Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior
Abstract
1. Introduction
2. Tests
2.1. Materials
2.2. Preparation of Al2O3/PTFE Composites
2.3. Friction Wear Test
2.4. Characterization and Testing Methods
3. Results and Discussion
3.1. Powder Morphology and Specimen Micromorphology
3.2. Shore Hardness
3.3. Friction Wear Properties
3.4. Wear Mark Analysis
3.5. Transfer Film Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Yuan, C.; Bai, X.; Yan, X.; Peng, Z. Study on wear behaviour and wear model of nitrile butadiene rubber under water lubricated conditions. RSC Adv. 2014, 4, 19034–19042. [Google Scholar] [CrossRef]
- Zhang, Z.; Ouyang, W.; Liang, X.; Yan, X.; Yuan, C.; Zhou, X.; Guo, Z.; Dong, C.; Liu, Z.; Jin, Y.; et al. Review of the evolution and prevention of friction, wear, and noise for water-lubricated bearings used in ships. Friction 2024, 12, 1–38. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, G.; Jiang, D. Experimental Research of Abnormal Wear for Water-Lubricated Polymer Bearings under Low Speed, Heavy Pressure, and High Water Temperature. Polymers 2023, 15, 1227. [Google Scholar] [CrossRef]
- Wodtke, M.; Frost, J.; Litwin, W. Effect of water contamination of an environmentally acceptable lubricant based on synthetic esters on the wear and hydrodynamic properties of stern tube bearing. Tribol. Int. 2025, 205, 110562. [Google Scholar] [CrossRef]
- Hu, F.; Ning, C.; Ouyang, W. Ultrasonic in-situ measurement method and error analysis of wear of PEEK water-lubricated bearing materials. Measurement 2023, 214, 112822. [Google Scholar] [CrossRef]
- Blanchet, T.A.; Kennedy, F.E. Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 1992, 153, 229–243. [Google Scholar] [CrossRef]
- Burris, D.L.; Boesl, B.; Bourne, G.R.; Sawyer, W.G. Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 2007, 292, 387–402. [Google Scholar] [CrossRef]
- Blanchet, T.A.; Kandanur, S.S.; Schadler, L.S. Coupled effect of filler content and countersurface roughness on PTFE nanocomposite wear resistance. Tribol. Lett. 2010, 40, 11–21. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Li, C.; Huang, L.; Wang, Y.; Gao, T.; Zhang, Z.; Liu, W. Wear Properties of C-MoS2-PTFE Composite Coating Prepared on 4032 Aluminum Alloy. Lubricants 2022, 10, 181. [Google Scholar] [CrossRef]
- Gong, D.; Xue, Q.; Wang, H. Study of the wear of filled polytetrafluoroethylene. Wear 1989, 134, 283–295. [Google Scholar] [CrossRef]
- Tanaka, K.; Kawakami, S. Effect of various fillers on the friction and wear of polytetrafluoroethylene-based composites. Wear 1982, 79, 221–234. [Google Scholar] [CrossRef]
- Tanaka, K.; Uchiyama, Y.; Toyooka, S. The mechanism of wear of polytetrafluoroethylene. Wear 1973, 23, 153–172. [Google Scholar] [CrossRef]
- Shen, J.T.; Pei, Y.T.; De Hosson, J.T.M. Formation of metal-F bonds during frictional sliding: Influence of water and applied load. Appl. Surf. Sci. 2016, 368, 427–434. [Google Scholar] [CrossRef]
- Feng, W.; Yin, L.; Han, Y.; Wang, J.; Xiao, K.; Li, J. Tribological and physical properties of PTFE-NBR self-lubricating composites under water lubrication. Ind. Lubr. Tribol. 2021, 73, 82–87. [Google Scholar] [CrossRef]
- Dong, S.; Guo, Z.; Zang, H.; Yuan, C. Effect of Silicon Carbide Particles on Tribological Properties of Polytetrafluoroethylene Water-Lubricated Bearing Composites. J. Mater. Eng. Perform. 2024, 33, 5667–5681. [Google Scholar] [CrossRef]
- Wang, J.; Yan, F.; Xue, Q. Tribological behavior of PTFE sliding against steel in sea water. Wear 2009, 267, 1634–1641. [Google Scholar] [CrossRef]
- Khan, M.J.; Wani, M.F.; Gupta, R. Tribological properties of glass fiber filled polytetrafluoroethylene sliding against stainless steel under dry and aqueous environments: Enhanced tribological performance in sea water. Mater. Res. Express 2018, 5, 055309. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Zhou, L.; Wei, X.; Wang, W. Tribological behaviors of amino functionalized graphene reinforced PTFE composite. Arch. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 1428–1436. [Google Scholar] [CrossRef]
