Vertical and Horizontal Trophic Networks in the Aroid-Infesting Insect Community of Los Tuxtlas Biosphere Reserve, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Collection and Breeding of Biological Samples
2.3. Statistical Analyses
- IFA = Index of frequency/abundance of species i found in the host plant
- = relative frequency of species i in the host plant (percentage of infructescence infested).
- = relative abundance of species i in the host plant (percentage of individuals recovered in the sample). Unless stated otherwise, all analyses were carried out with the statistical environment “R” v. 3.5.1 [66].
3. Results
3.1. Aroid-Insect Interaction Network
3.2. Vertical Distribution
3.3. Horizontal Distribution among Host Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Veen, F.J.F.; Morris, R.J.; Godfray, H.C.J. Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu. Rev. Entomol. 2006, 51, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Price, P.W. Resource-driven terrestrial interaction webs. Ecol. Res. 2002, 17, 241–247. [Google Scholar] [CrossRef]
- Novotny, V.; Drozd, P.; Miller, S.E.; Kulfan, M.; Janda, M.; Basset, Y.; Weiblen, G.D. Why are there so many species of herbivorous insects in tropical rainforests? Science 2006, 313, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Lewinsohn, T.M.; Roslin, T. Four ways towards tropical herbivore megadiversity. Ecol. Lett. 2008, 11, 398–416. [Google Scholar] [CrossRef]
- Schemske, D.W.; Mittelbach, G.G.; Cornell, H.V.; Sobel, J.M.; Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009, 40, 245–269. [Google Scholar] [CrossRef]
- Forister, M.L.; Novotny, V.; Panorska, A.K.; Baje, L.; Basset, Y.; Butterill, P.T.; Cizek, L.; Coley, P.D.; Dem, F.; Diniz, I.R.; et al. The global distribution of diet breadth in insect herbivores. Proc. Natl. Acad. Sci. USA 2015, 112, 442–447. [Google Scholar] [CrossRef]
- Janzen, D.H. Why mountain passes are higher in the tropics. Am. Nat. 1967, 101, 233–249. [Google Scholar] [CrossRef]
- Forister, M.L.; Dyer, L.A.; Singer, M.S.; Stireman, J.O.; Lill, J.T. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 2012, 93, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J. Global patterns in biodiversity. Nature 2000, 405, 220. [Google Scholar] [CrossRef]
- Rasmann, S.; Alvarez, N.; Pellissier, L. The altitudinal niche-breadth hypothesis in insect-plant interactions. In Annual Plant Reviews; Voelckel, C., Jander, G., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 339–359. ISBN 978-1-118-82978-3. [Google Scholar]
- Hodkinson, I.D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 2005, 80, 489. [Google Scholar] [CrossRef]
- Strong, D.R.; Southwood, R.; Lawton, J.H. Insects on Plants: Community Patterns and Mechanisms; Harvard University Press: Cambridge, MA, USA, 1984; ISBN 978-0-674-45513-9. [Google Scholar]
- Bernays, E.A.; Chapman, R.F. Host-Plant Selection by Phytophagous Insects; Contemporary topics in entomology; Chapman & Hall: New York, NY, USA, 1994; ISBN 978-0-412-03111-3. [Google Scholar]
- Futuyma, D.J.; Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 1988, 19, 207–233. [Google Scholar] [CrossRef]
- Matsubayashi, K.W.; Ohshima, I.; Nosil, P. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 2010, 134, 1–27. [Google Scholar] [CrossRef]
- Funk, D.J.; Filchak, K.E.; Feder, J.L. Herbivorous Insects: Model systems for the comparative study of speciation ecology. Genetica 2002, 116, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Colwell, R.K.; Futuyma, D.J. On the measurement of niche breadth and overlap. Ecology 1971, 52, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Devictor, V.; Clavel, J.; Julliard, R.; Lavergne, S.; Mouillot, D.; Thuiller, W.; Venail, P.; Villéger, S.; Mouquet, N. Defining and measuring ecological specialization. J. Appl. Ecol. 2010, 47, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, I.; Denno, R.F. Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory. Ecol. Lett. 2007, 10, 977–994. [Google Scholar] [CrossRef] [PubMed]
