Neutron-Capture Element Abundances in Planetary Nebulae
Abstract
:1. Introduction
2. Near-Infrared Observations
3. Optical Spectroscopy
4. Extragalactic Planetary Nebulae
5. Discussion
6. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Sneden, C.; Cowan, J.J.; Gallino, R. Neutron-Capture Elements in the Early Galaxy. Annu. Rev. Astron. Astrophys. 2008, 46, 241. [Google Scholar] [CrossRef]
- Frebel, A.; Norris, J.E. Near-Field Cosmology with Extremely Metal-Poor Stars. Annu. Rev. Astron. Astrophys. 2015, 53, 631–688. [Google Scholar] [CrossRef] [Green Version]
- Skúladóttir, Á.; Hansen, C.J.; Choplin, A.; Salvadori, S.; Hampel, M.; Campbell, S.W. Neutron-capture elements in dwarf galaxies. II. Challenges for the s- and i-processes at low metallicity. Astron. Astrophys. 2020, 634, A84. [Google Scholar] [CrossRef] [Green Version]
- Tanvir, N.R.; Levan, A.J.; González-Fernández, C.; Korobkin, O.; Mandel, I.; Rosswog, S.; Hjorth, J.; D’Avanzo, P.; Fruchter, A.S.; Fryer, C.L.; et al. The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars. Astrophys. J. Lett. 2017, 848, L27. [Google Scholar] [CrossRef]
- Watson, D.; Hansen, C.J.; Selsing, J.; Koch, A.; Malesani, D.B.; Andersen, A.C.; Fynbo, J.P.; Arcones, A.; Bauswein, A.; Covino, S.; et al. Identification of strontium in the merger of two neutron stars. Nature 2019, 574, 497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smartt, S.; Chen, T.W.; Jerkstr, A.; Coughlin, M.; Kankare, E.; Sim, S.A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K.C.; et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 2017, 551, 75. [Google Scholar] [CrossRef] [PubMed]
- Côté, B.; Eichler, M.; Arcones, A.; Hansen, C.J.; Simonetti, P.; Frebel, A.; Fryer, C.L.; Pignatari, M.; Reichert, M.; Belczynski, K.; et al. Neutron Star Mergers Might Not Be the Only Source of r-process Elements in the Milky Way. Astrophys. J. Lett. 2019, 875, 106. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; Lattanzio, J.C. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publ. Astron. Soc. Aust. 2014, 31, 30. [Google Scholar] [CrossRef] [Green Version]
- Peimbert, M. Chemical Abundances in Planetary Nebulae. In Planetary Nebulae; Terzian, Y., Ed.; Reidel: Dordrecht, The Netherlands, 1978; Volume 76, p. 215. [Google Scholar]
- Péquignot, D.; Baluteau, J.P. The Identification of Krypton, Xenon, and Other Elements of Rows 4, 5, and 6 of the Periodic Table in the Planetary Nebulae NGC 7027. Astron. Astrophys. 1994, 283, 593. [Google Scholar]
- Sharpee, B.; Zhang, Y.; Williams, R.; Pellegrini, E.; Cavagnolo, K.; Baldwin, J.A.; Phillips, M.; Liu, X.W. s-Process Abundances in Planetary Nebulae. Astrophys. J. Lett. 2007, 659, 1265. [Google Scholar] [CrossRef] [Green Version]
- Dinerstein, H.L. Neutron-Capture Elements in Planetary Nebulae: Identification of Two Near-Infrared Emission Lines as [Kr III] and [Se IV]. Astrophys. J. Lett. 2001, 550, L223. [Google Scholar] [CrossRef]
- Sterling, N.C.; Dinerstein, H.L. The Abundances of Light Neutron-Capture Elements in Planetary Nebulae II. s-Process Enrichments and Interpretation. Astrophys. J. Suppl. Ser. 2008, 174, 158. [Google Scholar] [CrossRef] [Green Version]
- Mashburn, A.L.; Sterling, N.C.; Madonna, S.; Dinerstein, H.L.; Roederer, I.U.; Geballe, T.R. Neutron-capture Element Abundances in Magellanic Cloud Planetary Nebulae. Astrophys. J. Lett. 2016, 831, L3. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; van Raai, M.A.; Lugaro, M.; Sterling, N.C.; Dinerstein, H.L. Nucleosynthesis Predictions for Intermediate-Mass Asymptotic Giant Branch Stars: Comparison to Observations of Type I Planetary Nebulae. Astrophys. J. Lett. 2009, 690, 1130. [Google Scholar] [CrossRef] [Green Version]
- Sterling, N.C.; Dinerstein, H.L.; Kaplan, K.F.; Bautista, M.A. Discovery of Rubidium, Cadmium, and Germanium Emission Lines in the Near-infrared Spectra of Planetary Nebulae. Astrophys. J. Lett. 2016, 819, L9. [Google Scholar] [CrossRef] [Green Version]
- Lodders, K. Solar System Abundances and Condensation Temperatures of the Elements. Astrophys. J. Lett. 2003, 591, 1220. [Google Scholar] [CrossRef]
- Sterling, N.C. Atomic Data and Neutron-Capture Element Abundances in Planetary Nebulae. In Planetary Nebulae: Multi-Wavelength Probes of Stellar and Galactic Evolution; Liu, X., Stanghellini, L., Karakas, A., Eds.; Cambridge University Press: Cambridge, UK, 2017; Volume 323, p. 74. [Google Scholar]
- Park, C.; Jaffe, D.T.; Yuk, I.S.; Chun, M.Y.; Pak, S.; Kim, K.M.; Pavel, M.; Lee, H.; Oh, H.; Jeong, U.; et al. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer). SPIE Conf. Ser. 2014, 9147, 91471D. [Google Scholar]
- Madonna, S.; Bautista, M.; Dinerstein, H.L.; Sterling, N.C.; García-Rojas, J.; Kaplan, K.F.; del Mar Rubio-Díez, M.; Castro-Rodríguez, N. Neutron-capture Elements in Planetary Nebulae: First Detections of Near-infrared [Te III] and [Br V] Emission Lines. Astrophys. J. Lett. 2018, 861, L8. [Google Scholar] [CrossRef]
- Moore, C.E. Atomic Energy Levels, Vol. 3; National Bureau of Standards Circular 467; U.S. Government Printing Office: Washington, DC, USA, 1958.
