Two-Dimensional Nanomaterials in Hydrogels and Their Potential Bio-Applications
Abstract
:1. Introduction
2. Mechanical and Friction Properties of Hydrogels with 2D Nanomaterials
2.1. Graphene Oxide
2.2. Boron Nitride
2.3. Black Phosphorus
2.4. MXenes
2.5. Other 2D Materials
3. Challenges and Perspectives
- The dispersion stability of 2D materials in water-based solutions is governed by the surface energy, which significantly affects their internal interaction with polymer molecular chains of hydrogels [113]. Hence, the challenge lies in optimizing hydrogel systems to achieve a high load-bearing capacity and reduced friction at the lowest possible particle concentration. This aspect requires additional research if we are to realize the practical applications of these systems;
- The synthesis of 2D nanomaterials still involves some limitations. For example, the large-scale synthesis of 2D materials with precisely controlled nanostructures is difficult to realize. Advanced techniques and equipment for the preparation of 2D materials should be further developed.
- There is still a lack of extensive research on the optimization of basic parameters of 2D nanomaterials to be used as promising fillers for the feasible functional design of hydrogels. For example, the influence of some features of 2D materials, including the layer number, lateral size [114], types, and the concentration of functional groups, on the mechanical and tribological behaviors of hydrogels for specified bioapplications remains unclear. An in-depth investigation of the fundamental mechanisms and advanced techniques guiding the design and application of 2D materials as nanofillers in hydrogels is required in the future;
- The strengthening and lubrication mechanisms of 2D materials used as nanofillers of hydrogels still need to be further elucidated, and this should be based on a full understanding of the fundamental properties of both the 2D materials and the polymeric hydrogel matrix;
- The biocompatibility of hydrogels incorporating 2D materials as nanofillers necessitates a more rigorous and systematic investigation. This should encompass an extensive evaluation of multiple factors, including cytotoxicity, neurotoxicity, genotoxicity, and others, to ensure safety and efficacy over an extended period of service;
- Furthermore, the ongoing development of 2D nanomaterials opens up new avenues for enhancing the mechanical and tribological properties of nanocomposite hydrogels. For instance, the tribological attributes of nitride-MXenes have not been thoroughly investigated, despite their known superior mechanical properties [115,116,117]. Additionally, the potential synergistic effects of integrating diverse 2D nanomaterials into hydrogels are an area that is ripe for exploration, as there is insufficient research on this combined approach to offer comprehensive data and permit systematic studies. Moreover, incorporating novel “non-layered” 2D materials [118,119,120,121] as nanofillers could introduce distinctive characteristics to nanocomposite hydrogels, offering a new dimension of performance and functionality.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonyadi, S.Z.; Demott, C.J.; Grunlan, M.A.; Dunn, A.C. Cartilage-like Tribological Performance of Charged Double Net-work Hydrogels. J. Mech. Behav. Biomed. Mater. 2021, 114, 104202. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Li, J.; Li, X.; Wen, S.; Liu, Y. Synergy of Phospholipid and Hyaluronan Based Super-Lubricated Hydrogels. Appl. Mater. Today 2022, 27, 101499. [Google Scholar] [CrossRef]
- Zhao, X.; Xiong, D.; Liu, Y. Improving Surface Wettability and Lubrication of Polyetheretherketone (PEEK) by Combining with Polyvinyl Alcohol (PVA) Hydrogel. J. Mech. Behav. Biomed. Mater. 2018, 82, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Song, H.S.; Kwon, O.S.; Kim, J.H.; Conde, J.; Artzi, N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens. Bioelectron. 2017, 89, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Song, J.; Wang, S.; Liu, W. Cationic Modified PVA Hydrogels Provide Low Friction and Excellent Mechanical Properties for Potential Cartilage and Orthopedic Applications. Macromol. Biosci. 2023, 23, 2200275. [Google Scholar] [CrossRef]
