Identification and Expression Profiling of Peripheral Olfactory Genes in the Parasitoid Wasp Aphidius ervi (Hymenoptera: Braconidae) Reared on Different Aphid Hosts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parasitoid Collection and Rearing
2.2. Aphidius ervi RNASeq, Transcriptome Assembly, and Annotation
2.3. Annotation of Chemosensory Genes and Differential Expression Analysis
2.4. Reciprocal Transplant Experiments
2.5. RNA Extraction and cDNA Synthesis
2.6. qRT-PCR Expression Analysis of OBPs and ORs
3. Results
3.1. Identification of Putative Chemosensory Genes in the Reference A. ervi Transcriptome and in Silico Analysis of Expression Levels
3.2. qPCR Expression Levels of OBPs and ORs Genes in Parasitoids Reared on Natal and Non-Natal Hosts
3.3. qPCR Expression Levels of OBPs and ORs in Parasitoids Reared on Different Natal Hosts but Transplanted on the Same Aphid Host
3.4. OBPs and ORs Expression Changes between Field and Caged Parasitoids Reared on Natal and Non-Natal Hosts
4. Discussion
4.1. Annotation and in Silico Expression Analysis of Chemosensory Genes in A. ervi
4.2. Putative Role of Odorant-Binding Proteins in Parasitoid Wasps
4.3. Putative Role of Odorant Receptors in Parasitoid Wasps during the Recognition of Their Aphid Hosts
4.4. Expression Changes in OBPs and ORs between Field and Caged A. ervi Populations: Implications for Loss of Host Fidelity
4.5. Implications for Biological Control and Final Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- Godfray, H.C.J. Parasitoids: Behavioral and Evolutionary Ecology; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Le Ralec, A.; Anselme, C.; Outreman, Y.; Poirié, M.; Van Baaren, J.; Le Lann, C.C.; Van Alphen, J.J.M. Evolutionary ecology of the interactions between aphids and their parasitoids. C. R. Biol. 2010, 333, 554–565. [Google Scholar] [CrossRef]
- Simpson, M.; Gurr, G.M.; Simmons, A.T.; Wratten, S.D.; James, D.G.; Leeson, G.; Nicol, H.I.; Orre-Gordon, G.U.S. Attract and reward: Combining chemical ecology and habitat manipulation to enhance biological control in field crops. J. Appl. Ecol. 2011, 48, 580–590. [Google Scholar] [CrossRef]
- Starý, P. The fate of released parasitoids (Hymenoptera: Braconidae, Aphidiinae) for biological control of aphids in Chile. Bull. Entomol. Res. 1993, 83, 633–639. [Google Scholar] [CrossRef]
- Henry, L.M.; May, N.; Acheampong, S.; Gillespie, D.R.; Roitberg, B.D. Host-adapted parasitoids in biological control: Does source matter? Ecol. Appl. 2010, 20, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stilmant, D.; Bellinghen, C.; Hance, T.; Boivin, G. Host specialization in habitat specialists and generalists. Oecologia 2008, 156, 905–912. [Google Scholar] [CrossRef]
- Daza-Bustamante, P.; Fuentes-Contreras, E.; Niemeyer, H.M. Acceptance and suitability of Acyrthosiphon pisum and Sitobion avenae as hosts of the aphid parasitoid Aphidius ervi (Hymenoptera: Braconidae). Eur. J. Entomol. 2003, 100, 49–53. [Google Scholar] [CrossRef]
- Gerding, M.; Figueroa, A. Progeny reduction of Sitobion avenae Fab (Homoptera: Aphididae) by Aphidius ervi (Hymenoptera: Aphidiidae). Agric. Técnica 1989, 49, 50–53. [Google Scholar]
- Pan, M.Z.; Liu, T.X. Suitability of three aphid species for Aphidius gifuensis (Hymenoptera: Braconidae): Parasitoid performance varies with hosts of origin. Biol. Control 2014, 69, 90–96. [Google Scholar] [CrossRef]
- Nouhuys, S.; Via, S. Natural selection and genetic differentiation of behaviour between parasitoids from wild and cultivated habitats. Heredity 1999, 83 Pt 2, 127–137. [Google Scholar] [CrossRef]