- Tauheed, A.; Naz, A. Revision and Extension to the Analysis of the Third Spectrum of Tellurium: Te III. J. Kor. Phys. Soc. 2011, 59, 2910. [Google Scholar] [CrossRef]
- Sterling, N.C.; Madonna, S.; Butler, K.; García-Rojas, J.; Mashburn, A.L.; Morisset, C.; Luridiana, V.; Roederer, I.U. Identification of Near-infrared [Se III] and [Kr VI] Emission Lines in Planetary Nebulae. Astrophys. J. Lett. 2017, 840, 80. [Google Scholar] [CrossRef] [Green Version]
- Simcoe, R.A.; Burgasser, A.J.; Schechter, P.L.; Fishner, J.; Bernstein, R.A.; Bigelow, B.C.; Pipher, J.L.; Forrest, W.; McMurtry, C.; Smith, M.J.; et al. FIRE: A Facility Class Near-Infrared Echelle Spectrometer for the Magellan Telescopes. Publ. Astron. Soc. Pac. 2013, 125, 270. [Google Scholar] [CrossRef]
- Rayner, J.; Tokunaga, A.; Jaffe, D.; Bonnet, M.; Ching, G.; Connelley, M.; Kokubun, D.; Lockhart, C.; Warmbier, E. iSHELL: A construction, assembly and testing. SPIE Conf. Ser. 2016, 9908, 990884. [Google Scholar]
- Mahadevan, S.; Ramsey, L.W.; Terrien, R.; Halverson, S.; Roy, A.; Hearty, F.; Levi, E.; Stefansson, G.K.; Robertson, P.; Bender, C.; et al. The Habitable-zone Planet Finder: A status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby-Eberly telescope. SPIE Conf. Ser. 2014, 9147, 91471G. [Google Scholar]
- García-Hernández, D.A.; Manchado, A.; Lambert, D.L.; Plez, B.; Garcia-Lario, P.; D’Antona, F.; Lugaro, M.; Karakas, A.I.; Van Raai, M.A. Rb-Rich Asymptotic Giant Branch Stars in the Magellanic Clouds. Astrophys. J. Lett. 2009, 705, L31. [Google Scholar] [CrossRef] [Green Version]
- van Raai, M.A.; Lugaro, M.; Karakas, A.I.; García-Hernández, D.A.; Yong, D. Rubidium, zirconium, and lithium production in intermediate-mass asymptotic giant branch stars. Astron. Astrophys. 2012, 540, 44. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; Lugaro, M. Stellar Yields from Metal-rich Asymptotic Giant Branch Models. Astrophys. J. Lett. 2016, 825, 26. [Google Scholar] [CrossRef]
- D’Odorico, S.; Cristiani, S.; Dekker, H.; Hill, V.; Kaufer, A.; Kim, T.; Primas, F. Performance of UVES, the echelle spectrograph for the ESO VLT and highlights of the first observations of stars and quasars. SPIE Conf. Ser. 2000, 4005, 121. [Google Scholar]
- García-Rojas, J.; Madonna, S.; Luridiana, V.; Sterling, N.C.; Morisset, C.; Delgado-Inglada, G.; Toribio San Cipriano, L. s-process enrichment in the planetary nebula NGC 3918. Results from deep echelle spectrophotometry. Mon. Not. R. Astron. Soc. 2015, 452, 2606. [Google Scholar] [CrossRef] [Green Version]
- Sterling, N.C.; Porter, R.L.; Dinerstein, H.L. The Abundances of Light Neutron-capture Elements in Planetary Nebulae. III. The Impact of New Atomic Data on Nebular Selenium and Krypton Abundance Determinations. Astrophys. J. Suppl. Ser. 2015, 218, 25. [Google Scholar] [CrossRef] [Green Version]
- Madonna, S.; García-Rojas, J.; Sterling, N.C.; Delgado-Inglada, G.; Mesa-Delgado, A.; Luridiana, V.; Roederer, I.U.; Mashburn, A.L. Neutron-capture element abundances in the planetary nebula NGC 5315 from deep optical and near-infrared spectrophotometry. Mon. Not. R. Astron. Soc. 2017, 471, 1341. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, M.; Hyung, S. Physical properties of the fluorine and neutron-capture element-rich PN Jonckheere 900. Mon. Not. R. Astron. Soc. 2020, 491, 2959. [Google Scholar] [CrossRef]
- Kim, K.M.; Jang, B.H.; Han, I.; Jang, J.G.; Sung, H.C.; Chun, M.Y.; Hyung, S.; Yoon, T.S. Design and Manufacturing of the Cassegrain Interface Module of the BOAO Echelle Spectrograph. J. Korean Astron. Soc. 2002, 35, 221. [Google Scholar] [CrossRef]
