Friction and Wear Properties of AgCuNi Alloy/Au-Electroplated Layer Sliding Electrical Contact Material
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Tests Set-Up and Procedure
3. Results
3.1. Friction Coefficient
3.2. Electrical Contact Performance
4. Discussion
4.1. Friction Coefficient and Transfer Film
4.2. Wear Loss
4.3. Contact Resistance
5. Conclusions
- (1)
- When the normal load is less than 3 N and there is no current, the friction coefficient after stabilization is lower than that with a current, and the introduction of a current and the increase in the normal load aggravate the wear of the friction pair.
- (2)
- Both current and load have an effect on the friction transfer film formation, and the load has a dominant role. When the load is sufficiently large, increasing the current does not cause significant differences in the friction performance.
- (3)
- When the current is about 1.0 A, there is a certain correlation between the contact resistance and friction coefficient between the AgCuNi alloy and the Au-electroplated layer. The variation law of contact resistance with time is similar to that of the friction coefficient with time.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Lei, Q.; Cheng, J.; Gao, Y.; Meng, X.; Agbedor, S.-O.; Xiao, Z. Microstructure and properties of a Cu-6Cr alloy with high friction and wear resistance. Wear Int. J. Sci. Technol. Friction. Lubr. Wear 2023, 2, 514–515. [Google Scholar] [CrossRef]
- Huang, W.; Yu, H.; Wang, L.; Wu, X.; Ouyang, C.; Zhang, Y.; He, J. State of the art and prospects in sliver- and copper-matrix composite electrical contact materials. Mater. Today Commun. 2023, 37, 107256. [Google Scholar] [CrossRef]
- Huang, S.; Feng, Y.; Liu, H.; Ding, K.; Qian, G. Electrical sliding friction and wear properties of Cu–MoS2–graphite–WS2 nanotubes composites in air and vacuum conditions. Mater. Sci. Eng. A 2013, 560, 685–692. [Google Scholar] [CrossRef]
- Wu, T.; Chen, W.; Wangye, L.; Wang, Y.; Wu, Z.; Ma, M.; Zheng, Q. Ultrahigh Critical Current Density across Sliding Electrical Contacts in Structural Superlubric State. Phys. Rev. Lett. 2024, 132, 096201. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Wang, X.; Qin, L.-X.; Qiu, W.-T.; Li, S.-F.; Jiang, Y.-B.; Jia, Y.-L.; Li, Z. Electrical sliding friction wear behaviors and mechanisms of Cu–Sn matrix composites containing MoS2/graphite. Wear 2024, 548, 205388. [Google Scholar] [CrossRef]
- McNab, I. Recent advances in electrical current collection. Wear 1980, 59, 259–276. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Yang, H.; Kang, X.; Zhang, L. Effect of electric current on the microstructural evolution and tribological behavior of highly oriented pyrolytic graphite. J. Mater. Sci. 2020, 55, 7283–7294. [Google Scholar] [CrossRef]
- Kubota, Y.; Nagasaka, S.; Miyauchi, T.; Yamashita, C.; Kakishima, H. Sliding wear behavior of copper alloy impregnated C/C composites under an electrical current. Wear 2013, 302, 1492–1498. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Yin, J.; Xiong, X.; Tan, C.; Deng, C.; Yan, Z. Wear and friction behaviours of copper mesh and flaky graphite- modified carbon/carbon composite for sliding contact material under electric current. Wear 2017, 380, 59–65. [Google Scholar] [CrossRef]
- Senouci, A.; Frene, J.; Zaidi, H. Wear mechanism in graphite–copper electrical sliding contact. Wear 1999, 225–229, 949–953. [Google Scholar] [CrossRef]
- Poljanec, D.; Kalin, M.; Kumar, L. Influence of contact parameters on the tribological behaviour of various graphite/graphite sliding electrical contacts. Wear 2018, 406, 75–83. [Google Scholar] [CrossRef]
- Robert, F.; Csapo, E.; Zaïdi, H.; Paulmier, D. Influence of the current and environment on the superficial structure of a graphite electrical collector. Int. J. Mach. Tools Manuf. 1995, 35, 259–262. [Google Scholar] [CrossRef]