- Bush, G.L.; Butlin, R.K. Sympatric speciation in insects. In Adaptive Speciation; Dieckmann, U., Doebeli, M., Metz, J.A.J., Tautz, D., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 229–248. [Google Scholar]
- Strauss, S.Y. Direct, indirect, and cumulative effects of three native herbivores on a shared host plant. Ecology 1991, 72, 543–558. [Google Scholar] [CrossRef]
- Wootton, J.T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 1994, 25, 443–466. [Google Scholar] [CrossRef]
- terHorst, C.P.; Zee, P.C.; Heath, K.D.; Miller, T.E.; Pastore, A.I.; Patel, S.; Schreiber, S.J.; Wade, M.J.; Walsh, M.R. Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 2018, 191, 368–380. [Google Scholar] [CrossRef]
- Bascompte, J.; Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 567–593. [Google Scholar] [CrossRef]
- Thébault, E.; Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 2010, 329, 853–856. [Google Scholar] [CrossRef] [PubMed]
- Prado, P.I.; Lewinsohn, T.M. Compartments in insect–plant associations and their consequences for community structure. J. Anim. Ecol. 2004, 73, 1168–1178. [Google Scholar] [CrossRef]
- Lewinsohn, T.M.; Prado, P.I.; Jordano, P.; Bascompte, J.; Olesen, J.M. Structure in plant-animal interaction assemblages. Oikos 2006, 113, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Bascompte, J. Structure and dynamics of ecological networks. Science 2010, 329, 765–766. [Google Scholar] [CrossRef] [PubMed]
- Boyce, P.C.; Croat, T.B. The Überlist of Araceae, Totals for Published and Estimated Number of Species in Aroid Genera. Available online: http://www.aroid.org/genera/140313uberlist.pdf (accessed on 17 January 2018).
- Croat, T.; Acebey, A. Araceae. Flora de Veracruz 2015, 164, 1–211. [Google Scholar]
- Mayo, S.J.; Bogner, J.; Boyce, P.C. The Genera of Araceae; Roya Botanical Gardens: Kew, UK, 1997; ISBN 1-900347-22-9. [Google Scholar]
- Bay, D.C. Thermogenesis in the aroids. Aroideana 1995, 18, 32–39. [Google Scholar]
- Croat, T.B. Flowering behavior of the Neotropical genus Anthurium (Araceae). Am. J. Bot. 1980, 67, 888–904. [Google Scholar] [CrossRef]
- Gottsberger, G.; Amaral, A. Pollination strategies in Brazilian Philodendron species. Berichte Dtsch. Bot. Ges. 1984, 97, 1–410. [Google Scholar]
- Patt, J.M.; French, J.C.; Schal, C.; Lech, J.; Hartman, T.G. The pollination biology of tuckahoe, Peltandra virginica (Araceae). Am. J. Bot. 1995, 82, 1230–1240. [Google Scholar] [CrossRef]
- Sultana, F.; Hu, Y.-G.; Toda, M.J.; Takenaka, K.; Yafuso, M. Phylogeny and classification of Colocasiomyia (Diptera, Drosophilidae), and its evolution of pollination mutualism with aroid plants. Syst. Entomol. 2006, 31, 684–702. [Google Scholar] [CrossRef]
- Milet-Pinheiro, P.; Gonçalves, E.G.; Navarro, D.M.A.F.; Nuñez-Avellaneda, L.A.; Maia, A.C.D. Floral scent chemistry and pollination in the Neotropical aroid genus Xanthosoma (Araceae). Flora 2017, 231, 1–10. [Google Scholar] [CrossRef]
- Bogner, J.; Gonçalves, E.G. The Genus Gearum N. E. Brown (Araceae: Tribe Spathicarpeae). Aroideana 1999, 20, 20–29. [Google Scholar]
- Hernandez-Ortiz, V.; Aguirre, A. A new species of the Neotropical genus Beebeomyia (Diptera: Richardiidae) with observations of its biology on Dieffenbachia oerstedii (Araceae). J. Nat. Hist. 2015, 49, 1877–1889. [Google Scholar] [CrossRef]
- Wendt, L.D.; Gonçalves, E.G.; Maia, A.C.D. A new species of Beebeomyia Curran (Diptera: Richardiidae) from Brazil, with description of immature stages and notes on their association with Taccarum ulei (Araceae). Zootaxa 2018, 4369, 587. [Google Scholar] [CrossRef] [PubMed]
- Amancio, G.; Hernandez-Ortiz, V.; Aguirre-Jaimes, A.; Guevara, R.; Quesada, M. Feeding specialization of flies (Diptera: Richardiidae) in aroid infructescences (Araceae) of the Neotropics. J. Insect Sci. 2019, 19, 28. [Google Scholar] [CrossRef] [PubMed]