- Jones, T.S.; Bilton, A.R.; Mak, L.; Sait, S.M. Host switching in a generalist parasitoid: Contrasting transient and transgenerational costs associated with novel and original host species. Ecol. Evol. 2015, 5, 459–465. [Google Scholar] [CrossRef]
- Jones, T.S.; Godfray, H.C.J.; van Veen, F.J.F. Resource Competition and Shared Natural Enemies in Experimental Insect Communities. Oecologia 2009, 159, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.M.; Roitberg, B.D.; Gillespie, D.R. Host-range evolution in Aphidius parasitoids: Fidelity, virulence and fitness trade-offs on an ancestral host. Evolution 2008, 62, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, B.W. Maternal Effects in the Soft Scale Insect Saisetia coffeae (Hemiptera: Coccidae). Evolution 2004, 58, 2452–2461. [Google Scholar] [CrossRef] [PubMed]
- Hoedjes, K.M.; Kruidhof, H.M.; Huigens, M.E.; Dicke, M.; Vet, L.E.M.; Smid, H.M. Natural variation in learning rate and memory dynamics in parasitoid wasps: Opportunities for converging ecology and neuroscience. Proc. Biol. Sci. 2011, 278, 889–897. [Google Scholar] [CrossRef]
- Davis, J.M.; Stamps, J.A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 2004, 19, 411–416. [Google Scholar] [CrossRef]
- Gols, R.; Veenemans, C.; Potting, R.P.J.; Smid, H.M.; Dicke, M.; Harvey, J. a.; Bukovinszky, T. Variation in the specificity of plant volatiles and their use by a specialist and a generalist parasitoid. Anim. Behav. 2012, 83, 1231–1242. [Google Scholar] [CrossRef]
- Suh, E.; Bohbot, J.D.; Zwiebel, L.J. Peripheral olfactory signaling in insects. Curr. Opin. Insect Sci. 2014, 6, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Hilker, M.; McNeil, J. Chemical and behavioral ecology in insect parasitoids: How to behave optimally in a complex odorous environment. In Behavioral Ecology of Insect Parasitoids; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2008; pp. 92–112. ISBN 9780470696200. [Google Scholar]
- Claudianos, C.; Lim, J.; Young, M.; Yan, S.; Cristino, A.S.; Newcomb, R.D.; Gunasekaran, N.; Reinhard, J. Odor memories regulate olfactory receptor expression in the sensory periphery. Eur. J. Neurosci. 2014, 39, 1642–1654. [Google Scholar] [CrossRef]
- Linz, J.; Baschwitz, A.; Strutz, A.; Dweck, H.K.M.; Sachse, S.; Hansson, B.S.; Stensmyr, M.C. Host plant-driven sensory specialization in Drosophila erecta. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130626. [Google Scholar] [CrossRef]
- Rehman, A.; Powell, W. Host selection behaviour of aphid parasitoids (Aphidiidae: Hymenoptera). J. Plant Breed. Crop Sci. 2010, 2, 299–311. [Google Scholar]
- Wajnberg, E.; Colazza, S. Chemical Ecology of Insect Parasitoids; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; ISBN 9781118409589. [Google Scholar]
- Wang, Q.; Gu, H.; Dorn, S. Selection on olfactory response to semiochemicals from a plant-host complex in a parasitic wasp. Heredity 2003, 91, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Gadenne, C.; Barrozo, R.B.; Anton, S. Plasticity in insect olfaction: To smell or not to smell? Annu. Rev. Entomol. 2016, 61, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Arya, G.H.; Magwire, M.M.; Huang, W.; Serrano-Negron, Y.L.; Mackay, T.F.C.; Anholt, R.R.H. The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem. Senses 2015, 40, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Stone, E.A.; Mackay, T.F.C.; Anholt, R.R.H. Plasticity of the chemoreceptor repertoire in Drosophila melanogaster. PLoS Genet. 2009, 5, e1000681. [Google Scholar] [CrossRef]
- Glaser, N.; Gallot, A.; Legeai, F.; Harry, M.; Kaiser, L.; Le Ru, B.; Calatayud, P.A.; Jacquin-Joly, E. Differential expression of the chemosensory transcriptome in two populations of the stemborer Sesamia nonagrioides. Insect Biochem. Mol. Biol. 2015, 65, 28–34. [Google Scholar] [CrossRef]
