Potential for Acanthoscelides obtectus to Adapt to New Hosts Seen in Laboratory Selection Experiments
Abstract
1. Introduction
2. Materials and Methods
2.1. Laboratory Populations
2.2. Experimental Design
2.3. Statistical Procedures
3. Results
4. Discussion
5. Conclusions
- Seed beetles (Acanthoscelides obtectus) have significant potential to colonize and maintain stable populations on several stored products from the Fabaceae plant family.
- Changes in the oviposition and decrease in reproductive output mark seed beetle populations when chickpea or mung bean seeds were offered as hosts during oviposition.
- Seed beetles selected on chickpea and mung bean seeds have changed life history strategies compared to common bean populations.
- Different legume products could have specific management protocols and ways to protect against seed beetles.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hagstrum, D.W.; Phillips, T.W.; Cuperus, G. Stored Product Protection; Kansas State University: Manhattan, KS, USA, 2012; pp. 1–351. [Google Scholar]
- FAO. The State of Food Security and Nutrition in the World 2018. Building Climate Resilience for Food Security and Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; pp. 1–181. [Google Scholar]
- Cardona, C. Insects and other invertebrate bean pests in Latin America. In Bean Production Problems in the Tropics; Schwartz, H.F., Pastor-Corrales, M., Eds.; CIAT: Cali, Colombia, 1989; pp. 505–570. [Google Scholar]
- Paul, U.V.; Lossini, J.S.; Edwards, P.J.; Hilbeck, A. Effectiveness of products from four locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (both Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. J. Stored Prod. Res. 2009, 45, 97–107. [Google Scholar] [CrossRef]
- Baier, A.H.; Webster, B.D. Control of Acanthoscelides obtectus Say (Coleoptera: Bruchidae) in Phaseolus vulgaris L. Seed stored on small farms—I. Evaluation of damage. J. Stored Prod. Res. 1992, 28, 295–299. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Flinn, P.W. Modern stored-product insect pest management. J. Plant Prot. Res. 2014, 54, 205–210. [Google Scholar] [CrossRef]
- Alvarez, N.; McKey, D.; Hossaert-McKey, M.; Born, C.; Mercier, L.; Betty, B. Ancient and recent evolutionary history of the bruchid beetle, Acanthoscelides obtectus Say, a cosmopolitan pest of beans. Mol. Ecol. 2005, 14, 1015–1024. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; van Loon, J.J.A.; Dicke, M. Insect-Plant Biology, 2nd ed.; Oxford University Press: Oxford, UK, 2005; pp. 1–448. [Google Scholar]
- Futuyma, D.J.; Agrawal, A.A. Macroevolution and the biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. USA 2009, 106, 18054–18061. [Google Scholar] [CrossRef]
- Forister, M.L.; Novotny, V.; Panorska, A.K.; Baje, L.; Basset, Y.; Butterill, P.T.; Cizek, L.; Coley, P.D.; Dem, F.; Diniz, I.R.; et al. The global distribution of diet breadth in insect herbivores. Proc. Natl. Acad. Sci. USA 2015, 112, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Bernays, E.A.; Graham, M. On the evolution of host specificity in phytophagous arthropods. Ecology 1988, 69, 886–892. [Google Scholar] [CrossRef]
- Matsubayashi, K.W.; Ohshima, I.; Nosil, P. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 2010, 134, 1–27. [Google Scholar] [CrossRef]
- Rundle, H.D.; Nosil, P. Ecological speciation. Ecol. Lett. 2005, 8, 336–352. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Subramanyam, B. Stored-Product Insect Resource; AACC International: St. Paul, MN, USA, 2009; pp. 1–505. [Google Scholar]