- Lust, S.T.; Hoogland, D.; Norman, M.D.A.; Kerins, C.; Omar, J.; Jowett, G.M.; Yu, T.T.L.; Yan, Z.; Xu, J.Z.; Marciano, D.; et al. Selectively Cross-Linked Tetra-PEG Hydrogels Provide Control over Mechanical Strength with Minimal Impact on Diffusivity. ACS Biomater. Sci. Eng. 2021, 7, 4293–4304. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Huang, J.; Zhou, Z.; Chen, Q.; Hong, M.; Yang, S.; Fu, H. Highly Elastic Anti-Fatigue and Anti-Freezing Conductive Double Network Hydrogel for Human Body Sensors. Ind. Eng. Chem. Res. 2021, 60, 6162–6172. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, F.; Zhang, Y.; Guo, H. Low-Friction Hybrid Hydrogel with Excellent Mechanical Properties for Simulating Articular Cartilage Movement. Langmuir 2023, 39, 2368–2379. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Cheng, H.; Liu, J.; Shao, M.; Wei, M.; Evans, D.; Zhang, H.; Duan, X. Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Adv. Energy Mater. 2020, 10, 1900486. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, H. Atomic Layer Deposition on 2D Materials. Chem. Mater. 2017, 29, 3809–3826. [Google Scholar] [CrossRef]
- Chen, P.; Wu, Z.; Huang, Q.; Ji, S.; Weng, Y.; Wu, Z.; Ma, Z.; Chen, X.; Weng, M.; Fu, R.; et al. A quasi-2D material CePO4 and the self-lubrication in micro-arc oxidized coatings on Al alloy. Tribol. Int. 2019, 138, 157–165. [Google Scholar] [CrossRef]
- Uzoma, P.C.; Hu, H.; Khadem, M.; Penkov, O.V. Tribology of 2D nanomaterials: A review. Coatings 2020, 10, 897. [Google Scholar] [CrossRef]
- Rong, C.; Su, T.; Li, Z.; Chu, T.; Zhu, M.; Yan, Y.; Zhang, B.; Xuan, F. Elastic properties and tensile strength of 2D Ti3C2Tx MXene monolayers. Nat. Commun. 2024, 15, 1566. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Mutyala, K.C.; Sumant, A.V.; Mochalin, V.N. Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings. Mater. Today Adv. 2021, 9, 100133. [Google Scholar] [CrossRef]
- Rasul, M.G.; Kiziltas, A.; Arfaei, B.; Shahbazian-Yassar, R. 2D boron nitride nanosheets for polymer composite materials. Npj 2D Mater. Appl. 2021, 5, 56. [Google Scholar] [CrossRef]
- Wu, H.; Yin, S.; Du, Y.; Wang, L.; Wang, H. An investigation on the lubrication effectiveness of MoS2 and BN layered materials as oil additives using block-on-ring tests. Tribol. Int. 2020, 151, 106516. [Google Scholar] [CrossRef]
- Tanjil, M.R.E.; Jeong, Y.; Yin, Z.; Panaccione, W.; Wang, C.M. Angstrom-Scale, Atomically Thin 2D Materials for Corrosion Mitigation and Passivation. Coatings 2019, 9, 133. [Google Scholar] [CrossRef]
- Xia, M. 2D Materials-Coated Plasmonic Structures for SERS Applications. Coatings 2018, 8, 137. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Li, J.; Yi, S.; Ge, X.; Zhang, X.; Luo, J. Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide. ACS Appl. Mater. Interfaces 2021, 13, 31947–31956. [Google Scholar] [CrossRef]
- Zheng, Y.; Hong, X.; Wang, J.; Feng, L.; Fan, T.; Guo, R.; Zhang, H. 2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges. Adv. Healthc. Mater. 2021, 10, 2001743. [Google Scholar] [CrossRef] [PubMed]
- Marian, M.; Berman, D.; Nečas, D.; Emami, N.; Ruggiero, A.; Rosenkranz, A. Roadmap for 2D materials in biotribological/biomedical applications—A review. Adv. Colloid Interface Sci. 2022, 307, 102747. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Jiang, L.; Xiao, S.; Liu, Y.; Luo, J. Zwitterionic Hydrogel Incorporated Graphene Oxide Nanosheets with Improved Strength and Lubricity. Langmuir 2019, 35, 11452–11462. [Google Scholar] [CrossRef] [PubMed]
- Urade, A.R.; Lahiri, I.; Suresh, K.S. Graphene Properties, Synthesis and Applications: A Review. J. Miner. Met. Mater. Soc. (TMS) 2023, 75, 614–630. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zheng, L.; Liu, Z.; Wang, X. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094. [Google Scholar] [CrossRef]
- Suk, J.; Piner, R.; An, J.; Ruoff, R. Mechanical Properties of Monolayer Graphene Oxide. ACS Nano 2010, 4, 6557–6564. [Google Scholar] [CrossRef] [PubMed]