- Smith, G.; Fang, Y.; Liu, X.; Kenny, J.; Cossins, A.R.; de Oliveira, C.C.; Etges, W.J.; Ritchie, M.G. Transcriptome-wide expression variation associated with environmental plasticity and mating success in cactophilic Drosophila mojavensis. Evolution 2013, 67, 1950–1963. [Google Scholar] [CrossRef]
- Zepeda-Paulo, F.A.; Ortiz-Martínez, S.A.; Figueroa, C.C.; Lavandero, B. Adaptive evolution of a generalist parasitoid: Implications for the effectiveness of biological control agents. Evol. Appl. 2013, 6, 983–999. [Google Scholar] [CrossRef]
- Sepúlveda, D.A.; Zepeda-Paulo, F.; Ramírez, C.C.; Lavandero, B.; Figueroa, C.C. Loss of host fidelity in highly inbred populations of the parasitoid wasp Aphidius ervi (Hymenoptera: Braconidae). J. Pest Sci. 2017, 90, 649–658. [Google Scholar]
- Starý, P. The Aphidiidae of Chile (Hymenoptera, Ichneumonoidea, Aphidiidae). Dtsch. Entomol. Z. 1995, 42, 113–138. [Google Scholar] [CrossRef]
- Ballesteros, G.I.; Gadau, J.; Legeai, F.; Gonzalez-Gonzalez, A.; Lavandero, B.; Simon, J.-C.; Figueroa, C.C. Expression differences in Aphidius ervi (Hymenoptera: Braconidae) females reared on different aphid host species. PeerJ 2017, 5, e3640. [Google Scholar] [CrossRef]
- Dennis, A.B.; Patel, V.; Oliver, K.M.; Vorburger, C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 2017, 71, 2599–2671. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, D.A.; Zepeda-Paulo, F.; Ramírez, C.C.; Lavandero, B.; Figueroa, C.C. Diversity, frequency, and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests. Insect Sci. 2017, 24, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.M.; Martinez, A.J. How resident microbes modulate ecologically-important traits of insects. Curr. Opin. Insect Sci. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vorburger, C. The evolutionary ecology of symbiont-conferred resistance to parasitoids in aphids. Insect Sci. 2014, 21, 251–264. [Google Scholar] [PubMed]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Fan, J.; Francis, F.; Liu, Y.; Chen, J.L.; Cheng, D.F. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet. Mol. Res. 2011, 10, 3056–3069. [Google Scholar] [CrossRef]
- Swarup, S.; Williams, T.I.; Anholt, R.R.H. Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav. 2011, 10, 648–657. [Google Scholar] [CrossRef]
- Dworkin, I.; Jones, C.D. Genetic Changes Accompanying the Evolution of Host Specialization in Drosophila sechellia. Genetics 2009, 181, 721–736. [Google Scholar] [CrossRef]
- Saberi, M.; Seyed-allaei, H. Odorant receptors of Drosophila are sensitive to the molecular volume of odorants. Sci. Rep. 2016, 6, 25103. [Google Scholar] [CrossRef] [PubMed]
- Münch, D.; Galizia, C.G. DoOR 2.0—Comprehensive Mapping of Drosophila melanogaster Odorant Responses. Sci. Rep. 2016, 6, 21841. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhou, X.; Gu, F.; Zhong, G.; Yi, X. Olfactory Plasticity: Variation in the Expression of Chemosensory Receptors in Bactrocera dorsalis in Different Physiological States. Front. Physiol. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Leal, W.S. Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annu. Rev. Entomol. 2013, 58, 120928130709004. [Google Scholar] [CrossRef]
- Wang, R.; Li, F.; Zhang, W.; Zhang, X.; Qu, C.; Tetreau, G.; Sun, L.; Luo, C.; Zhou, J. Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome. PLoS ONE 2017, 12, e0171739. [Google Scholar] [CrossRef]