- Heed, W.B. Ecological and distributional notes on the Drosophilidae (Diptera) of El Salvador. Univ. Tex. Publ. 1957, 5721, 67–78. [Google Scholar]
- Grimaldi, D.; Jaenike, J. The Diptera breeding on skunk cabbage, Symplocarpus foetidus (Araceae). J. N. Y. Entomol. Soc. 1983, 91, 83–89. [Google Scholar]
- García-Robledo, C.; Quintero-Marín, P.; Mora-Kepfer, F. Geographic variation and succession of arthropod communities in inflorescences and infructescences of Xanthosoma (Araceae). Biotropica 2005, 37, 650–656. [Google Scholar] [CrossRef]
- Dirzo, R.; Miranda, A. El límite boreal de la selva tropical húmeda en el continente americano: Contracción de la vegetación y solución de una controversia. Interciencia 1991, 16, 240–247. [Google Scholar]
- García-Aguirre, M.C.; Álvarez, R.; Dirzo, R.; Ortiz, M.A.; Eng, M.M. Delineation of biogeomorphic land units across a tropical natural and humanized terrain in Los Tuxtlas, Veracruz, México. Geomorphology 2010, 121, 245–256. [Google Scholar] [CrossRef]
- Soto, M. El clima. In Los Tuxtlas: El Paisaje de la Sierra; Guevara, S., Laborde, J., Sánchez-Ríos, G., Eds.; Instituto de Ecología A.C. and The European Union: Xalapa, Mexico, 2004; pp. 195–199. [Google Scholar]
- Gutiérrez-García, G.; Ricker, M. Climate and climate change in the region of Los Tuxtlas (Veracruz, Mexico): A statistical analysis. Atmósfera 2011, 24, 347–373. [Google Scholar]
- Ibarra-Manriquez, G.; Martínez-Ramos, M.; Dirzo, R.; Núñez-Farfán, J. La vegetación. In Historia Natural de Los Tuxtlas; González-Soriano, E., Dirzo, R., Vogt, R., Eds.; Universidad Nacional Autónoma de México: Mexico City, Mexico, 1997; pp. 61–85. [Google Scholar]
- Castillo-Campos, G.; Laborde, J. La vegetación. In Los Tuxtlas. El Paisaje de la Sierra; Guevara, S., Laborde, J., Sánchez-Ríos, G., Eds.; Instituto de Ecología A.A. and European Union: Xalapa, Mexico, 2004; pp. 231–265. ISBN 970-709-043-X. [Google Scholar]
- Rzedowski, J. Vegetación de México; Primera edición digital; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2006; ISBN 978-968-18-0002-4. [Google Scholar]
- Acebey, A.; Krömer, T. Diversidad y distribución de Araceae de la Reserva de la Biosfera Los Tuxtlas, Veracruz, México. Rev. Mex. Biodivers. 2008, 79, 466–471. [Google Scholar]
- Brown, B.V.; Borkent, A.; Cumming, J.M.; Wood, D.M.; Woodley, N.E.; Zumbado, M.A. (Eds.) Manual of Central American Diptera Volume II, 1st ed.; National Research Council Canada: Ottawa, ON, Canada, 2010; 1442p. [Google Scholar]
- Blüthgen, N.; Menzel, F.; Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 2006, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Blüthgen, N.; Fründ, J.; Vázquez, D.P.; Menzel, F. What do interaction network metrics tell us about specialization and biological traits? Ecology 2008, 89, 3387–3399. [Google Scholar] [CrossRef] [PubMed]
- Beckett, S.J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 2016, 3, 140536. [Google Scholar] [CrossRef] [Green Version]
- Patefield, W.M. Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. Appl. Stat. 1981, 30, 91. [Google Scholar] [CrossRef]
- Dormann, C.F.; Gruber, B.; Fründ, J. Introducing the bipartite package: Analysing ecological networks. R News 2008, 8, 4. [Google Scholar]
- Kleinberg, J.M. Authoritative sources in a hyperlinked environment. J. ACM 1999, 46, 604–632. [Google Scholar] [CrossRef]
- Csárdi, G.; Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. Sci. 2006, 1695, 1–9. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996; ISBN 978-0-13-100846-5. [Google Scholar]
- Signorell, A.; Aho, K.; Alfons, A.; An-deregg, N.; Aragon, T.; Arppe, A.; Baddeley, A.; Barton, K.; Bolker, B.; Borchers, H.W.; et al. DescTools: Tools for descriptive statistics. R package version 0.99.24. 2019. Available online: https://cran.r-project.org/web/packages/DescTools/index.html (accessed on 14 August 2019).