- Ali, J.G.; Agrawal, A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 2012, 17, 293–302. [Google Scholar] [CrossRef]
- Janz, N.; Nylin, S. The oscillation hypothesis of host-plant range and speciation. In Specialization, Speciation, and Radiation—The Evolutionary Biology of Herbivorous Insects; Tilmon, K.J., Ed.; University of California Press: Berkely, CA, USA, 2008; pp. 203–215. [Google Scholar]
- Nylin, S.; Slove, J.; Janz, N. Host plant utilization, host range oscillations and diversification in nymphalid butterflies: A phylogenetic investigation. Evolution 2014, 68, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Forister, M.L.; Dyer, L.A.; Singer, M.S.; Stireman, J.O.; Lill, J.T. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 2012, 93, 981–991. [Google Scholar] [CrossRef]
- Stearns, S.C. The Evolution of Life Histories; Oxford University Press: Oxford, UK, 1992; pp. 1–264. [Google Scholar]
- Dingle, H. The evolution of life histories. In Population Biology; Wöhrmann, K., Jain, S.K., Eds.; Springer: Berlin, Germany, 1990; pp. 267–289. [Google Scholar]
- Roff, D.A. Evolution of Life Histories. Theory and Analysis; Chapman & Hall: New York, NY, USA, 1992; pp. 1–548. [Google Scholar]
- Southwood, T.R.E. The construction, description and analysis of age-specific life-tables. In Ecological Methods with Particular Reference to the Study of Insect Populations; Southwood, T.R.E., Ed.; Chapman & Hall: London, UK, 1978; pp. 356–387. [Google Scholar]
- Tanga, C.M.; Ekesi, S.; Govender, P.; Mohamed, S.A. Effect of six host plant species on the life history and population growth parameters of Rastrococcus iceryoides (Hemiptera: Pseudococcidae). Fla. Entomol. 2013, 96, 1030–1041. [Google Scholar] [CrossRef]
- Hasan, F.; Ansari, M.S. Population growth of Pieris brassicae (L.) (Lepidoptera: Pieridae) on different cole crops under laboratory conditions. J. Pest Sci. 2011, 84, 179–186. [Google Scholar] [CrossRef]
- Fabres, A.; de Campos Macedo da Silva, J.; Fernandes, K.V.S.; Xavier-Filho, J.; Rezende, G.L.; Oliveira, A.E.A. Comparative performance of the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae) on different plant diets. J. Pest Sci. 2014, 87, 495–506. [Google Scholar] [CrossRef]
- Golizadeh, A.; Kamali, K.; Fathipour, Y.; Abbasipour, H. Life table of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) on five cultivated brassicaceous host plants. J. Agric. Sci. Technol. 2009, 11, 115–124. [Google Scholar]
- Fathi, S.A.A.; Fakhr-Taha, Z.; Razmjou, J. Life-history parameters of the Colorado potato beetle, Leptinotarsa decemlineata, on seven commercial cultivars of potato, Solanum tuberosum. J. Insect Sci. 2013, 13, 1–9. [Google Scholar] [CrossRef]
- Golizadeh, A.; Esmaeili, N.; Razmjou, J.; Rafiee-Dastjerdi, H. Comparative life tables of the potato tuberworm, Phthorimaea operculella, on leaves and tubers of different potato cultivars. J. Insect Sci. 2014, 14, 1–11. [Google Scholar] [CrossRef]
- Fathi, S.A.A. Population density and life-history parameters of the psyllid Bactericera nigricornis (Forster) on four commercial cultivars of potato. Crop Prot. 2011, 30, 844–848. [Google Scholar] [CrossRef]
- Golizadeh, A.; Ghavidel, S.; Razmjou, J.; Fathi, S.A.A.; Hassanpour, M. Comparative life table analysis of Tetranychus urticae Koch (Acari: Tetranychidae) on ten rose cultivars. Acarologia 2017, 57, 607–616. [Google Scholar]