- Colinet, D.; Anselme, C.; Deleury, E.; Mancini, D.; Poulain, J.; Azéma-Dossat, C.; Belghazi, M.; Tares, S.; Pennacchio, F.; Poirié, M.; et al. Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum. BMC Genom. 2014, 15, 342. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Takemoto, H.; Kainoh, Y.; Takabayashi, J. Learning of plant volatiles by aphid parasitoids: Timing to learn. J. Plant Interact. 2011, 6, 137–140. [Google Scholar] [CrossRef]
- Powell, W.; Wright, A.F. The abilities of the aphid parasitoids Aphidius ervi Haliday and A. rhopalosiphi De Stefani Perez (Hymenoptera: Braconidae) to transfer between different known host species and the implications for the use of alternative hosts in pest control strategies. Bull. Entomol. Res. 1988, 78, 683–693. [Google Scholar] [CrossRef]
- Kopp, A.; Barmina, O.; Hamilton, A.M.; Higgins, L.; McIntyre, L.M.; Jones, C.D. Evolution of Gene Expression in the Drosophila Olfactory System. Mol. Biol. Evol. 2008, 25, 1081–1092. [Google Scholar] [CrossRef]
- Berens, A.J.; Hunt, J.H.; Toth, A.L. Nourishment level affects caste-related gene expression in Polistes wasps. BMC Genom. 2015, 16, 235. [Google Scholar] [CrossRef] [PubMed]
- Schrader, L.; Simola, D.F.; Heinze, J.; Oettler, J. Sphingolipids, transcription factors, and conserved toolkit genes: Developmental plasticity in the ant cardiocondyla obscurior. Mol. Biol. Evol. 2015, 32, 1474–1486. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.-W.; Tian, H.-G.; Liu, F.-H.; Liu, X.; Jing, X.-F.; Liu, T.-X. Identification and expression analysis of chemosensory receptor genes in an aphid endoparasitoid Aphidius gifuensis. Sci. Rep. 2017, 7, 3939. [Google Scholar] [CrossRef]
- Pareja, M.; Mohib, A.; Birkett, M.A.; Dufour, S.; Glinwood, R.T. Multivariate statistics coupled to generalized linear models reveal complex use of chemical cues by a parasitoid. Anim. Behav. 2009, 77, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Villagra, C.A.; Pennacchio, F.; Niemeyer, H.M. The effect of larval and early adult experience on behavioural plasticity of the aphid parasitoid Aphidius ervi (Hymenoptera, Braconidae, Aphidiinae). Naturwissenschaften 2007, 94, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Tunstall, N.E.; Warr, C.G. Chemical communication in insects: The peripheral odour coding system of drosophila melanogaster. Adv. Exp. Med. Biol. 2012, 739, 59–77. [Google Scholar] [PubMed]
- Larter, N.K.; Sun, J.S.; Carlson, J.R. Organization and function of Drosophila odorant binding proteins. Elife 2016, 5, e20242. [Google Scholar] [CrossRef]
- Li, K.; Wang, S.; Zhang, K.; Ren, L.; Ali, A.; Zhang, Y.; Zhou, J.; Guo, Y. Odorant Binding Characteristics of Three Recombinant Odorant Binding Proteins in Microplitis mediator (Hymenoptera: Braconidae). J. Chem. Ecol. 2014, 40, 541–548. [Google Scholar] [CrossRef]
- Gutiérrez-Ibáñez, C.; Villagra, C.A.; Niemeyer, H.M. Pre-pupation behaviour of the aphid parasitoid Aphidius ervi (Haliday) and its consequences for pre-imaginal learning. Naturwissenschaften 2007, 94, 595–600. [Google Scholar]
- Poppy, G.M.; Powell, W.; Pennacchio, F. Aphid parasitoid responses to semiochemicals—Genetic, conditioned or learnt? Entomophaga 1997, 42, 193–199. [Google Scholar] [CrossRef]
- Cui, L.-L.; Francis, F.; Heuskin, S.; Lognay, G.; Liu, Y.-J.; Dong, J.; Chen, J.-L.; Song, X.-M.; Liu, Y. The functional significance of E-β-Farnesene: Does it influence the populations of aphid natural enemies in the fields? Biol. Control 2012, 60, 108–112. [Google Scholar] [CrossRef]
- Francis, F.; Vandermoten, S.; Verheggen, F.; Lognay, G.; Haubruge, E. Is the E-b-farnesene the only volatile terpenoid in aphids? Jen 2005, 129, 6–11. [Google Scholar]
- Howard, R.W.; Blomquist, G.J. Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 2004, 50, 371–393. [Google Scholar] [CrossRef]