- Colwell, R.K. EstimateS, Version 9.1.0: Statistical Estimation of Species Richness and Shared Species from Samples. User’s Guide and application. 2013. Available online: http:// viceroy.eeb.uconn.edu/estimates (accessed on 8 August 2019).
- Baselga, A.; Orme, C.D.L. Betapart: An R package for the study of beta diversity. Methods Ecol. Evolut. 2012, 3, 808–812. [Google Scholar] [CrossRef]
- Baselga, A. Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients. Methods Ecol. Evolut. 2013, 4, 552–557. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Novotny, V.; Basset, Y. Host specificity of insect herbivores in tropical forests. Proc. R. Soc. B Biol. Sci. 2005, 272, 1083–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Carretero, A.; Díaz-Castelazo, C.; Boege, K.; Rico-Gray, V. Evaluating the spatio-temporal factors that structure network parameters of plant-herbivore interactions. PLoS ONE 2014, 9, e110430. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B.A.; Porter, E.E. Does herbivore diversity depend on plant diversity? The case of California butterflies. Am. Nat. 2003, 161, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Axmacher, J.C.; Brehm, G.; Hemp, A.; Tünte, H.; Lyaruu, H.V.M.; Müller-Hohenstein, K.; Fiedler, K. Determinants of diversity in afrotropical herbivorous insects (Lepidoptera: Geometridae): Plant diversity, vegetation structure or abiotic factors? J. Biogeogr. 2009, 36, 337–349. [Google Scholar] [CrossRef]
- Peters, M.K.; Hemp, A.; Appelhans, T.; Behler, C.; Classen, A.; Detsch, F.; Ensslin, A.; Ferger, S.W.; Frederiksen, S.B.; Gebert, F.; et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 2016, 7, 13736. [Google Scholar] [CrossRef] [Green Version]
- Chartier, M.; Gibernau, M.; Renner, S.S. The evolution of pollinator–plant interaction types in the Araceae. Evolution 2014, 68, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Díaz Jiménez, P.; Hentrich, H.; Aguilar-Rodríguez, P.A.; Krömer, T.; Chartier, M.; Cristina, M.; MacSwiney, G.; Gibernau, M. A review on the pollination of aroids with bisexual flowers. Ann. Mo. Bot. Gard. 2019, 104, 83–104. [Google Scholar] [CrossRef]
- Valerio-Gutiérrez, C.E. Insect visitors to the inflorescence of the aroid Dieffenbachia oerstedii (Araceae) in Costa Rica. Brenesia 1984, 22, 139–146. [Google Scholar]
- Maia, A.C.D.; Gibernau, M.; Carvalho, A.T.; Gonçalves, E.G.; Schlindwein, C. The cowl does not make the monk: Scarab beetle pollination of the Neotropical aroid Taccarum ulei (Araceae: Spathicarpeae). Biol. J. Linn. Soc. 2013, 108, 22–34. [Google Scholar] [CrossRef]
- Cuartas-Hernández, S.E.; Gómez-Murillo, L. Effect of biotic and abiotic factors on diversity patterns of anthophyllous insect communities in a tropical mountain forest. Neotrop. Entomol. 2015, 44, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.N. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol. Exp. Appl. 1988, 47, 3–14. [Google Scholar] [CrossRef]