- Wu, J.; Huang, J.; Liu, Q.; Chen, Y.; Li, Y.; Yang, L.; Yin, Q.; Gao, Z.; Wu, S.; Ren, X. Influence of ceramic particles as additive on the mechanical response and reactive properties of Al/PTFE reactive composites. RSC Adv. 2020, 10, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Swets, J.E.; Harrington, S.M.; Khare, H.S. Wear of alumina-PTFE against brass and aluminum: Role of interfacial films and tribochemistry. Wear 2024, 552–553, 205445. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X.; Liu, K.; Xu, J.; Wang, W.; Ye, J. Paradoxical Filler Size Effect on Composite Wear: Filler-Matrix Interaction and Its Tribochemical Consequences. Tribol. Lett. 2020, 68, 131. [Google Scholar] [CrossRef]
- Zahabi, S.R.; Sheikhzadeh, M.; Akbarzadeh, S.; Bahi, A.; Ko, F. Study on microstructure and tribological properties of hierarchical 3D braid applicable in heavy operating tribology conditions. Polym. Compos. 2022, 43, 3290–3312. [Google Scholar] [CrossRef]
- ASTM D2240 15; Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2021.
- Schenuit, E.; Altmann, J.; Baumann, J.; Beisel, P.; Berthold, J.; Frenz, H.; Frost, E.; Horsch, A.; Rupp, D.M.; Schwenk, D. Concept for the Verification of Suitability of Hardness Testing Machines. Mater. Test. 2012, 9, 592–596. [Google Scholar] [CrossRef]
- Herbold, E.B.; Nesterenko, V.F.; Benson, D.J.; Cai, J.; Vecchio, K.S.; Jiang, F.; Addiss, J.W.; Walley, S.M.; Proud, W.G. Particle size effect on strength, failure and shock behavior in Polytetrafluoroethylene-Al-W granular composites. J. Appl. Phys. 2008, 104, 1007. [Google Scholar] [CrossRef]
- Svobodova, J.; Lysonkova, I. Possibilities of hardness measurement of composite coating based on ptfe with Al2O3 particles applied on Al2O3 substrate. In Proceedings of the 19th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 20–22 May 2020. [Google Scholar]
- Lv, W.; Wang, T.; Wang, Q.; Yap, K.K.; Song, F.; Wang, C. Tribological and Mechanochemical Properties of Nanoparticle-Filled Polytetrafluoroethylene Composites under Different Loads. Polymers 2024, 16, 894. [Google Scholar] [CrossRef]
- McElwain, S.E.; Blanchet, T.A.; Schadler, L.S.; Sawyer, W.G. Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nanocomposites. Tribol. Trans. 2008, 51, 247–253. [Google Scholar] [CrossRef]
- Brownell, M.; Nair, A.K. Deformation mechanisms of polytetrafluoroethylene at the nano- and microscales. Phys. Chem. Chem. Phys. 2018, 21, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, B.; Serra, R.; Oliveira, J.; Fonseca, C. Characterization and Tribological Behavior of Electroless-Deposited Ni-P-PTFE Films on NBR Substrates for Dynamic Contact Applications. Coatings 2022, 12, 1410. [Google Scholar] [CrossRef]
- Haque, F.M.; Junk, C.P.; Sidebottom, M.A. Physical and Chemical Evolution of PTFE-α-Al2O3Composites Versus 304 SS Tribofilms During Dry Sliding. Tribol. Lett. 2024, 72, 122. [Google Scholar] [CrossRef]
- Ye, J.; Burris, D.L.; Xie, T. A Review of Transfer Films and Their Role in Ultra-Low-Wear Sliding of Polymers. Lubricants 2016, 4, 4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Zhu, S. Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior. Lubricants 2025, 13, 377. https://doi.org/10.3390/lubricants13090377
Zhao G, Zhu S. Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior. Lubricants. 2025; 13(9):377. https://doi.org/10.3390/lubricants13090377
Chicago/Turabian StyleZhao, Guofeng, and Shifan Zhu. 2025. "Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior" Lubricants 13, no. 9: 377. https://doi.org/10.3390/lubricants13090377
APA StyleZhao, G., & Zhu, S. (2025). Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior. Lubricants, 13(9), 377. https://doi.org/10.3390/lubricants13090377