- Chen, N.; Fan, Y.; Li, X.; Liu, T. Dynamic cuticular hydrocarbon profiles of the pea aphid, Acyrthosiphon pisum. In Proceedings of the 5th International Symposium on Insect Physiology, Biochemistry and Molecular Biology, Guangzhou, China, 15–18 June 2015; pp. 3–4. [Google Scholar]
- Lockey, K.H. Lipids of the insect cuticle: Origin, composition and function. Comp. Biochem. Physiol. Part B Biochem. 1988, 89, 595–645. [Google Scholar] [CrossRef]
- Muratori, F.; Hance, T.; Lognay, G.C. Chemical characterization of cuticular extracts of Sitobion avenae (Hemiptera: Aphididae). Ann. Entomol. Soc. Am. 2008, 101, 598–603. [Google Scholar] [CrossRef]
- Hatano, E.; Kunert, G.; Michaud, J.P.; Weisser, W.W. Chemical cues mediating aphid location by natural enemies. Eur. J. Entomol. 2008, 105, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Muratori, F.; Le Ralec, A.; Lognay, G.; Hance, T. Epicuticular factors involved in host recognition for the aphid parasitoid Aphidius rhopalosiphi. J. Chem. Ecol. 2006, 32, 579–593. [Google Scholar] [CrossRef]
- Brey, P.T.; Ohayon, H.; Lesourd, M.; Castex, H.; Roucache, J.; Latge, J.P. Ultrastructure and chemical composition of the outer layers of the cuticle of the pea aphid Acyrthosiphon pisum (Harris). Comp. Biochem. Physiol. Part A Physiol. 1985, 82, 401–411. [Google Scholar] [CrossRef]
- Le Ralec, A.; Curty, C.; Wajnberg, É. Inter-specific variation in the reactive distance of different aphid-parasitoid associations: Analysis from automatic tracking of the walking path. Appl. Entomol. Zool. 2005, 40, 413–420. [Google Scholar] [CrossRef]
- Pask, G.M.; Slone, J.D.; Millar, J.G.; Das, P.; Moreira, J.A.; Zhou, X.; Bello, J.; Berger, S.L.; Bonasio, R.; Desplan, C.; et al. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Guo, J.; Li, J.; Wang, J.; Wen, M.; Zhao, H.; Ren, B. Molecular basis of peripheral olfactory sensing during oviposition in the behavior of the parasitic wasp Anastatus japonicus. Insect Biochem. Mol. Biol. 2017, 89, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Leroy, P.D.; Sabri, A.; Heuskin, S.; Thonart, P.; Lognay, G.; Verheggen, F.J.; Francis, F.; Brostaux, Y.; Felton, G.W.; Haubruge, E. Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat. Commun. 2011, 2, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.J.; Poppy, G.M.; Powell, W.; Pickett, J.A.; Wadhams, L.J.; Woodcock, C.M. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 1998, 24, 1355–1368. [Google Scholar] [CrossRef]
- Sasso, R.; Iodice, L.; Woodcock, C.M.; Pickett, J.A.; Guerrieri, E. Electrophysiological and behavioural responses of Aphidius ervi (Hymenoptera: Braconidae) to tomato plant volatiles. Chemoecology 2009, 19, 195–201. [Google Scholar] [CrossRef]
- Frati, F.; Cusumano, A.; Conti, E.; Colazza, S.; Peri, E.; Guarino, S.; Martorana, L.; Romani, R.; Salerno, G. Foraging behaviour of an egg parasitoid exploiting plant volatiles induced by pentatomids: The role of adaxial and abaxial leaf surfaces. PeerJ 2017, 5, e3326. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Qian, K.; Du, Y. Synthetic pheromones and plant volatiles alter the expression of chemosensory genes in Spodoptera exigua. Sci. Rep. 2015, 5, 17320. [Google Scholar] [CrossRef]
- Nielsen, M.C.; Worner, S.P.; Rostás, M.; Chapman, R.B.; Butler, R.C.; de Kogel, W.J.; Teulon, D.A.J. Olfactory responses of western flower thrips (Frankliniella occidentalis) populations to a non-pheromone lure. Entomol. Exp. Appl. 2015, 156, 254–262. [Google Scholar] [CrossRef]
- Webster, B.; Qvarfordt, E.; Olsson, U.; Glinwood, R. Different roles for innate and learnt behavioral responses to odors in insect host location. Behav. Ecol. 2013, 24, 366–372. [Google Scholar] [CrossRef]