- Gripenberg, S.; Mayhew, P.J.; Parnell, M.; Roslin, T. A meta-analysis of preference–performance relationships in phytophagous insects. Ecol. Lett. 2010, 13, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Barabé, D.; Lacroix, C.; Chouteau, M.; Gibernau, M. On the presence of extracellular calcium oxalate crystals on the inflorescences of Araceae. Bot. J. Linn. Soc. 2004, 146, 181–190. [Google Scholar] [CrossRef]
- Coté, G.G. Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae). Am. J. Bot. 2009, 96, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Coté, G.G.; Gibernau, M. Distribution of calcium oxalate crystals in floral organs of Araceae in relation to pollination strategy. Am. J. Bot. 2012, 99, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.; Sakuragui, C.M.; Trigo, J.R.; Rodrigues, D. The selective florivory of Erioscelis emarginata matches its role as a pollinator of Philodendron. Entomol. Exp. Appl. 2015, 156, 290–300. [Google Scholar] [CrossRef]
- Saadi, S.A.I.; Mondal, A.K. Studies on the calcium oxalate crystals of some selected aroids (Araceae) in Eastern India. Adv. Biores. 2011, 2, 10. [Google Scholar]
- Madison, M. Protection of developing seeds in neotropical Araceae. Aroideana 1979, 2, 52–61. [Google Scholar]
- Grayum, M.H. Evolutionary and Ecological Significance of Starch Storage in Pollen of the Araceae. Am. J. Bot. 1985, 72, 1565–1577. [Google Scholar] [CrossRef]
- Gibernau, M. Pollinators and visitors of aroid inflorescences. Aroideana 2003, 26, 73–91. [Google Scholar]
- Gibernau, M. Pollinators and visitors of aroid inflorescences: An addendum. Aroideana 2011, 34, 70–83. [Google Scholar]
- Gibernau, M. Pollinators and visitors of aroid inflorescences III Phylogenetic Chemical insights. Aroideana 2016, 39, 4–22. [Google Scholar]
Aroid Species | BSLT (1000–1200 m) | La Perla (500–700 m) | Calería (100–300 m) | Total | Percentage of Total Sample |
---|---|---|---|---|---|
Dieffenbachia oerstedii (Dioe) | 44 | 33 | - | 77 | 30.8% |
Xanthosoma robustum (Xaro) | 18 | - | - | 18 | 7.2% |
Rhodospata wendlandii (Rhwe) | 17 | 2 | - | 19 | 7.6% |
Philodendron inaequilaterum (Phin) | - | - | 9 | 9 | 3.6% |
Philodendron radiatum (Phra) | 18 | - | - | 18 | 7.2% |
Philodendron sagittifolium (Phsa) | 7 | 38 | - | 45 | 18.0% |
Philodendron seguine (Phse) | 1 | 6 | 4 | 11 | 4.4% |
Philodendron tripartitum (Phtr) | 18 | 15 | 20 | 53 | 21.2% |
Totals | 123 | 94 | 33 | 250 | |
Percentage of the sample | 49.20% | 37.60% | 13.20% |
Family | Species Name | Species Code | Trophic Guild | Dioe | Phin | Phra | Phsa | Phse | Phtr | Rhwe | Xaro | Total Specimens |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Curculionidae | Curculionidae-2 | Cur2 | P | - | - | - | 0.04 | - | 0.13 | - | - | 2 |