- Falin, A.; Cai1, Q.; Santos, E.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S.; Watanabe, K.; Taniguchi, T.; et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815. [Google Scholar] [CrossRef]
- Jiang, J.; Park, H. Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 2014, 47, 385304. [Google Scholar] [CrossRef]
- Li, L.; Yang, J. On mechanical behaviors of fewlayer black phosphoru. Sci. Rep. 2018, 8, 3227. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, X.; Li, J. Graphene lubrication. Appl. Mater. Today 2020, 20, 100662. [Google Scholar] [CrossRef]
- Ge, X.; Chai, Z.; Shi, Q.; Liu, Y.; Wang, W. Graphene superlubricity: A review. Friction 2023, 11, 1953–1973. [Google Scholar] [CrossRef]
- Mao, J.; Zhao, J.; Wang, W.; He, Y.; Luo, J. Influence of the micromorphology of reduced graphene oxide sheets on lubrication properties as a lubrication additive. Tribol. Int. 2018, 119, 614–621. [Google Scholar] [CrossRef]
- Liang, H.; Xu, M.; Bu, Y.; Chen, B.; Zhang, Y.; Fu, Y.; Xu, X.; Zhang, J. Confined interlayer water enhances solid lubrication per-formances of graphene oxide films with optimized oxygen functional groups. Appl. Surf. Sci. 2019, 485, 64–69. [Google Scholar] [CrossRef]
- Gupta, B.; Kumar, N.; Panda, K.; Dash, S.; Tyagi, A.K. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties. Sci. Rep. 2016, 6, 18372. [Google Scholar] [CrossRef]
- Chen, L.; Tu, N.; Wei, Q.; Liu, T.; Li, C.; Wang, W.; Li, J.; Lu, H. Inhibition of cold-welding and adhesive wear occurring on sur-face of the 6061 aluminum alloy by graphene oxide/polyethylene glycol composite water-based lubricant. Surf. Inter-Face Anal. 2021, 54, 218–230. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Cheng, S.J.; Chen, H.H.; Hsu, W.C. Development of injectable graphene oxide/laponite/gelatin hydrogel con-taining Wharton’s jelly mesenchymal stem cells for treatment of oxidative stress-damaged cardiomyocytes. Colloids Surf. B Biointerfaces 2022, 209, 112150. [Google Scholar] [CrossRef]
- Qiao, K.; Guo, S.; Zheng, Y.; Xu, X.; Meng, H.; Peng, J.; Fang, Z.; Xie, Y. Effects of graphene on the structure, properties, electro-response behaviors of GO/PAA composite hydrogels and influence of electro-mechanical coupling on BMSC differentiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 853–863. [Google Scholar] [CrossRef]
- Hou, Y.; Jin, M.; Liu, Y.; Jiang, N.; Zhang, L.; Zhu, S. Biomimetic construction of a lubricious hydrogel with robust mechanics via polymer chains interpenetration and entanglement for TMJ disc replacement. Chem. Eng. J. 2023, 460, 141731. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, G.; Li, H. Thermal-responsive nanocomposite hydrogel based on graphene oxide-polyvinyl alcohol/poly (N-isopropylacrylamide). IOP Conf. Ser. Mater. Sci. Eng. 2017, 274, 012115. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Y.; Zhang, L.; Gao, M.; Kong, Y.; Yang, Y. Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation. Colloids Surf. B Biointerfaces 2016, 143, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Hu, M.; Deng, Y.; Wang, C. One-Pot Fabrication of a Novel Agar-Polyacrylamide/Graphene Oxide Nanocomposite Double Network Hydrogel with High Mechanical Properties. Adv. Eng. Mater. 2016, 18, 1799–1807. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Jiang, H.; Shi, J.; Li, F.; Xia, Y.; Zhang, G.; Li, H. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect. Carbohydr. Polym. 2017, 177, 116–125. [Google Scholar] [CrossRef]
- Nath, J.; Chowdhury, A.; Dolui, S.K. Chitosan/graphene oxide-based multifunctional pH-responsive hydrogel with significant mechanical strength, self-healing property, and shape memory effect. Adv. Polym. Technol. 2018, 37, 3665–3679. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, X.; Yu, R.; Xing, Q.; Xu, L.; Wang, Z. Self-lubrication and wear-resistance mechanism of graphene-modified coatings. Ceram. Int. 2020, 46, 15915–15924. [Google Scholar]