- Paulmier, D.; El Mansori, M.; Zaïdi, H. Study of magnetized or electrical sliding contact of a steel XC48/graphite couple. Wear 1997, 203, 148–154. [Google Scholar] [CrossRef]
- Grandin, M.; Wiklund, U. Wear phenomena and tribofilm formation of copper/copper-graphite sliding electrical contact materials. Wear 2018, 398, 227–235. [Google Scholar] [CrossRef]
- Yasar, I.; Canakci, A.; Arslan, F. The effect of brush spring pressure on the wear behaviour of copper–graphite brushes with electrical current. Tribol. Int. 2007, 40, 1381–1386. [Google Scholar] [CrossRef]
- Lin, X.-Z.; Zhu, M.-H.; Mo, J.-L.; Chen, G.-X.; Jin, X.-S.; Zhou, Z.-R. Tribological and electric-arc behaviors of carbon/copper pair during sliding friction process with electric current applied. Trans. Nonferrous Met. Soc. China 2011, 21, 292–299. [Google Scholar] [CrossRef]
- Toth, G.; Mäklin, J.; Halonen, N.; Palosaari, J.; Juuti, J.; Jantunen, H.; Kordas, K.; Sawyer, W.G.; Vajtai, R.; Ajayan, P.M. Carbon-Nanotube-Based Electrical Brush Contacts. Adv. Mater. 2009, 21, 2054–2058. [Google Scholar] [CrossRef]
- Zeng, Y.; He, F.; Wang, Q.; Yan, X.; Xie, G. Friction and wear behaviors of molybdenum disulfide nanosheets under normal electric field. Appl. Surf. Sci. 2018, 455, 527–532. [Google Scholar] [CrossRef]
- Pittala, R.K.; Sharma, P.; Anne, G.; Patil, S.; Varghese, V.; Das, S.R.; Kumar, C.S.; Fernandes, F. Development and Mechanical Characterization of Ni-Cr Alloy Foam Using Ultrasonic-Assisted Electroplating Coating Technique. Coatings 2023, 13, 1002. [Google Scholar] [CrossRef]
- Jena, P.C.; Pradhan, B.; Das, S.R.; Dhupal, D. Experimental Investigation on ECMM with Nimonic 75 Alloy for Prosthetic Component. In Design, Development, and Optimization of Bio-Mechatronic Engineering Products; Kaushik Kumar, J., Davim, P., Eds.; IGI Global: Hershey, PA, USA, 2019; Chapter 6; ISBN 9781522582359. [Google Scholar]
- Mahapatra, S.; Das, A.; Jena, P.C.; Das, S.R. Turning of hardened AISI H13 steel with recently developed S3P-AlTiSiN coated carbide tool using MWCNT mixed nanofluid under minimum quantity lubrication. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 237, 843–864. [Google Scholar] [CrossRef]
- Barsarani, P.; Pankaj, C.J.; Dhupal, D. Design, Development, and Optimization of Bio-Mechatronic Engineering Products: Chapter-10: Modeling and Numerical analysis of advanced Machining for Orthotic Compo-nents (300818-053554). In Design, Development, and Optimization of Bio-Mechatronic Engineering Products; IGI Global: Hershey, PA, USA, 2019; Chapter 6; ISBN 9781522582359. [Google Scholar]
- Pradhan, S.; Das, S.R.; Jena, P.C.; Dhupal, D. Investigations on Surface Integrity in Hard Turning of Functionally Graded Specimen under Nano Fluid Assisted Minimum Quantity Lubrication. Adv. Mater. Process. Technol. 2021, 8, 1714–1729. [Google Scholar] [CrossRef]
- Jena, J.; Panda, A.; Behera, A.K.; Jena, P.C.; Das, S.R.; Dhupal, D. Modeling and optimization of surface roughness in hard turning of AISI 4340 steel with coated ceramic tool. In Innovation in Materials Science and Engineering: Proceedings of ICEMIT 2017; Springer: Singapore, 2019. [Google Scholar]
- Das, S.R.; Jena, P.C.; Behura, A.K.; Nayak, R.P. Experimental investigation and modelling of cutting parameters on surface finish during machining of hardened AISI 4340 steel using coated carbide insert. In Proceedings of the 4th International & 25th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2012), Kolkata, India, 14 December 2014. [Google Scholar]
- Deepak, B.B.V.L.; Parhi, D.R.K.; Biswal, B.B.; Jena, P.C. Applications of Computational Methods in Manufacturing and Product Design. 2021. Available online: https://link.springer.com/book/10.1007/978-981-19-0296-3 (accessed on 27 October 2024).
