Temperature Control for an Intra-Mirror Etalon in Interferometric Gravitational Wave Detector Fabry–Perot Cavities
Abstract
:1. Introduction
2. Control System Description
2.1. Physical Plant Description
2.2. Plant Modeling
2.3. Plant Measurement
2.4. Control System Block Diagram
2.5. Controller Design
3. Results
3.1. Recovery Speed after Unlock
3.2. Controller Accuracy
3.3. Unlock Condition Control
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AdV | Advanced Virgo |
ITF | Interferometer |
AR | Anti-Reflective (Mirror Coating) |
HR | Highly Reflective (Mirror Coating) |
OPL | Optical Path Length |
WCS | Worst Case Scenario |
TCS | Temperature Compensation System |
BNS | Binary Neutron Star |
LTI | Linear Time Invariant (Control System) |
SI | Simple Integrator |
UGF | Unity Gain Frequency |
Probability Density Function |
References
- The Virgo Collaboration. Advanced Virgo Technical Design Report. Virgo Note 2012, 1, VIR-0128A-12. [Google Scholar]
- LIGO Scientific; Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- LIGO Scientific; Virgo Collaboration. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LIGO Scientific; Virgo Collaboration. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar]
- Somiya, K.; Chen, Y.; Kawamura, S.; Mio, N. Flrequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes. Phys. Rev. D 2006, 73, 122005. [Google Scholar] [CrossRef] [Green Version]
- Somiya, K.; Chen, Y.; Kawamura, S.; Mio, N. Flrequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes. Phys. Rev. D 2007, 75, 049905, (erratum). [Google Scholar] [CrossRef] [Green Version]
- Flaminio, R.; Gouaty, R.; Tournefier, E. Analysis of the Sensitivity of the Recombined Interferometer during C4 and C5 Runs. Virgo Internal Note Vir-Not-Lap-1390-312, VIRGO. 2006. Available online: https://tds.virgo-gw.eu/?content=3&r=1617 (accessed on 28 November 2020).
- Vajente, G.; Chiummo, A. ITF Asymmetries and Coupling of Laser Technical Noises. Virgo Internal Note Vir-0043a-12, VIRGO. 2012. Available online: https://tds.virgo-gw.eu/?content=3&r=9206 (accessed on 28 November 2020).
- Abbott, B.P..; The LIGO Scientific Collaboration; Virgo Collaboration; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; et al. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Rev. Relat. 2016, 19, 1. [Google Scholar] [CrossRef]
- Hild, S.; Freise, A.; Mantovani, M.; Chelkowski, S.; Degallaix, J.; Schilling, R. Using the etalon effect for in situ balancing of the Advanced Virgo arm cavities. Class. Quantum Gravity 2009, 26. [Google Scholar] [CrossRef] [Green Version]
- Punturo, M. The mirror resonant modes method for measuring the optical absorption. Virgo Note 2007, VIR-0001A-07. [Google Scholar]
- Hild, S.; Freise, A.; Mantovani, M.; Chelkowski, S.; Degallaix, J.; Schilling, R. Using the etalon effect for in situ balancing of the Advanced Virgo arm cavities. Class. Quantum Gravity 2008, 26, 025005. [Google Scholar] [CrossRef] [Green Version]
- Andrade, A.A.; Catunda, T.; Bodnar, I.; Mura, J.; Baesso, M.L. Thermal lens determination of the temperature coefficient of optical path length in optical materials. Rev. Sci. Instrum. 2003, 74, 877–880. [Google Scholar] [CrossRef]
- Corning, Incorporated. HPFS®Fused Silica Standard Grade; Corning, Incorporated: Corning, NY, USA, 2003. [Google Scholar]
- Heraeus Holding. Properties of Fused Silica; Heraeus Holding: Hanau, Germany, 2020. [Google Scholar]
- Freise, A.; Heinzel, G.; Lück, H.; Schilling, R.; Willke, B.; Danzmann, K. Frequency-domain interferometer simulation with higher-order spatial modes. Class. Quantum Gravity 2004, 21, S1067–S1074. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, M. Comment to BNS Range Fluctuation. Logbook Entry 46904, VIRGO. 2019. Available online: https://logbook.virgo-gw.eu/virgo/?r=46904 (accessed on 28 November 2020).
- Swinkels, B. Etalon Servos. Logbook Entry 25684, VIRGO. 2009. Available online: https://logbook.virgo-gw.eu/virgo/?r=25684 (accessed on 28 November 2020).
- Swinkels, B. Etalon Servos Performance. Logbook Entry 25706, VIRGO. 2009. Available online: https://logbook.virgo-gw.eu/virgo/?r=25706 (accessed on 28 November 2020).
- Vajente; Ruggi. Power Changed to Adjust Etalon. Logbook Entry 25568, VIRGO. 2009. Available online: https://logbook.virgo-gw.eu/virgo/?r=25568 (accessed on 28 November 2020).