- Wang, Z.; Hao, Z.; Yang, C.; Wang, H.; Huang, C.; Zhao, X.; Pan, Y. Ultra-sensitive and rapid screening of acute myocardial in-farction using 3D-affinity graphene biosensor. Cell Rep. Phys. Sci. 2022, 3, 100855. [Google Scholar] [CrossRef]
- Yang, J.; Hu, D.; Li, W.; Jia, Y.; Li, P. Formation mechanism of zigzag patterned P(NIPAM-co-AA)/CuS composite microspheres by in situ biomimetic mineralization for morphology modulation. RSC Adv. 2021, 11, 37904. [Google Scholar] [CrossRef]
- Wang, B.; Yuan, S.; Xin, W.; Chen, Y.; Fu, Q.; Li, L.; Jiao, Y. Synergic adhesive chemistry-based fabrication of BMP-2 immobilized silk fibroin hydrogel functionalized with hybrid nanomaterial to augment osteogenic differentiation of rBMSCs for bone defect repair. Int. J. Biol. Macromol. 2021, 192, 407–416. [Google Scholar] [CrossRef]
- Meng, Y.; Ye, L.; Coates, P.; Twigg, P. In Situ Cross-Linking of Poly(vinyl alcohol)/Graphene Oxide–Polyethylene Glycol Nanocomposite Hydrogels as Artificial Cartilage Replacement: Intercalation Structure, Unconfined Compressive Behavior, and Biotribological Behaviors. J. Phys. Chem. C 2018, 122, 3157–3167. [Google Scholar] [CrossRef]
- Wang, C.; Bai, X.; Guo, Z.; Dong, C.; Yuan, C. A strategy that combines a hydrogel and graphene oxide to improve the water-lubricated performance of ultrahigh molecular weight polyethylene. Compos. Part A Appl. Sci. Manuf. 2021, 141, 106207. [Google Scholar] [CrossRef]
- Cao, J.; Meng, Y.; Zhao, X.; Ye, L. Dual-Anchoring Intercalation Structure and Enhanced Bioactivity of Poly(vinyl alcohol)/Graphene Oxide–Hydroxyapatite Nanocomposite Hydrogels as Artificial Cartilage Replacement. Ind. Eng. Chem. Res. 2020, 59, 20359–20370. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, K.; Gao, Y.; Han, S.; Ju, J.; Ren, T.; Zhao, X. Multifunctional GO-based hydrogel coating on Ti-6Al-4 V Alloy with enhanced bioactivity, anticorrosion and tribological properties against cortical bone. Tribol. Int. 2023, 184, 108423. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, L.; Li, M.; Zhang, X.; Chang, Y.; Shang, L.; Ao, Y. Effect of hexagonal boron nitride on high-performance polyether ether ketone composites. Colloid Polym. Sci. 2016, 294, 127–133. [Google Scholar] [CrossRef]
- Belyaeva, L.; Ludwig, C.; Lai, Y.; Chou, C.; Shih, C. Uniform, Strain-Free, Large-Scale Graphene and h-BN Monolayers Enabled by Hydrogel Substrates. Small 2023, 20, 2307054. [Google Scholar] [CrossRef]
- Jing, L.; Li, H.; Tay, Y.; Sun, B.; Tsang, S.H.; Cometto, O.; Lin, J.; Teo, E.; Tok, A. Biocompatible Hydroxylated Boron Nitride Nanosheets/Polyvinyl Alcohol Interpenetrating Hydrogels with Enhanced Mechanical and Thermal Responses. ACS Nano 2017, 11, 3742–3751. [Google Scholar] [CrossRef]
- Yang, N.; Ji, H.; Jiang, X.; Qu, X.; Zhang, X.; Zhang, Y.; Liu, B. Preparation of Boron Nitride Nanoplatelets via Amino Acid Assisted Ball Milling: Towards Thermal Conductivity Application. Nanomaterials 2020, 10, 1652. [Google Scholar] [CrossRef]
- Xue, S.; Wu, Y.; Guo, M.; Liu, D.; Zhang, T.; Lei, W. Fabrication of Poly(acrylic acid)/Boron Nitride Composite Hydrogels with Excellent Mechanical Properties and Rapid Self-Healing Through Hierarchically Physical Interactions. Nanoscale Res. Lett. 2018, 13, 393. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Z.; Geng, H.; Song, X.; Zeng, H.; Zhi, C. Highly Flexible and Self-Healable Thermal Interface Material Based on Boron Nitride Nanosheets and a Dual Cross-linked Hydrogel. ACS Appl. Mater. Interfaces 2017, 9, 10078–10084. [Google Scholar] [CrossRef]
- Liu, F.; Han, R.; Naficy, S.; Casillas, G.; Sun, X.; Huang, Z. Few-Layered Boron Nitride Nanosheets for Strengthening Polyurethane Hydrogels. ACS Appl. Nano Mater. 2021, 4, 7988–7994. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; He, Q.; Meng, Y.; Cao, L.; Sun, Y.; Chen, J.; Lu, F. Aqueous compatible boron nitride nanosheets for high-performance hydrogels. Nanoscale 2016, 8, 4260–4266. [Google Scholar] [CrossRef]
- Tong, X.; Du, L.; Xu, Q. Tough, Adhesive and Self-Healing Conductive 3D Network Hydrogel of Physically Linked Function-alized-Boron Nitride/Clay/Poly(N-isopropylacrylamide). J. Mater. Chem. A 2018, 6, 3091–3099. [Google Scholar] [CrossRef]