- Deepak, B.B.V.L.; Parhi, D.; Jena, P.C. Innovative Product Design and Intelligent Manufacturing Systems: Select Proceedings of ICIPDIMS 2019; Springer: Singapore, 2020. [Google Scholar]
- Shobert, E.I. Carbon Brushes, The Physics and Chemistry of Sliding Contacts; Chemical Publishing Company Inc.: New York, NY, USA, 1965. [Google Scholar]
- Goodman, S.J.; Page, T.F. The contact resistance and wear behaviour of separable electrical contact materials. Wear 1989, 131, 177–191. [Google Scholar] [CrossRef]
- Xie, X.-L.; Zhang, L.; Xiao, J.-K.; Qian, Z.-Y.; Zhang, T.; Zhou, K.-C. Sliding electrical contact behavior of AuAgCu brush on Au plating. Trans. Nonferrous Met. Soc. China 2015, 25, 3029–3036. [Google Scholar] [CrossRef]
- Xiao, J.-K.; Liu, L.-M.; Zhang, C.; Zhang, L.; Zhou, K.-C. Sliding electrical contact behavior of brass fiber brush against coin-silver and Au plating. Wear 2016, 368–369, 461–469. [Google Scholar] [CrossRef]
- Lu, S.P.; Yang, H.M.; Yang, F.T.; Yu, J.S.; Liu, Q.; Wang, J. The Effect of Zn on the Properties of AgCuNi4–0.5 Alloy. Precious Met. 2013, 34, 21–24. (In Chinese) [Google Scholar]
- Wei, M.X.; Liu, Q.; Gao, Q.Q.; Zhao, T.M.; Zheng, X.Y.; Long, X.Q.; Xie, M.; Chen, Y.T. Study the Influence of Rare Earth Elements on Microstructure and Property of AgCuNi Alloy. Precious Met. 2019, 40, 31–34. (In Chinese) [Google Scholar]
- Argibay, N.; Sawyer, W.G. Low wear metal sliding electrical contacts at high current density. Wear 2012, 274–275, 229–237. [Google Scholar] [CrossRef]
- Holm, R. Electric Contacts, Theory and Applications, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1967. [Google Scholar]
- Echeverrigaray, F.; de Mello, S.; Leidens, L.; Boeira, C.; Michels, A.; Braceras, I.; Figueroa, C. Electrical contact resistance and tribological behaviors of self-lubricated dielectric coating under different conditions. Tribol. Int. 2020, 143, 106086. [Google Scholar] [CrossRef]
- Beake, B.D.; Harris, A.J.; Liskiewicz, T.W.; Wagner, J.; McMaster, S.J.; Goodes, S.R.; Neville, A.; Zhang, L. Friction and electrical contact resistance in reciprocating nano-scale wear testing of metallic materials. Wear 2021, 474–475, 203866. [Google Scholar] [CrossRef]
- Jacobson, S.; Hogmark, S. Tribofilms—On the Crucial Importance of Tribologically Induced Surface Modifications; Research Signpost: Trivandrum, India, 2010; pp. 197–225. [Google Scholar]
- Grandin, M.; Wiklund, U. Friction, wear and tribofilm formation on electrical contact materials in reciprocating sliding against silver-graphite. Wear 2013, 302, 1481–1491. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zhang, Y.; Cao, H.; Li, H.; Jia, Q.; Ma, M. Friction and Wear Properties of AgCuNi Alloy/Au-Electroplated Layer Sliding Electrical Contact Material. Lubricants 2024, 12, 450. https://doi.org/10.3390/lubricants12120450
Wu H, Zhang Y, Cao H, Li H, Jia Q, Ma M. Friction and Wear Properties of AgCuNi Alloy/Au-Electroplated Layer Sliding Electrical Contact Material. Lubricants. 2024; 12(12):450. https://doi.org/10.3390/lubricants12120450
Chicago/Turabian StyleWu, Hongjian, Yanan Zhang, Hui Cao, Han Li, Qingjian Jia, and Ming Ma. 2024. "Friction and Wear Properties of AgCuNi Alloy/Au-Electroplated Layer Sliding Electrical Contact Material" Lubricants 12, no. 12: 450. https://doi.org/10.3390/lubricants12120450
APA StyleWu, H., Zhang, Y., Cao, H., Li, H., Jia, Q., & Ma, M. (2024). Friction and Wear Properties of AgCuNi Alloy/Au-Electroplated Layer Sliding Electrical Contact Material. Lubricants, 12(12), 450. https://doi.org/10.3390/lubricants12120450