- Mehrkhou, F.; Talebi, A.A.; Moharramipour, S. Demographic parameters of Spodoptera exigua (Lepidoptera: Noctuidae) on different soybean cultivars. Environ. Entomol. 2012, 41, 326–332. [Google Scholar] [CrossRef]
- Azadi Dana, E.; Sadeghi, A.; Maroufpoor, M.; Khanjani, M.; Babolhavaeji, H.; Ullah, M.S. Comparison of the life table and reproduction parameters of the Tetranychus urticae (Acari: Tetranychidea) on five strawberry varieties. Int. J. Acarol. 2018, 44, 1–8. [Google Scholar] [CrossRef]
- Gharekhani, G.H.; Salek-Ebrahimi, H. Life table parameters of Tuta absoluta (Lepidoptera : Gelechiidae) on different varieties of tomato. Ecol. Behav. 2014, 107, 1765–1770. [Google Scholar] [CrossRef]
- Wu, X.H.; Zhou, X.R.; Pang, B.P. Influence of five host plants of Aphis gossypii Glover on some population parameters of Hippodamia variegata (Goeze). J. Pest Sci. 2010, 83, 77–83. [Google Scholar] [CrossRef]
- Maia, A.; de, H.N.; Luiz, A.J.B.; Campanhola, C. Statistical inference on associated fertility life table parameters using Jackknife technique: Computational aspects. J. Econ. Entomol. 2000, 93, 511–518. [Google Scholar] [CrossRef]
- Maia, A.D.H.N.; Luiz, A.J.B. Programa SAS para análise de tabelas de vida e fertilidade de artrópodes: O método Jackknife. Comun. Técnico 2006, 33, 11. [Google Scholar]
- Labeyrie, V. The bean beetle (Acanthoscelides obtectus) and its host, the French bean (Phaseolus vulgaris): A two-way colonization story. In Biological Invasions in Europe and the Mediterranean Basin; di Castr, A., Hansen, A.J., Debussche, M., Eds.; Springer: Dordrecht, Germany, 1990; pp. 229–243. [Google Scholar]
- Delgado-Salinas, A.; Turley, T.; Richman, A.; Lavin, M. Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst. Bot. 1999, 24, 438. [Google Scholar] [CrossRef]
- Oliveira, M.R.C.; Corrêa, A.S.; de Souza, G.A.; Guedes, R.N.C.; de Oliveira, L.O. Mesoamerican origin and pre- and post-columbian expansions of the ranges of Acanthoscelides obtectus Say, a cosmopolitan insect pest of the common bean. PLoS ONE 2013, 8, e70039. [Google Scholar] [CrossRef]
- Alvarez, N.; Romero Napoles, J.; Anton, K.-W.; Benrey, B.; Hossaert-McKey, M. Phylogenetic relationships in the Neotropical bruchid genus Acanthoscelides (Bruchinae, Bruchidae, Coleoptera). J. Zool. Syst. Evol. Res. 2006, 44, 63–74. [Google Scholar] [CrossRef]
- Janković-Tomanić, M.; Šešlija Jovanović, D.; Savković, U.; Đorđević, M.; Stojković, B.; Lazarević, J. Host expansion modifies activity of phosphatases in a legume store pest Acanthoscelides obtectus (Say). J. Stored Prod. Res. 2015, 62, 32–35. [Google Scholar] [CrossRef]
- Haddi, K.; Viteri Jumbo, L.O.; Costa, M.S.; Santos, M.F.; Faroni, L.R.A.; Serrão, J.E.; Oliveira, E.E. Changes in the insecticide susceptibility and physiological trade-offs associated with a host change in the bean weevil Acanthoscelides obtectus. J. Pest Sci. 2017. [Google Scholar] [CrossRef]
- Arnqvist, G.; Stojković, B.; Rönn, J.L.; Immonen, E. The pace-of-life: A sex-specific link between metabolic rate and life history in bean beetles. Funct. Ecol. 2017, 2299–2309. [Google Scholar] [CrossRef]
- Stojković, B.; Šešlija Jovanović, D.; Tucić, N. Transgenerational effects on overall fitness: Influence of larval feeding experience on the oviposition behaviour of seed beetle Acanthoscelides obtectus (Say). Pol. J. Ecol. 2012, 60, 387–393. [Google Scholar]