- Goncu, Y.; Ay, N. Boron Nitride’s Morphological Role in the Design of Injectable Hyaluronic Acid Based Hybrid Artificial Synovial Fluid. ACS Biomater. Sci. Eng. 2023, 9, 6345–6356. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, X.; Liu, X.; Sun, B.; Li, L.; Zhao, Y. Responsive Hydrogel Microcarrier-Integrated Microneedles for Versatile and Controllable Drug Delivery. Adv. Healthc. Mater. 2021, 10, 2002249. [Google Scholar] [CrossRef]
- Yang, G.; Wan, X.; Gu, Z.; Zeng, X.; Tang, J. Near infrared photothermal-responsive poly(vinyl alcohol)/black phosphorus com-posite hydrogels with excellent on-demand drug release capacity. J. Mater. Chem. B 2018, 6, 1622–1632. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, W.; Xie, G.; Luo, J. Self-Lubricating PTFE-Based Composites with Black Phosphorus Nanosheets. Tribol. Lett. 2018, 66, 61. [Google Scholar] [CrossRef]
- Sun, X.; Yu, C.; Zhang, L.; Cao, J.; Kaleli, E.H.; Xie, G. Tribological and Antibacterial Properties of Polyetheretherketone Composites with Black Phosphorus Nanosheets. Polymers 2022, 14, 1242. [Google Scholar] [CrossRef]
- Wu, S.; He, F.; Xie, G.; Bian, Z.; Ren, Y.; Liu, X.; Yang, H.; Guo, D.; Zhang, L.; Wen, S.; et al. Super-Slippery Degraded Black Phosphorus/Silicon Dioxide Interface. ACS Appl. Mater. Interfaces 2020, 12, 7717–7726. [Google Scholar] [CrossRef]
- Luo, Z.; Yu, J.; Xu, Y.; Xi, H.; Cheng, G.; Yao, L.; Song, R.; Dearn, K.D. Surface characterization of steel/steel contact lubricated by PAO6 with novel black phosphorus nanocomposites. Friction 2020, 9, 723–733. [Google Scholar] [CrossRef]
- Tang, G.; Su, F.; Xu, X.; Chu, P.K. 2D black phosphorus dotted with silver nanoparticles: An excellent lubricant additive for tribological applications. Chem. Eng. J. 2020, 392, 123631. [Google Scholar] [CrossRef]
- Wang, W.; Gong, P.; Hou, T.; Wang, Q.; Gao, Y.; Wang, K. Tribological performances of BP/TiO2 nanocomposites as water-based lubrication additives for titanium alloy plate cold rolling. Wear 2022, 204278, 494–495. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, J.; Dong, Y.; You, T.; Hu, X. Boundary Lubricating Properties of Black Phosphorus Nanosheets in Polyalphaolefin Oil. J. Tribol. 2019, 141, 072101. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, T.; Wang, W.; Zhang, G.; Gao, Y.; Wang, K. Tribological behavior of black phosphorus nanosheets as water-based lubrication additives. Friction 2021, 10, 374–387. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, Y.; Tao, Z.; Chen, Y.; Zhang, L.; Dong, A. Black Phosphorus-Based Conductive Hydrogels Assisted by Electrical Stimulus for Skin Tissue Engineering. Adv. Healthc. Mater. 2023, 12, 2301817. [Google Scholar] [CrossRef]
- Du, C.; Huang, W. Progress and prospects of nanocomposite hydrogels in bone tissue engineering. Nanocomposites 2022, 8, 102–124. [Google Scholar] [CrossRef]
- He, M.; Zhu, C.; Sun, D.; Liu, Z.; Du, M.; Huang, Y.; Huang, L.; Wang, J.; Liu, L.; Li, Y.; et al. Layer-by-layer assembled black phosphorus/chitosan composite coating for multi-functional PEEK bone scaffold. Compos. Part B Eng. 2022, 246, 110266. [Google Scholar] [CrossRef]
- Malaki, M.; Varma, R.S. Mechanotribological Aspects of MXene-Reinforced Nanocomposites. Adv. Mater. 2020, 32, 2003154. [Google Scholar] [CrossRef]
- Song, C.; Wang, T.; Sun, X.; Hu, Y.; Fan, L.; Guo, R. Lubrication performance of MXene/Brij30/H2O composite lamellar liquid crystal system. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128487. [Google Scholar] [CrossRef]
- Chhattal, M.; Rosenkranz, A.; Zaki, S.; Ren, K.; Ghaffar, A.; Gong, Z.; Grützmacher, P.G. Unveiling the Tribological Potential of MXenes-Current Understanding and Future Perspectives. Adv. Colloid Interface Sci. 2023, 321, 103021. [Google Scholar] [CrossRef] [PubMed]
- Marian, M.; Song, G.C.; Wang, B.; Fuenzalida, V.M.; Krauß, S.; Merle, B.; Tremmel, S.; Wartzack, S.; Yu, J.; Rosenkranz, A. Effective usage of 2D MXene nanosheets as solid lubricant-Influence of contact pressure and relative humidity. Appl. Surf. Sci. 2020, 531, 147311. [Google Scholar] [CrossRef]
