112, 10169–10176. [Google Scholar] [CrossRef] [Green Version]
- Moran, N.A.; Degnan, P.H.; Santos, S.R.; Dunbar, H.E.; Ochman, H. The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. Proc. Natl. Acad. Sci. USA 2005, 102, 16919–16926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerardo, N.M.; Altincicek, B.; Anselme, C.; Atamian, H.; Barribeau, S.M.; De Vos, M.; Duncan, E.J.; Evans, J.D.; Gabaldon, T.; Ghanim, M.; et al. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 2010, 11, R21. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A.; Moran, N.A. Costs and benefits of symbiont infection in aphids: Variation among symbionts and across temperatures. Proc. R. Soc. Lond. B Biol. Sci. 2006, 273, 603–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorburger, C.; Gouskov, A. Only helpful when required: A longevity cost of harbouring defensive symbionts. J. Evol. Biol. 2011, 24, 1611–1617. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Hayashi, H.; Ishikawa, H. Growth and reproduction of the symbiotic and aposymbiotic pea aphids, Acyrthosiphon pisum, maintained on artificial diets. J. Insect Physiol. 1991, 37, 749–756. [Google Scholar] [CrossRef]
- Pais, R.; Lohs, C.; Wu, Y.N.; Wang, J.W.; Aksoy, S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl. Environ. Microbiol. 2008, 74, 5965–5974. [Google Scholar] [CrossRef] [Green Version]
- Salem, H.; Bauer, E.; Strauss, A.S.; Vogel, H.; Marz, M.; Kaltenpoth, M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc. R. Soc. Lond. B Biol. Sci. 2014, 281, 20141838. [Google Scholar] [CrossRef] [Green Version]
- Nardon, P.; Grenier, A.-M. Genetical and biochemical interactions between the host and its endocytobiotes in the weevils Sitophilus (Coleoptere, Curculionidae) and other related species. In Cell to Cell Signals in Plant, Animal and Microbial Symbiosis; Scannerini, S., Smith, D., Bonfante-Fasolo, P., Gianinazzi-Pearson, V., Eds.; Springer: Berlin, Germany, 1988. [Google Scholar]
- Koch, A. Die Symbiose von Oryzaephilus surinamensis L. (Cucujidae, Coleoptera). Z. Morphol. Okol. Tiere 1931, 23, 389–424. [Google Scholar] [CrossRef]
- Hirota, B.; Okude, G.; Anbutsu, H.; Futahashi, R.; Moriyama, M.; Meng, X.-Y.; Nikoh, N.; Koga, R.; Fukatsu, T. A novel, extremely elongated, and endocellular bacterial symbiont supports cuticle formation of a grain pest beetle. mBio 2017, 8, e01482–e01517. [Google Scholar] [CrossRef] [Green Version]
- Engl, T.; Eberl, N.; Gorse, C.; Krueger, T.; Schmidt, T.H.P.; Plarre, R.; Adler, C.; Kaltenpoth, M. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 2018, 27, 2095–2108. [Google Scholar] [CrossRef]
- Howe, R.W. The biology of the two common storage species of Oryzaephilus (Coleoptera, Cucujidae). Ann. Appl. Biol. 1956, 44, 341–355. [Google Scholar] [CrossRef]
- Arbogast, R.T. Population parameters for Oryzaephilus surinamensis and O. mercator: Effect of relative humidity. Environ. Entomol. 1976, 4, 738–742. [Google Scholar] [CrossRef]
- Halstead, D.G.H. External sex differences in stored-products Coleoptera. Bull. Entomol. Res. 1963, 54, 119–134. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Hackman, R.H. Chemistry of the Insect Cuticle. In The Physiology of Insecta; Rodstein, M., Ed.; Academic Press: New York, NY, USA, 1974; pp. 216–270. [Google Scholar]
- National Museum of Natural History—Smithsonian, Encyclopedia of Life: Oryzaephilus surinamensis—Sawtoothed Grain Beetle. Available online: https://eol.org/pages/1175066/articles (accessed on 12 October 2020).
- Back, E.A.; Cotton, R.T. Biology of the saw-toothed grain beetle, Oryzaephilus surinamensis Linné. J. Agric. Res. 1926, 33, 435–452. [Google Scholar]
- Jacob, T.A.; Fleming, D.A. The difference in the developmental period and mortality of some field strains of Oryzaephilus surinamensis (L.) at constant temperatures (Coleoptera: Silvanidae). J. Stored Prod. Res. 1989, 25, 73–76. [Google Scholar] [CrossRef]
- Gwinner, J.; Harnisch, R.; Mück, O. Manual on the Prevention of Post-Harvest Grain Losses; Deutsche Gesellschaft für Technische Zusammenarbeit: Hamburg, Germany, 1990. [Google Scholar]
- Halstead, D.G.H. A revision of the genus Oryzaephilus Ganglbauer, including descriptions of related genera (Coleoptera: Silvanidae). Zool. J. Linn. Soc. 1980, 69, 271–374. [Google Scholar] [CrossRef]
- Curtis, C.E. Comparative Biologies of Oryzaephilus surinamensis and O. mercator (Coleoptera: Cucujidae) on Dried Fruits and Nuts; Technical Bulletin 1488; Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1974.
- Parker, B.J.; Barribeau, S.M.; Laughton, A.M.; de Roode, J.C.; Gerardo, N.M. Non-immunological defense in an evolutionary framework. Trends Ecol. Evol. 2011, 26, 242–248. [Google Scholar] [CrossRef]
- Polin, S.; Simon, J.C.; Outreman, Y. An ecological cost associated with protective symbionts of aphids. Ecol. Evol. 2014, 4, 826–830. [Google Scholar] [CrossRef]
- Sinotte, V.; Freedman, S.; Ugelvig, L.; Seid, M. Camponotus floridanus ants incur a trade-off between phenotypic development and pathogen susceptibility from their mutualistic endosymbiont Blochmannia. Insects 2018, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Anbutsu, H.; Moriyama, M.; Nikoh, N.; Hosokawa, T.; Futahashi, R.; Tanahashi, M.; Meng, X.-Y.; Kuriwada, T.; Mori, N.; Oshima, K.; et al. Small genome symbiont underlies cuticle hardness in beetles. Proc. Natl. Acad. Sci. USA 2017, 114, E8382–E8391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engl, T.; Schmidt, T.H.P.; Kanyile, S.N.; Klebsch, D. Metabolic Cost of a Nutritional Symbiont Manifests in Delayed Reproduction in a Grain Pest Beetle. Insects 2020, 11, 717. https://doi.org/10.3390/insects11100717
Engl T, Schmidt THP, Kanyile SN, Klebsch D. Metabolic Cost of a Nutritional Symbiont Manifests in Delayed Reproduction in a Grain Pest Beetle. Insects. 2020; 11(10):717. https://doi.org/10.3390/insects11100717
Chicago/Turabian StyleEngl, Tobias, Thorsten H. P. Schmidt, Sthandiwe Nomthandazo Kanyile, and Dagmar Klebsch. 2020. "Metabolic Cost of a Nutritional Symbiont Manifests in Delayed Reproduction in a Grain Pest Beetle" Insects 11, no. 10: 717. https://doi.org/10.3390/insects11100717
APA StyleEngl, T., Schmidt, T. H. P., Kanyile, S. N., & Klebsch, D. (2020). Metabolic Cost of a Nutritional Symbiont Manifests in Delayed Reproduction in a Grain Pest Beetle. Insects, 11(10), 717. https://doi.org/10.3390/insects11100717