- Stojković, B.; Šešlija Jovanović, D.; Tucić, B.; Tucić, N. Homosexual behaviour and its longevity cost in females and males of the seed beetle Acanthoscelides obtectus. Physiol. Entomol. 2010, 35, 308–316. [Google Scholar] [CrossRef]
- Stojković, B.; Savković, U.; Đorđević, M.; Tucić, N. Host-shift effects on mating behavior and incipient pre-mating isolation in seed beetle. Behav. Ecol. 2014, 25, 553–564. [Google Scholar] [CrossRef]
- Vuts, J.; Powers, S.J.; Caulfield, J.C.; Pickett, J.A.; Birkett, M.A. Multiple roles of a male-specific compound in the sexual behavior of the dried bean beetle, Acanthoscelides obtectus. J. Chem. Ecol. 2015, 41, 287–293. [Google Scholar] [CrossRef]
- Savković, U.; Đorđević, M.; Šešlija Jovanović, D.; Lazarević, J.; Tucić, N.; Stojković, B. Experimentally induced host-shift changes life-history strategy in a seed beetle. J. Evol. Biol. 2016, 29, 837–847. [Google Scholar] [CrossRef]
- Đorđević, M.; Stojković, B.; Savković, U.; Immonen, E.; Tucić, N.; Lazarević, J.; Arnqvist, G. Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles. Evolution 2017, 71, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Stojković, B.; Sayadi, A.; Đorđević, M.; Jović, J.; Savković, U.; Arnqvist, G. Divergent evolution of life span associated with mitochondrial DNA evolution. Evolution 2017, 71, 160–166. [Google Scholar] [CrossRef]
- Tucić, N.; Mikuljanac, S.; Stojkovi, O. Genetic variation and covariation among life history traits in populations of Acanthoscelides obtectus maintained on different hosts. Entomol. Exp. Appl. 1997, 85, 247–256. [Google Scholar] [CrossRef]
- Tucić, N.; Gliksman, I.; Šešlija, D.; Milanović, D.; Mikuljanac, S.; Stojković, O. Laboratory evolution of longevity in the bean weevil (Acanthoscelides obtectus). J. Evol. Biol. 1996, 9, 485–503. [Google Scholar] [CrossRef]
- Tucić, N.; Šešlija, D. Genetic architecture of differences in oviposition preference between ancestral and derived populations of the seed beetle Acanthoscelides obtectus. Heredity 2007, 98, 268–273. [Google Scholar] [CrossRef]
- Stojković, B.; Šešlija Jovanović, D.; Perovanović, J.; Tucić, N. Sexual activity and reproductive isolation between age-specific selected populations of seed beetle. Ethology 2011, 117, 812–821. [Google Scholar] [CrossRef]
- Agosta, S.J. On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos 2006, 114, 556–565. [Google Scholar] [CrossRef]
- Barrett, L.G.; Heil, M. Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends Plant Sci. 2012, 17, 282–292. [Google Scholar] [CrossRef]
- Schmale, I.; Wackers, F.L.; Cardona, C.; Dorn, S. Field infestation of Phaseolus vulgaris by Acanthoscelides obtectus (Coleoptera : Bruchidae), parasitoid abundance, and consequences for storage pest control. Environ. Entomol. 2002, 31, 859–863. [Google Scholar] [CrossRef]
- Paul, U.V.; Hilbeck, A.; Edwards, P.J. Pre-harvest infestation of beans (Phaseolus vulgaris L.) by Acanthoscelides obtectus Say (Coleoptera: Bruchidae) in relation to bean pod maturity and pod aperture. Int. J. Pest Manag. 2010, 56, 41–50. [Google Scholar] [CrossRef]
- Mason, L.J.; McDonough, M. Biology, behavior, and ecology of stored grain and legume insects. In Stored Product Protection; Hangstrum, D., Phillips, T., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 7–21. [Google Scholar]
- Boonekamp, P.; Dachbrodt-Saaydeh, S.; Sattin, M.; Hommel, B.; Jensen, J.E.; Barzman, M.; Ratnadass, A.; Sarah, J.-L.; Graf, B.; Bàrberi, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar]