- Yin, X.; Jin, J.; Chen, X.; Rosenkranz, A.; Luo, J. Ultra-Wear-Resistant MXene-Based Composite Coating via in Situ Formed Nanostructured Tribofilm. ACS Appl. Mater. Interfaces 2019, 11, 32569–32576. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Guo, Y.; Wang, D.; Xu, Q. Nano friction and adhesion properties on Ti3C2 and Nb2C MXene studied by AFM. Tribol. Int. 2021, 153, 106646. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Rosenkranz, A.; Wang, B.; Yu, J.; Srinivasan, S.; Rajabzadeh, A.R. MXene/0D Nanocomposite Architectures: Design, Properties and Emerging Applications. Mater. Today Nano 2023, 24, 100428. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, M.; Guo, Z.; Chen, H.; Yan, H.; Ren, F.; Jin, Y.; Sun, Z.; Ren, P. Synergistic effect of novel hyperbranched pol-ysiloxane and Ti3C2T MXene/MoS2 hybrid filler towards desirable mechanical and tribological performance of bismaleimide composites. Compos. Part B Eng. 2023, 248, 110374. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Zhang, G.; Wang, Q.; Wang, T. MXene-Al2O3 synergize to reduce friction and wear on epoxy-steel contacts lubricated with ultra-low sulfur diesel. Tribol. Int. 2021, 153, 106588. [Google Scholar] [CrossRef]
- Cui, Y.; Xue, S.; Chen, X.; Bai, W.; Liu, S.; Ye, Q.; Zhou, F. Fabrication of two-dimensional MXene nanosheets loading Cu nano-particles as lubricant additives for friction and wear reduction. Tribol. Int. 2022, 176, 107934. [Google Scholar] [CrossRef]
- Marian, M.; Feile, K.; Rothammer, B.; Bartz, M.; Wartzack, S.; Seynstahl, A.; Tremmel, S.; Krauß, S.; Merle, B.; Böhm, T.; et al. Ti3C2T solid lubricant coatings in rolling bearings with remarkable performance beyond state-of-the-art materials. Appl. Mater. Today 2021, 25, 101202. [Google Scholar] [CrossRef]
- Zhou, C.; Li, Z.; Liu, S.; Ma, L.; Zhan, T.; Wang, J. Synthesis of MXene-Based Self-dispersing Additives for Enhanced Tribological Properties. Tribol. Lett. 2022, 70, 63. [Google Scholar] [CrossRef]
- Guo, J.; Wu, P.; Zeng, C.; Wu, W.; Zhao, X.; Liu, G.; Zhou, F.; Liu, W. Fluoropolymer grafted Ti3C2Tx MXene as an efficient lubri-cant additive for fluorine-containing lubricating oil. Tribol. Int. 2022, 170, 107500. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, X.; Wang, X.; Cao, S.; Chen, L.; Ma, X.; Huang, L.; Ni, Y. Fabrication strategies and application fields of novel 2D Ti3C2Tx (MXene) composite hydrogels: A mini-review. Ceram. Int. 2021, 47, 4398–4403. [Google Scholar] [CrossRef]
- Xue, P.; Bisoyi, H.K.; Chen, Y.; Zeng, H.; Yang, J.; Yang, X.; Lv, P.; Zhang, X.; Priimagi, A.; Wang, L.; et al. Near-Infrared Light-Driven Shape-Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets. Angew. Chem. Int. Ed. Engl. 2021, 60, 3390–3396. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, X.J.; Li, P.; Zhao, Y.; Niu, Q.J. Fabrication of novel MXene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft Matter 2020, 16, 162–169. [Google Scholar] [CrossRef]
- Yan, B.Y.; Cao, Z.K.; Hui, C.; Sun, T.C.; Xu, L.; Ramakrishna, S.; Yang, M.; Long, Y.Z.; Zhang, J. MXene@Hydrogel composite nanofibers with the photo-stimulus response and optical monitoring functions for on-demand drug release. J. Colloid Interface Sci. 2023, 648, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Yuan, W.; Zhang, X.; Cheng, Y.; Xu, M.; Wei, Y.; Chen, W.; Huang, D. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf. B Biointerfaces 2022, 214, 112482. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Li, Z.; Hou, K.; Gao, Q.; Huang, Y.; Wang, J.; Yang, S. Bioinspired multi-crosslinking and solid–liquid composite lubricating MXene/PVA hydrogel based on salting out effect. Chem. Eng. J. 2023, 476, 146848. [Google Scholar] [CrossRef]
- Ye, G.; Wen, Z.; Wen, F.; Song, X.; Wang, L.; Li, C.; He, Y.; Prakash, S.; Qiu, X. Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction. Theranostics 2020, 10, 2047–2066. [Google Scholar] [CrossRef] [PubMed]
- Quero, F.; Rosenkranz, A. Mechanical Performance of Binary and Ternary Hybrid MXene/Nanocellulose Hydro- and Aerogels—A Critical Review. Adv Mater. Interfaces 2021, 8, 2100952. [Google Scholar] [CrossRef]