- Ciardelli, M.; Dattilo, V.; Sposito, G. Installation of Heating Belts at NI-WI. Logbook Entry 46746, VIRGO. 2019. Available online: https://logbook.virgo-gw.eu/virgo/?r=46746 (accessed on 28 November 2020).
- Dattilo, V.; Montanari, B. Comment to Installation of Heating Belts at NI-WI. Logbook Entry 46882, VIRGO. 2019. Available online: https://logbook.virgo-gw.eu/virgo/?r=46882 (accessed on 28 November 2020).
- Brooks, J.; Dattilo, V.; Masserot, A. Comment to Installation of Heating Belts at NI-WI. Logbook Entry 48210, VIRGO. 2020. Available online: https://logbook.virgo-gw.eu/virgo/?r=48210 (accessed on 28 November 2020).
- Incropera, F. Fundamentals of Heat and Mass Transfer 6th Edition with IHT/FEHT 3.0 CD with User Guide Set; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Lienhard, V.J.H. Linearization of Nongray Radiation Exchange: The Internal Fractional Function Reconsidered. J. Heat Transf. 2019, 141. [Google Scholar] [CrossRef] [Green Version]
- Aiello; Allocca; Bersanetti; Fafone; Nardecchia; Rocchi. Ring Heater Test for Etalon Tuning. Logbook Entry 46168, VIRGO. 2019. Available online: https://logbook.virgo-gw.eu/virgo/?r=46168 (accessed on 28 November 2020).
- Swinkels, B. New Server to Follow Drum Mode Frequency. Logbook Entry 38844, VIRGO. 2017. Available online: https://logbook.virgo-gw.eu/virgo/?r=38844 (accessed on 28 November 2020).
- Michimura, Y. Comment to Mirror Mode Identification with Temp Change. Logbook Entry 42370, VIRGO. 2018. Available online: https://logbook.virgo-gw.eu/virgo/?r=42370 (accessed on 28 November 2020).
- Brooks, J.; Mantovani, M.; Allocca, A. Etalon Commissioning Shift. Logbook Entry 46932, VIRGO. 2019. Available online: https://logbook.virgo-gw.eu/virgo/?r=46932 (accessed on 28 November 2020).
- Degallaix, J.; Michel, C.; Sassolas, B.; Allocca, A.; Cagnoli, G.; Balzarini, L.; Dolique, V.; Flaminio, R.; Forest, D.; Granata, M.; et al. Large and extremely low loss: The unique challenges of gravitational wave mirrors. J. Opt. Soc. Am. A 2019, 36, C85–C94. [Google Scholar] [CrossRef] [PubMed]
- Mantovani Maddalena, C.D.J.; Jonathan, B. Etalon Control Accuracy vs Finesse Asymmetry. Logbook Entry 49953, VIRGO. 2020. Available online: https://logbook.virgo-gw.eu/virgo/?r=49953 (accessed on 28 November 2020).
- Maddalena, M. Comment to Etalon Control Accuracy vs Finesse Asymmetry. Logbook Entry 49989, VIRGO. 2020. Available online: https://logbook.virgo-gw.eu/virgo/?r=49989 (accessed on 28 November 2020).
Plant | First Pole [Hz] | Second Pole [Hz] |
---|---|---|
North Plant | ||
West Plant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brooks, J.; Mantovani, M.; Allocca, A.; Casanueva Diaz, J.; Dattilo, V.; Masserot, A.; Ruggi, P. Temperature Control for an Intra-Mirror Etalon in Interferometric Gravitational Wave Detector Fabry–Perot Cavities. Galaxies 2020, 8, 80. https://doi.org/10.3390/galaxies8040080
Brooks J, Mantovani M, Allocca A, Casanueva Diaz J, Dattilo V, Masserot A, Ruggi P. Temperature Control for an Intra-Mirror Etalon in Interferometric Gravitational Wave Detector Fabry–Perot Cavities. Galaxies. 2020; 8(4):80. https://doi.org/10.3390/galaxies8040080
Chicago/Turabian StyleBrooks, Jonathan, Maddalena Mantovani, Annalisa Allocca, Julia Casanueva Diaz, Vincenzo Dattilo, Alain Masserot, and Paolo Ruggi. 2020. "Temperature Control for an Intra-Mirror Etalon in Interferometric Gravitational Wave Detector Fabry–Perot Cavities" Galaxies 8, no. 4: 80. https://doi.org/10.3390/galaxies8040080
APA StyleBrooks, J., Mantovani, M., Allocca, A., Casanueva Diaz, J., Dattilo, V., Masserot, A., & Ruggi, P. (2020). Temperature Control for an Intra-Mirror Etalon in Interferometric Gravitational Wave Detector Fabry–Perot Cavities. Galaxies, 8(4), 80. https://doi.org/10.3390/galaxies8040080