- Daza-Bustamante, P.; Fuentes-Contreras, E.; Rodriguez, L.C.; Figueroa, C.C.; Niemeyer, H.M. Behavioural differences between Aphidius ervi populations from two tritrophic systems are due to phenotypic plasticity. Entomol. Exp. Appl. 2002, 104, 321–328. [Google Scholar] [CrossRef]
- Dicke, M.; Schütte, C.; Dijkman, H. Change in behavioral response to herbivore-induced plant volatiles in a predatory mite population. J. Chem. Ecol. 2000, 26, 1497–1514. [Google Scholar] [CrossRef]
- Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 2006, 63, 1658–1676. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.J. Odorant-Binding Proteins in Insects, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; Volume 83, ISBN 0083-6729. [Google Scholar]
- Olsson, S.B.; Linn, C.E.; Roelofs, W.L. The chemosensory basis for behavioral divergence involved in sympatric host shifts II: Olfactory receptor neuron sensitivity and temporal firing pattern to individual key host volatiles. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2006, 192, 289–300. [Google Scholar] [CrossRef] [PubMed]
Transcript ID | Sequence Description | Higher in | Log2-Fold Change | FDR-Adjusted p Value |
---|---|---|---|---|
TR35948|c0_g1_i1 | general odorant-binding protein 56a-like | Ae-AP | 1.58 | 0.17 |
TR39104|c3_g3_i1 | general odorant-binding protein 69a | Ae-AP * | 3.36 | 0.00023 |
TR42476|c0_g1_i1 | general odorant-binding protein 69a-like | Ae-AP | 1.91 | 0.07 |
TR35957|c0_g1_i3 | general odorant-binding protein 71 isoform X1 | Ae-AP | 2.27 | 0.07 |
TR10701|c0_g1_i1 | general odorant-binding protein 83a-like | Ae-AP * | 4.40 | 0.00038 |
TR12460|c0_g3_i1 | odorant receptor 10a-like | Ae-AP | 3.30 | 0.03 |
TR20850|c0_g1_i1 | odorant receptor 13a-like | Ae-AP | 1.64 | 0.22 |
TR22319|c1_g1_i1 | odorant receptor 13a-like | Ae-AP | 6.55 | 0.14 |
TR2742|c0_g1_i2 | odorant receptor 13a-like | Ae-AP * | 4.13 | 0.0023 |
TR29575|c0_g1_i1 | odorant receptor 13a-like | Ae-AP | 0.97 | 0.67 |
TR30006|c0_g1_i1 | odorant receptor 13a-like | Ae-AP | 2.15 | 0.29 |
TR30197|c0_g2_i1 | odorant receptor 13a-like | Ae-AP | 3.18 | 0.04 |
TR39962|c0_g1_i1 | odorant receptor 13a-like | Ae-AP | 3.29 | 0.08 |
TR41237|c0_g2_i1 | odorant receptor 13a-like | Ae-AP | 1.66 | 0.27 |
TR48968|c0_g1_i2 | odorant receptor 13a-like | Ae-AP * | 3.24 | 0.0034 |
TR52641|c0_g1_i2 | odorant receptor 13a-like | Ae-AP | 1.19 | 0.43 |
TR9036|c4_g1_i7 | odorant receptor 13a-like | Ae-AP | 1.61 | 0.50 |
TR7457|c0_g1_i1 | odorant receptor 13a-like isoform X1 | Ae-AP * | 8.37 | 0.00032 |
TR41237|c0_g1_i1 | odorant receptor 13a-like isoform X2 | Ae-AP | 0.17 | 0.92 |
TR52641|c0_g1_i3 | odorant receptor 13a-like isoform X2 | Ae-AP * | 3.58 | 0.0037 |
TR19916|c0_g1_i3 | odorant receptor 13a-like, partial | Ae-AP | 0.30 | 0.72 |
TR54924|c0_g1_i1 | odorant receptor 22c-like | Ae-AP | 1.30 | 0.50 |
TR41029|c0_g1_i1 | odorant receptor 24a-like | Ae-AP | 1.03 | 0.57 |
TR52071|c2_g1_i1 | odorant receptor 2a-like | Ae-AP | 0.83 | 0.67 |
TR8156|c0_g1_i2 | odorant receptor 2a-like | Ae-AP | 2.06 | 0.15 |
TR52486|c1_g1_i1 | odorant receptor 30a-like | Ae-AP | 1.56 | 0.48 |
TR36608|c0_g2_i2 | odorant receptor 46a, isoform A-like isoform X2 | Ae-AP | 1.37 | 0.58 |
TR1120|c1_g1_i1 | odorant receptor 4-like | Ae-AP | 0.96 | 0.60 |
TR46910|c0_g1_i1 | odorant receptor 4-like | Ae-AP | 7.05 | 0.06 |
TR42319|c6_g4_i1 | odorant receptor 67a-like | Ae-AP | 1.06 | 0.48 |
TR1484|c4_g2_i5 | odorant receptor 67c-like | Ae-AP | 0.56 | 0.67 |
TR20646|c1_g1_i1 | odorant receptor 67c-like | Ae-AP | 3.63 | 0.03 |