- Parker, I.M.; Gilbert, G.S. The evolutionary ecology of novel plant-pathogen interactions. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 675–700. [Google Scholar] [CrossRef]
- Dweck, H.K.M.; Ebrahim, S.A.M.; Kromann, S.; Bown, D.; Hillbur, Y.; Sachse, S.; Hansson, B.S.; Stensmyr, M.C. Olfactory preference for egg laying on citrus substrates in Drosophila. Curr. Biol. 2013, 23, 2472–2480. [Google Scholar] [CrossRef] [PubMed]
- Šešlija, D.; Stojković, B.; Tucić, B.; Tucić, N. Egg-dumping behaviour in the seed beetle Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) selected for early and late reproduction. Eur. J. Entomol. 2009, 106, 557–563. [Google Scholar] [CrossRef]
- Thiery, D. Hardness of some Fabaceous seed coats in relation to larval penetration by Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J. Stored Prod. Res. 1984, 20, 177–181. [Google Scholar] [CrossRef]
- Fraczek, J.; Hebda, T.; Slipek, Z.; Kurpaska, S. Effect of seed coat thickness on seed hardness. Can. Biosyst. Eng. 2005, 47, 41–45. [Google Scholar]
- Macedo, M.L.R.; Freire, M.; das, G.M.; da Silva, M.B.R.; Coelho, L.C.B.B. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 146, 486–498. [Google Scholar] [CrossRef]
- Huesing, J.E.; Shade, R.E.; Chrispeels, M.J.; Murdock, L.L. α-amylase inhibitor, not phytohemagglutinin, explains resistance of common bean seeds to cowpea weevil. Plant Physiol. 2008, 96, 993–996. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stevenson, P.C.; Aslam, S.N. The chemistry of the genus Cicer L. Stud. Nat. Prod. Chem. 2006, 33, 905–956. [Google Scholar]
- Murugesan, S.; War, A.R.; Boddepalli, V.N.; Srinivasan, R.; Nair, R.M. Mechanism of Resistance in Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] to Bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). Front. Plant Sci. 2017, 8, 1–11. [Google Scholar]
- Messina, F.J.; Jones, J.C. Inheritance of traits mediating a major host shift by a seed beetle, Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). Ann. Entomol. Soc. Am. 2011, 104, 808–815. [Google Scholar] [CrossRef]
- Messina, F.J.; Lish, A.M.; Gompert, Z. Variable responses to novel hosts by populations of the seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). Environ. Entomol. 2018, 47, 1194–1202. [Google Scholar] [CrossRef]
A | Egg-to-Adult Viability | Developmental Time | Body Mass | |||
F Value (df) | p | F Value (df) | p | F Value (df) | p | |
Selection regime (S) | 15.80 (2, 25.43) | <0.0001 | 36.63 (2, 23.174) | <0.0001 | 13.41 (2, 21.374) | 0.0002 |
Rearing host (R) | 11.53 (2, 24.479) | 0.0003 | 25.25 (2, 22.921) | <0.0001 | 3.19 (2, 21.483) | 0.0612 |
S × R | 27.98 (2, 22.813) | <0.0001 | 2.99 (2, 22.571) | 0.0704 | 0.27 (2, 21.236) | 0.7672 |
Populations (S × R) | 1.09(21, 109) | 0.3713 | 10.76 (21, 6662) | <0.0001 | 12.68 (21, 2647) | <0.0001 |
B | Life Span | Early Fecundity | Total Fecundity | |||
F Value (df) | p | F Value (df) | p | F Value (df) | p | |
Selection regime (S) | 8.14 (2, 22.646) | 0.0022 | 5.46 (2, 21954) | 0.0119 | 23.48 (2, 23.707) | <0.0001 |
Rearing host (R) | 5.85 (2, 22879) | 0.0088 | 15.83 (2, 22.086) | <0.0001 | 10.67 (2, 24.104) | 0.0005 |
Offered host (O) | 249.83 (2, 2637) | <0.0001 | 217.79 (2, 2584) | <0.0001 | 148.37 (2, 2642) | <0.0001 |
S × R | 0.29 (2, 22.01) | 0.7482 | 0.46 (2, 21.587) | 0.6386 | 0.13 (2, 22.658) | 0.8767 |
S × O | 25.59 (2, 2637) | <0.0001 | 29.29 (2, 2584) | <0.0001 | 17.65 (2, 2642) | <0.0001 |
R × O | 5.02 (2, 2637) | 0.0066 | 6.12 (2, 2584) | 0.0022 | 5.03 (2, 2642) | 0.0066 |