Nitidulidae | Nitidulidae-1 | Nit1 | P-S | - | 8.68 | 0.04 | 20.15 | 28.48 | 9.33 | - | 54.14 | 1781 |
Nitidulidae-2 | Nit2 | P-S | - | - | 0.14 | - | - | - | - | 0.05 | 12 | |
Nitidulidae-3 | Nit3 | P-S | - | - | - | - | - | - | - | 2.79 | 57 | |
Nitidulidae-5 | Nit5 | P-S | - | - | - | 0.18 | - | - | - | - | 4 | |
Ptiliidae | Ptiliidae | Pti | M | - | - | - | 1.15 | 9.6 | - | - | - | 57 |
Scarabaeidae | Cyclocephala sexpunctata | C.sex | P | - | - | - | - | - | - | - | 0.05 | 1 |
Agromyzidae | Agromyzidae-1 | Agr | P | - | 0.16 | - | - | - | - | - | - | 1 |
Cecidomyiidae | Cecidomyiidae-1 | Cec1 | P | - | 0.16 | - | - | - | 0.65 | - | - | 6 |
Cecidomyiidae-2 | Cec2 | P | - | - | - | 0.13 | - | - | - | - | 3 | |
Ceratopogonidae | Ceratopogonidae-1 | Cer1 | P | - | 0.16 | - | - | - | - | - | - | 1 |
Forcipomyia sp | For | P | - | - | 0.23 | - | - | 3.5 | - | 0.05 | 46 | |
Chloropidae | Chloropidae-1 | Chl1 | P | - | - | - | - | - | - | - | 0.69 | 14 |
Chloropidae-2 | Chl2 | P | - | - | - | - | - | - | - | 0.49 | 10 | |
Drosophilidae | Drosophilidae-spp. | Dro | P-S | 22.53 | 8.36 | 0.24 | 0.04 | - | 0.13 | 0.55 | 0.34 | 445 |
Lonchaeidae | Neosilba sp. | Neo | P-S | 0.06 | 1.89 | - | 4.39 | 1.55 | 31.35 | - | - | 359 |
Muscidae | Potamia sp. | Pot | S | - | 8.83 | 0.03 | 0.36 | - | 0.13 | - | - | 67 |
Neriidae | Glyphidops sp. | Gly | S | - | - | 0.01 | - | - | - | - | - | 1 |
Psychodidae | Psychodidae-spp. | Psyc | P-S | 0.06 | - | 0.36 | - | - | 0.65 | - | 2.35 | 83 |
Richardiidae | Beebeomyia palposa | B.pal | P | - | - | - | - | - | - | - | 18.23 | 372 |
Beebeomyia sp3 | B.sp3 | P | - | - | 3.41 | 8.43 | - | 6.87 | - | - | 514 | |
Beebeomyia tuxtlaensis | B.tux | P | 75.16 | - | - | - | - | - | - | - | 1204 | |
Sepsisoma sp. | Sep | P | - | - | - | - | - | - | 99.45 | - | 543 | |
Scatopsidae | Psectrosciara sp. | Psec | P | 0.25 | 46.21 | - | 0.58 | 58.51 | 1.55 | - | - | 511 |
Sciaridae | Sciaridae-spp | Sci | M | 0.37 | - | 0.06 | - | - | 4.92 | - | 12.49 | 304 |
Stratiomyidae | Merosargus-1 | Mer1 | P | 0.19 | 8.04 | 0.16 | 0.71 | - | 3.37 | - | 5.68 | 225 |
Merosargus-2 | Mer2 | P | 0.31 | - | - | - | - | 16.84 | - | 1.27 | 162 | |
Merosargus-3 | Mer3 | P | 0.06 | - | 0.01 | 5.37 | - | 1.81 | - | - | 137 | |
Merosargus-4 | Mer4 | P | - | 14.04 | - | - | 1.86 | 1.04 | - | - | 102 | |
Syrphidae | Copestylum sp. | Cop | P-S | - | - | 0.01 | - | - | 0.52 | - | - | 5 |
Tipulidae | Rhipidia sp. | Rhi | P | 1 | - | 0.09 | - | - | 1.68 | - | 0.93 | 55 |
Symplecta sp. | Sym | P | - | 3.47 | 21.99 | 58.46 | - | 15.54 | - | 0.44 | 3216 | |
Eulophidae | Aprostocetus sp. | Apr | P | - | - | 73.17 | - | - | - | - | - | 5816 |
Pyralidae | Pyralidae | Pyr | P | - | - | 0.05 | - | - | - | - | - | 4 |
Insect species | 34 | 10 | 11 | 16 | 13 | 5 | 18 | 2 | 15 | 16,120 |
Network Metrics | BSLT | La Perla | Calería | Full Network |