TR36143|c1_g1_i1 | odorant receptor 71a | Ae-AP | 0.11 | 1.00 |
TR42698|c0_g1_i1 | odorant receptor 85c-like isoform X1 | Ae-AP | 1.65 | 0.53 |
TR9036|c4_g1_i6 | odorant receptor 85d | Ae-AP | 2.86 | 0.08 |
TR19916|c0_g1_i5 | odorant receptor 98b | Ae-AP | 4.49 | 0.04 |
TR54734|c0_g1_i1 | odorant receptor 9a-like isoform X1 | Ae-AP | 0.37 | 0.83 |
TR8264|c23_g1_i1 | odorant receptor coreceptor | Ae-AP | 0.87 | 0.54 |
TR3968|c1_g1_i1 | odorant receptor Or1-like | Ae-AP | 0.18 | 0.89 |
TR13645|c0_g1_i2 | odorant receptor Or1-like isoform X2 | Ae-AP | 1.00 | 0.52 |
TR55175|c0_g1_i1 | chemosensory protein 3 | Ae-AP | 1.43 | 0.40 |
TR53809|c1_g1_i1 | ionotropic receptor 25a.1 | Ae-AP | 0.22 | 0.95 |
TR28446|c0_g1_i1 | ionotropic receptor 76b | Ae-AP | 0.61 | 0.81 |
TR15279|c0_g1_i1 | odorant receptor 13a-like | Ae-AP | 1.19 | 0.70 |
TR7457|c1_g1_i1 | odorant receptor 13a-like | Ae-AP | 1.68 | 0.19 |
TR9036|c4_g1_i10 | odorant receptor 13a-like | Ae-AP | 0.39 | 0.77 |
TR22647|c0_g1_i1 | odorant receptor 23 | Ae-AP | 5.90 | 0.21 |
TR52071|c0_g2_i1 | odorant receptor 28 | Ae-AP | 2.46 | 0.19 |
TR656|c0_g1_i1 | odorant receptor 2a isoform X1 | Ae-AP | 2.59 | 0.15 |
TR1484|c4_g6_i2 | odorant receptor 33a-like isoform x2 | Ae-AP | 0.97 | 0.73 |
TR3968|c0_g1_i4 | odorant receptor 35 | Ae-AP | 0.63 | 0.66 |
TR44731|c1_g1_i1 | odorant receptor 39 | Ae-AP | 1.20 | 0.38 |
TR44731|c1_g1_i2 | odorant receptor 39 | Ae-AP | 2.07 | 0.08 |
TR44731|c1_g1_i4 | odorant receptor 39 | Ae-AP | 0.60 | 0.49 |
TR52645|c3_g1_i9 | odorant receptor 4-like | Ae-AP | 0.60 | 0.51 |
TR42319|c6_g3_i1 | odorant receptor 67a-like | Ae-AP | 2.50 | 0.32 |
TR48050|c0_g2_i1 | odorant receptor 85e | Ae-AP | 2.45 | 0.03 |
TR48683|c0_g1_i1 | odorant receptor or1-like | Ae-AP * | 9.01 | 0.00031 |
TR4899|c1_g1_i1 | odorant-binding protein 1 | Ae-AP | 1.31 | 0.26 |
TR9442|c0_g1_i1 | odorant-binding protein 10 | Ae-AP | 1.14 | 0.36 |
TR29385|c0_g4_i8 | olfactory receptor 11 | Ae-AP | 0.17 | 0.96 |
TR48827|c0_g1_i1 | sensory neuron membrane protein 1 | Ae-AP | 1.34 | 0.24 |
TR33912|c0_g1_i1 | chemosensory protein 5 | Ae-SA | 1.24 | 0.37 |
TR20258|c0_g1_i1 | general odorant-binding protein 83a-like | Ae-SA | 0.00 | 1.00 |
TR46958|c0_g1_i1 | general odorant-binding protein 83a-like | Ae-SA * | 7.62 | 0.0021 |
TR14273|c0_g1_i1 | general odorant-binding protein 72-like | Ae-SA | 2.99 | 0.30 |
TR1120|c0_g1_i1 | odorant receptor 13a-like | Ae-SA | 0.03 | 1.00 |
TR1120|c2_g1_i1 | odorant receptor 13a-like | Ae-SA | 6.24 | 0.12 |
TR24336|c0_g1_i1 | odorant receptor 13a-like | Ae-SA | 0.46 | 0.81 |
TR53167|c0_g1_i1 | odorant receptor 13a-like | Ae-SA | 0.58 | 0.66 |
TR5540|c0_g2_i1 | odorant receptor 13a-like | Ae-SA | 3.21 | 0.53 |
TR7457|c0_g1_i2 | odorant receptor 13a-like | Ae-SA | 4.40 | 0.50 |
TR30703|c0_g1_i1 | odorant receptor 2a-like | Ae-SA | 3.12 | 0.60 |
TR53618|c1_g1_i1 | odorant receptor 33a-like isoform X2 | Ae-SA | 0.16 | 0.80 |
TR5622|c11_g2_i2 | odorant receptor 46a, isoform A-like | Ae-SA | 0.85 | 0.58 |
TR36608|c0_g1_i1 | odorant receptor 46a, isoform A-like isoform X1 | Ae-SA | 0.74 | 0.83 |
TR36608|c0_g2_i3 | odorant receptor 46a, isoform A-like isoform X1 | Ae-SA | 0.87 | 0.67 |
TR24403|c0_g1_i1 | odorant receptor 49b-like | Ae-SA | 0.59 | 0.90 |
TR39895|c0_g1_i1 | odorant receptor 67c-like | Ae-SA | 0.66 | 0.94 |
TR15590|c0_g1_i1 | odorant receptor 9a-like | Ae-SA | 3.41 | 0.62 |
TR35582|c0_g1_i1 | odorant receptor Or1-like | Ae-SA | 0.71 | 0.79 |
TR3933|c3_g2_i1 | odorant receptor 33a-like isoform X2 | Ae-SA | 0.17 | 0.49 |
TR13230|c0_g1_i1 | odorant receptor 38 | Ae-SA | 0.11 | 1.00 |
TR19916|c0_g1_i2 | odorant receptor 43 | Ae-SA | 1.29 | 0.73 |