- Gogotsi, Y. The Future of MXenes. Chem. Mater. 2023, 35, 8767–8770. [Google Scholar] [CrossRef]
- Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, 2103393. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Gogotsi, Y. MXenes: Trends, Growth, and Future Directions. Graphene 2D Mater. 2022, 7, 75–79. [Google Scholar] [CrossRef]
- Li, K.; Zhao, J.; Zhussupbekova, A.; Shuck, E.C.; Hughes, L.; Dong, Y.; Barwich, S.; Vaesen, S.; Shvets, V.I.; Möbius, M.; et al. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat. Commun. 2022, 13, 6884. [Google Scholar] [CrossRef]
- Wyatt, B.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable Mechanical and Tribological Properties. Adv. Mater. 2021, 33, 2007973. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Righi, M.; Sumant, A.; Anasori, B.; Mochalin, V. Perspectives of 2D MXene Tribology. Adv. Mater. 2023, 35, 2207757. [Google Scholar] [CrossRef] [PubMed]
- Parra-Munoz, N.; Soler, M.; Rosenkranz, A. Covalent functionalization of MXenes for tribological purposes—A critical review. Adv. Colloid Interface Sci. 2022, 309, 102792. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, A.; Maitra, U.; Das, A. Metal cholate hydrogels: Versatile supramolecular systems for nanoparticle embedded soft hybrid materials. J. Mater. Chem. 2012, 22, 18268. [Google Scholar] [CrossRef]
- Chen, L.; He, C.; Yin, J.; Chen, S.; Zhao, W.; Zhao, C. Clearance of methylene blue by CdS enhanced composite hydrogel materials. Environ. Technol. 2020, 43, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Li, Z.; Li, J.; Zhang, Y.; Yao, B.; Liu, Y.; Song, W.; Fu, X.; Wu, X.; Huang, S. An approach for mechanical property optimiza-tion of cell-laden alginate–gelatin composite bioink with bioactive glass nanoparticles. J. Mater. Sci. Mater. Med. 2020, 31, 103. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, X.; Du, C.; Frank, A.; Schmidt, H.; Zheng, Q.; Wu, Z. Photoregulated Gradient Structure and Programmable Me-chanical Performances of Tough Hydrogels with a Hydrogen-Bond Network. ACS Appl. Mater. Interfaces 2020, 12, 53376–53384. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Liang, H.; Xu, Y.; Zhou, J.; Peng, H.; Zhong, J.; Xi, W. Polydopamine particles reinforced poly(vinyl alcohol) hydrogel composites with fast self healing behavior. Prog. Org. Coat. 2020, 143, 105636. [Google Scholar] [CrossRef]
- Du, Z.; Wang, Y.; Li, X. Preparation of Nanocellulose Whisker/Polyacrylamide/Xanthan Gum Double Network Conductive Hydrogels. Coatings 2023, 13, 843. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, S.; Wang, P.; Liu, C.; Zhu, Y. Robust and rapid responsive organic-inorganic hybrid bilayer hydrogel actuators with silicon nanoparticles as the cross-linker. Polymer 2021, 228, 123863. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Zhu, J.; Wang, Z.; Wang, L. Synthesis and characterization of photothermal antibacterial hydrogel with enhanced mechanical properties. New J. Chem. 2021, 45, 16804–16815. [Google Scholar] [CrossRef]
- Lu, Y.; Han, J.; Ding, Q.; Yue, Y.; Xia, C.; Ge, S.; Le, Q.; Dou, X.; Sonne, C.; Lam, S. TEMPO-oxidized cellulose nano-fibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose 2021, 28, 1469–1488. [Google Scholar] [CrossRef]
- Abalymov, A.; Lengert, E.; Van der Meeren, L.; Saveleva, M.; Ivanova, A.; Douglas, T.; Skirtach, A.; Volodkin, D.; Parakhonskiy, B. The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compounds. Biomater. Adv. 2022, 133, 112632. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Liu, S. 2D nanomaterials as lubricant additive: A review. Mater. Des. 2017, 135, 319–332. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Fan, Z.; Ge, X.; Wang, W. How does lateral size influence the tribological behaviors of graphene oxide as nanoadditive for water-based lubrication? Carbon 2024, 219, 118803. [Google Scholar] [CrossRef]
- Zhang, N.; Hong, Y.; Yazdanparast, S.; Asle, M. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: A comprehensive first principles study. 2D Mater. 2018, 5, 45004. [Google Scholar] [CrossRef]