---|---|---|---|---|
Aroid species | 7 | 5 | 3 | 8 |
Insect species | 25 | 22 | 14 | 34 |
Modularity (Q) | * 0.465 | * 0.504 | * 0.325 | * 0.523 |
Specialization (H2’) | * 0.875 | * 0.745 | * 0.571 | * 0.781 |
Insect niche overlap | 0.31 | 0.31 | 0.51 | 0.21 |
Network Metrics | Dioe | Phra | Phin | Phsa | Phse | Phtr | Rhwe | Xaro |
---|---|---|---|---|---|---|---|---|
Infructescences (n) | 73 | 18 | 9 | 38 | 8 | 41 | 14 | 17 |
Insect species | 10 | 16 | 11 | 13 | 5 | 18 | 2 | 15 |
Modularity (Q) | * 0.234 | * 0.356 | * 0.308 | * 0.391 | * 0.387 | * 0.544 | * 0.009 | * 0.428 |
Specialization (H2’) | * 0.391 | * 0.744 | * 0.344 | * 0.595 | * 0.68 | * 0.618 | * 0.577 | * 0.556 |
Insect niche overlap | 0.03 | 0.19 | 0.29 | 0.08 | 0.18 | 0.08 | 0.25 | 0.14 |
Host Plants | Number of Sampled Infructescences | Insect Species | Relative Frequency | Relative Abundance | IFA |
---|---|---|---|---|---|
D. oerstedii | 73 | B. tuxtlaensis | 0.932 | 0.752 | 70.01 |
Drosophilidae spp. | 0.562 | 0.225 | 12.66 | ||
X. robustum | 19 | Nitidulidae-1 | 0.789 | 0.541 | 42.72 |
B. palposa | 0.737 | 0.182 | 13.45 | ||
P. sagittifolium | 38 | Symplecta sp. | 0.447 | 0.585 | 26.15 |
Nitidulidae-1 | 0.342 | 0.202 | 6.89 | ||
P. inaequilaterum | 9 | Psectrosciara sp. | 1.00 | 0.462 | 46.21 |
Merosargus-4 | 0.667 | 0.14 | 9.36 | ||
P. seguine | 8 | Nitidulidae-1 | 0.875 | 0.285 | 24.92 |
Psectrosciara sp. | 0.25 | 0.585 | 14.63 | ||
P. radiatum | 18 | Aprostocetus sp. | 0.444 | 0.732 | 32.52 |
Symplecta sp. | 0.833 | 0.22 | 18.33 | ||
P. tripartitum | 41 | Merosargus-2 | 0.537 | 0.168 | 9.04 |
Neosilba sp. | 0.22 | 0.313 | 6.88 | ||
R. wendlandii | 9 | Sepsisoma sp. | 0.889 | 0.995 | 88.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amancio, G.; Aguirre-Jaimes, A.; Hernández-Ortiz, V.; Guevara, R.; Quesada, M. Vertical and Horizontal Trophic Networks in the Aroid-Infesting Insect Community of Los Tuxtlas Biosphere Reserve, Mexico. Insects 2019, 10, 252. https://doi.org/10.3390/insects10080252
Amancio G, Aguirre-Jaimes A, Hernández-Ortiz V, Guevara R, Quesada M. Vertical and Horizontal Trophic Networks in the Aroid-Infesting Insect Community of Los Tuxtlas Biosphere Reserve, Mexico. Insects. 2019; 10(8):252. https://doi.org/10.3390/insects10080252
Chicago/Turabian StyleAmancio, Guadalupe, Armando Aguirre-Jaimes, Vicente Hernández-Ortiz, Roger Guevara, and Mauricio Quesada. 2019. "Vertical and Horizontal Trophic Networks in the Aroid-Infesting Insect Community of Los Tuxtlas Biosphere Reserve, Mexico" Insects 10, no. 8: 252. https://doi.org/10.3390/insects10080252
APA StyleAmancio, G., Aguirre-Jaimes, A., Hernández-Ortiz, V., Guevara, R., & Quesada, M. (2019). Vertical and Horizontal Trophic Networks in the Aroid-Infesting Insect Community of Los Tuxtlas Biosphere Reserve, Mexico. Insects, 10(8), 252. https://doi.org/10.3390/insects10080252