TR3933|c4_g2_i5 | odorant receptor 67c-like | Ae-SA | 0.82 | 0.60 |
TR9036|c4_g1_i5 | odorant receptor 85d | Ae-SA | 3.83 | 0.41 |
TR22375|c0_g1_i1 | odorant receptor isoform a-like | Ae-SA | 1.47 | 0.64 |
TR26430|c0_g1_i1 | odorant receptor isoform a-like isoform X1 | Ae-SA | 0.33 | 0.86 |
TR33617|c0_g1_i1 | odorant receptor or2-like isoform X1 | Ae-SA | 0.35 | 0.79 |
TR46436|c0_g1_i1 | odorant receptor Or3h, partial | Ae-SA | 1.69 | 0.87 |
Transcript ID | Amplicon ID | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | TM (°C) |
---|---|---|---|---|
TR10701|c0_g1_i1 | OBP-A | AGCAGTTCAATCAATTCAAG | TTCAAGTAGTCATATAGTTGGT | 58.3 |
TR39104|c3_g3_i1 | OBP-C | TTGAAGTTGAAATGTTGGTT | CACATATCAGGTCTTGTTTG | 58.0 |
TR46958|c0_g1_i1 | OBP-F | TACGATATTTACCATACAGCAT | TAGTGGAACAATTTGAAGAAC | 58.7 |
TR2742|c0_g1_i2 | OR-B | ACAACAGACAATGTGTATTC | AGTATAAATGGTCCTGCTAAT | 57.8 |
TR48683|c0_g1_i1 | OR-C | GCAATTTGTTACGGACTATT | GTTGTTTACTGTCACACATT | 58.1 |
TR48968|c0_g1_i2 | OR-E | TCAACAAATTCCTCCTTACA | ATACAATATGGTGGCGATAA | 58.1 |
TR7457|c0_g1_i1 | OR-H | GTCATTATTCACAGTTGGATT | GTATCAAGAGCAACAACAATA | 58.0 |
TR52641|c0_g1_i3 | OR-J | TTGATGGTGATAATGGTAAGA | CACTTGACGATATAATGACAA | 57.8 |
JAC59129.1 † | RPL19 | ATCAAGCTGAAGCTCGTCGT | TGCAGCTGCTTCATCTTCAC | 56.6 |
Transcript ID | Amplicon ID | Best Drosophila Hit | Response/Tuning To | Reference |
---|---|---|---|---|
TR10701|c0_g1_i1 | OBP-A | Odorant-binding protein Lush | ο (Z)-11-octadecenyl acetate ο 11-cis vaccenyl acetate | Fan et al. 2011 [41] |
TR39104|c3_g3_i1 | OBP-C | Odorant-binding protein 83a | ο l-carvone ο Citral | Swarup et al. 2011 [42] |
TR46958|c0_g1_i1 | OBP-F † | Odorant-binding protein 56e | ο Octanoic acid ο Hexanoic acid | Dworkin & Jones 2009 [43] |
TR2742|c0_g1_i2 | OR-B | Odorant receptor 9a | ο 3-hydroxy-2-butanone ο 2,3-butadeniol ο 2-pentanol | Saberi & Seyed-Allaei 2016 [44] |
TR48683|c0_g1_i1 | OR-C | Odorant receptor 82a | ο Geranyl acetate ο (2R)-hexan-2-ol ο Citral | Münch & Galizia 2016 [45] |
TR48968|c0_g1_i2 | OR-E | Odorant receptor 43a | ο Z3-hexenol ο 1-hexanol ο Cyclohexanol ο 1-octen-3-ol ο 2-pentanol | Münch & Galizia 2016 [45] |
TR7457|c0_g1_i1 | OR-H | Odorant receptor 13a | ο 1-octen-3-ol ο 2-heptanol ο 2-exanol ο 3-octanol | Münch & Galizia 2016 [45] |
TR52641|c0_g1_i3 | OR-J | Odorant receptor 85d | ο Ethyl pentanoate ο 2-heptanone-6-methyl-5-hepten-2-none | Münch & Galizia 2016 [45] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballesteros, G.I.; Sepúlveda, D.A.; Figueroa, C.C. Identification and Expression Profiling of Peripheral Olfactory Genes in the Parasitoid Wasp Aphidius ervi (Hymenoptera: Braconidae) Reared on Different Aphid Hosts. Insects 2019, 10, 397. https://doi.org/10.3390/insects10110397
Ballesteros GI, Sepúlveda DA, Figueroa CC. Identification and Expression Profiling of Peripheral Olfactory Genes in the Parasitoid Wasp Aphidius ervi (Hymenoptera: Braconidae) Reared on Different Aphid Hosts. Insects. 2019; 10(11):397. https://doi.org/10.3390/insects10110397
Chicago/Turabian StyleBallesteros, Gabriel I., Daniela A. Sepúlveda, and Christian C. Figueroa. 2019. "Identification and Expression Profiling of Peripheral Olfactory Genes in the Parasitoid Wasp Aphidius ervi (Hymenoptera: Braconidae) Reared on Different Aphid Hosts" Insects 10, no. 11: 397. https://doi.org/10.3390/insects10110397
APA StyleBallesteros, G. I., Sepúlveda, D. A., & Figueroa, C. C. (2019). Identification and Expression Profiling of Peripheral Olfactory Genes in the Parasitoid Wasp Aphidius ervi (Hymenoptera: Braconidae) Reared on Different Aphid Hosts. Insects, 10(11), 397. https://doi.org/10.3390/insects10110397