S × R × O | 2.31 (2, 2637) | 0.0993 | 1.27 (2, 2584) | 0.2813 | 2.33 (2, 2642) | 0.0974 |
Populations (S × R) | 5.75 (21, 2637) | <0.0001 | 9.77 (21, 2584) | <0.0001 | 3.53 (21, 2642) | <0.0001 |
Experimental Group | Population Parameters | ||||
---|---|---|---|---|---|
True Calculation Jackknife Estimate 95 % CL | |||||
R0 | rm | T | D | λ | |
PpP | 21.2539 | 0.10251 | 29.8156 | 6.76143 | 1.10795 |
21.2539 | 0.10252 | 29.8153 | 6.76076 | 1.10796 | |
20.4982–22.0095 | 0.10114–0.10390 | 29.6675–29.9632 | 6.66979–6.85172 | 1.10643–1.10949 | |
PpC | 12.1634 | 0.07934 | 31.4897 | 8.73627 | 1.08257 |
12.1634 | 0.07937 | 31.4855 | 8.72965 | 1.08260 | |
11.2084–13.1185 | 0.07624–0.08250 | 31.0955–31.8754 | 8.38442–9.07489 | 1.07921–1.08599 | |
PcC | 14.5630 | 0.08560 | 31.2915 | 8.09774 | 1.08937 |
14.5667 | 0.08562 | 31.2915 | 8.09381 | 1.08939 | |
13.6109–15.5225 | 0.08301–0.08823 | 30.9410–31.6419 | 7.84689–8.34074 | 1.08655–1.09223 | |
CcC | 19.5765 | 0.095238 | 31.2306 | 7.27808 | 1.09992 |
19.5765 | 0.09525 | 31.2304 | 7.27625 | 1.09993 | |
18.4509–20.7022 | 0.09326–0.09725 | 31.0281–31.4326 | 7.12380–7.42871 | 1.09774–1.10213 | |
PpM | 13.0655 | 0.081276 | 31.6204 | 8.52833 | 1.08467 |
13.0655 | 0.08131 | 31.6177 | 8.52206 | 1.08470 | |
11.9754–14.1557 | 0.07821–0.08440 | 31.2430–31.9925 | 8.19685–8.84726 | 1.08134–1.08806 | |
PmM | 12.5430 | 0.085195 | 29.6868 | 8.13602 | 1.08893 |
12.5430 | 0.08525 | 29.6832 | 8.12493 | 1.08899 | |
11.1002–13.9857 | 0.08092–0.08959 | 29.3225–30.0440 | 7.71044–8.53942 | 1.08427–1.09371 | |
MmM | 8.85831 | 0.074272 | 29.3699 | 9.33258 | 1.07710 |
8.8583 | 0.07430 | 29.3687 | 9.32418 | 1.07713 | |
8.0947–9.6219 | 0.07113–0.07748 | 29.0509–29.6865 | 8.92493–9.72344 | 1.07371–1.08055 | |
CcP | 24.1158 | 0.10263 | 31.0145 | 6.75416 | 1.10808 |
24.1158 | 0.10263 | 31.0145 | 6.75328 | 1.10808 | |
23.0292–25.2024 | 0.10111–0.10416 | 30.8560–31.1731 | 6.65308–6.85348 | 1.10640–1.10977 | |
CpP | 12.4583 | 0.081803 | 30.8348 | 8.47333 | 1.08524 |
12.4598 | 0.08182 | 30.8353 | 8.47052 | 1.08526 | |
11.7474–13.1723 | 0.07983–0.08381 | 30.6382–31.0325 | 8.26446–8.67658 | 1.08310–1.08742 | |
MmP | 10.5369 | 0.081828 | 28.7783 | 8.47073 | 1.08527 |
10.5369 | 0.08185 | 28.7786 | 8.46681 | 1.08529 | |
9.8103–11.2635 | 0.07938–0.08432 | 28.5039–29.0533 | 8.21118–8.72243 | 1.08261–1.08797 | |
MpP | 13.9854 | 0.090364 | 29.1933 | 7.67064 | 1.09457 |
13.9854 | 0.09037 | 29.1936 | 7.66884 | 1.09458 | |
13.2307–14.7401 | 0.08843–0.09231 | 28.9401–29.4472 | 7.50415–7.83354 | 1.09246–1.09671 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savković, U.; Đorđević, M.; Stojković, B. Potential for Acanthoscelides obtectus to Adapt to New Hosts Seen in Laboratory Selection Experiments. Insects 2019, 10, 153. https://doi.org/10.3390/insects10060153
Savković U, Đorđević M, Stojković B. Potential for Acanthoscelides obtectus to Adapt to New Hosts Seen in Laboratory Selection Experiments. Insects. 2019; 10(6):153. https://doi.org/10.3390/insects10060153
Chicago/Turabian StyleSavković, Uroš, Mirko Đorđević, and Biljana Stojković. 2019. "Potential for Acanthoscelides obtectus to Adapt to New Hosts Seen in Laboratory Selection Experiments" Insects 10, no. 6: 153. https://doi.org/10.3390/insects10060153
APA StyleSavković, U., Đorđević, M., & Stojković, B. (2019). Potential for Acanthoscelides obtectus to Adapt to New Hosts Seen in Laboratory Selection Experiments. Insects, 10(6), 153. https://doi.org/10.3390/insects10060153