- Kurtoglu, M.; Naguib, M.; Gogotsi, Y.; Barsoum, M. First principles study of two-dimensional early transition metal car-bides. MRS Commun. 2012, 2, 133–137. [Google Scholar] [CrossRef]
- Ronchi, R.; Lemos, H.; Nishihora, R.; Cuppari, M.; Santos, S. Tribology of polymer-based nanocomposites reinforced with 2D materials. Mater. Today Commun. 2023, 34, 105397. [Google Scholar] [CrossRef]
- Lang, J.; Ding, B.; Zhang, S.; Su, H.; Ge, B.; Qi, L.; Gao, H.; Li, X.; Li, Q.; Wu, H. Scalable Synthesis of 2D Si Nanosheets. Adv. Mater. 2017, 29, 1701777. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Wang, W. Nanodiamond plates as macroscale solid lubricant: A “non-layered” two-dimension material. Carbon 2022, 198, 119–131. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Zhang, R.; Ge, X.; Wang, W. “Non-layered” two-dimensional nanodiamond plates as nanoadditives in water lubrication. Wear 2024, 536–537, 205174. [Google Scholar] [CrossRef]
- Serles, P.; Arif, T.; Puthirath, A.; Yadav, S.; Wang, G.; Cui, T.; Balan, A.; Yadav, T.; Thibeorchews, P.; Chakingal, N.; et al. Friction of magnetene, a non–van der Waals 2D material. Sci. Adv. 2021, 7, 2041. [Google Scholar] [CrossRef] [PubMed]
Nanoparticles | Elastic Modulus (GPa) | Tensile Strength (GPa) | Elastic Strain |
---|---|---|---|
GO | 207.6 ± 23.4 [25] | 0.4% [26] | |
BN | 865 ± 73 [25] | 70.5 ± 5.5 [27] | 2.5 ± 3.0% [27] |
BP | 19.5~41.3 [28] | 4.09~8.42 [29] | 0.48% [28] |
Ti3C2Tx [13] | 483.5 ± 13.2 | 15.4 ± 1.92 | 3.2% |
2D Nanomaterials | Hydrogel | Maximum Mechanical Strength | Friction Coefficient | Concentration/Weight Percent |
---|---|---|---|---|
GO | PSBMA [23] | Compressive strength: 0.08 MPa~0.36 MPa Tensile strength: 50.7 kPa~151.9 kPa | 0.006~0.03 | 0.005~0.025 wt. % |
PVA-PNIPA [39] | Compressive strength: 1.5 MPa~4.1 MPa | 10~25 mg | ||
CS [43] | Tensile strength: 4.37 MPa~20.96 MPa Young’s modulus: 0.122 to 0.364 MPa | 0.1~0.5 wt. % | ||
PAAm [49] | Tensile strength: 10 MPa~50 MPa | 0.05~0.12 | 0.2~2 wt. % | |
PVA-PEG-HA [50] | Compressive strength: 1.95 MPa~4.79 MPa | 1.5 wt. % | ||
PVA-PAA-PDA [51] | Compressive modulus: 1.12 MPa~2.53 MPa Young’s modulus: 0.051 GPa~0.058 GPa | 0.05~0.12 | 0.1~1 wt. % | |
PVA [54] | Compressive strength: 0.29 MPa~0.42 MPa Tensile strength: 0.19 MPa~0.27 MPa | 0.05~0.20 | 0~0.09 wt. % | |
h-BN | PAA [56] | Stiffness: 17.9 MPa, toughness: 10.5 MJ m−3 | 0.1~1.0 mg mL−1 | |
PU [58] | Young’s modulus: 1632 kPa~2776 kPa | 0.03~0.18 wt.% | ||
PAAm [59] | Compressive strength: ~8 MPa | 0.1~2.5 mg mL−1 | ||
Clay- PNIPAM [60] | Compressive strength: 30 kPa~200 kPa Tensile strength: 17 kPa~40 kPa | 0.04~0.32 wt. % | ||
BP | PEA-GelMA [73] | Compressive strength: ~0.15 MPa Compressive moduli: 0.3 MPa~0.9 MPa | 40 wt. % | |
NS-CS coating [74] | Compressive moduli: 247.9 MPa~745.4 MPa Tensile moduli: 235 MPa~644 MPa | 50 mg | ||
MXene | oligo[poly(ethylene glycol) fumarate](OPF) [113] | Compression modulus: 497 kPa~734.5 kPa | 0.1~1 mg mL−1 | |
PAM [90] | Compressive strength: 400.6 kPa~819.4 kPa | 0.0145~0.0436 wt. % | ||
PAA-PAM-TA [92] | Tensile strength: 0.251 ± 0.05 MPa | 0.075 g | ||
PVA [93] | 0.14~0.18 | 1~10 mg mL−1 | ||
Cryogel [94] | Compression modulus: 2.24 kPa~9.65 kPa | 0.4~1.6 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Guo, H.; Zhang, J.; Qian, Y.; Liu, Y. Two-Dimensional Nanomaterials in Hydrogels and Their Potential Bio-Applications. Lubricants 2024, 12, 149. https://doi.org/10.3390/lubricants12050149
Wang Z, Guo H, Zhang J, Qian Y, Liu Y. Two-Dimensional Nanomaterials in Hydrogels and Their Potential Bio-Applications. Lubricants. 2024; 12(5):149. https://doi.org/10.3390/lubricants12050149
Chicago/Turabian StyleWang, Zhongnan, Hui Guo, Ji Zhang, Yi Qian, and Yanfei Liu. 2024. "Two-Dimensional Nanomaterials in Hydrogels and Their Potential Bio-Applications" Lubricants 12, no. 5: 149. https://doi.org/10.3390/lubricants12050149
APA StyleWang, Z., Guo, H., Zhang, J., Qian, Y., & Liu, Y. (2024). Two-Dimensional Nanomaterials in Hydrogels and Their Potential Bio-Applications. Lubricants, 12(5), 149. https://doi.org/10.3390/lubricants12050149