- Karakas, A.I.; Lugaro, M.; Carlos, M.; Cseh, B.; Kamath, D.; García-Hernández, D.A. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity. Mon. Not. R. Astron. Soc. 2018, 477, 421. [Google Scholar] [CrossRef]
- Aleman, I.; Leal-Ferreira, M.L.; Cami, J.; Akras, S.; Ochsendorf, B.; Wesson, R.; Morisset, C.; Cox, N.L.; Bernard-Salas, J.; Paladini, C.E.; et al. Characterization of the planetary nebula Tc 1 based on VLT X-shooter observations. Mon. Not. R. Astron. Soc. 2019, 490, 2475. [Google Scholar] [CrossRef]
- Vernet, J.; Dekker, H.; D’Odorico, S.; Kaper, L.; Kjaergaard, P.; Hammer, F.; Randich, S.; Zerbi, F.; Groot, P.J.; Hjorth, J.; et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 2011, 536, A105. [Google Scholar] [CrossRef]
- Noguchi, K.; Aoki, W.; Kawanomoto, S.; Ando, H.; Honda, S.; Izumiura, H.; Kambe, E.; Okita, K.; Sadakane, K.; Sato, B.E.; et al. High Dispersion Spectrograph (HDS) for the Subaru Telescope. Publ. Astron. Soc. Jpn. 2002, 54, 855. [Google Scholar] [CrossRef]
- Otsuka, M.; Meixner, M.; Riebel, D.; Hyung, S.; Tajitsu, A.; Izumiura, H. Dust and Chemical Abundances of the Sagittarius Dwarf Galaxy Planetary Nebula Hen2-436. Astrophys. J. Lett. 2011, 729, 39. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, M. Chemical abundances in the PN Wray16-423 in the Sagittarius dwarf spheroidal galaxy: Constraining the dust composition. Mon. Not. R. Astron. Soc. 2015, 452, 4070. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.L.; Dinerstein, H.L.; Geballe, T.R.; Sterling, N.C. K-Band Spectroscopy of the Extragalactic Planetary Nebula Hen 2-436. In Proceedings of the American Astronomical Society Meeting 209, San Diego, CA, USA, 8–12 January 2006; Volume 38, p. 1113. [Google Scholar]
- Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S.E. Detection of C60 and C70 in a Young Planetary Nebula. Science 2010, 329, 1180. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R.A.; Szczerba, R.; Perea-Calderón, J.V. Formation of Fullerenes in H-containing Planetary Nebulae. Astrophys. J. Lett. 2010, 724, L39. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; Iglesias-Groth, S.; Acosta-Pulido, J.A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R.A.; Cataldo, F. The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae. Astrophys. J. Lett. 2011, 737, L30. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, M.; Kemper, F.; Cami, J.; Peeters, E.; Bernard-Salas, J. Physical properties of fullerene-containing Galactic planetary nebulae. Mon. Not. R. Astron. Soc. 2014, 437, 2577. [Google Scholar] [CrossRef]
- Otsuka, M.; Kemper, F.; Hyung, S.; Sargent, B.A.; Meixner, M.; Tajitsu, A.; Yanagisawa, K.S. The Detection of C60 in the Well-characterized Planetary Nebula M1-11. Astrophys. J. Lett. 2013, 764, 77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, X.W. Fluorine Abundances in Planetary Nebulae. Astrophys. J. Lett. 2005, 631, L61. [Google Scholar] [CrossRef] [Green Version]
- Jorissen, A.; Smith, V.V.; Lambert, D.L. Fluorine in red giant stars: Evidence for nucleosynthesis. Astron. Astrophys. 1992, 261, 164. [Google Scholar]
- Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface. Astrophys. J. Suppl. Ser. 2015, 219, 40. [Google Scholar] [CrossRef]
- Mowlavi, N.; Jorissen, A.; Arnould, M. Fluorine production in intermediate-mass stars. Astron. Astrophys. 1996, 311, 803. [Google Scholar]
- García-Hernández, D.A.; García-Lario, P.; Plez, B. Rubidium-Rich Asymptotic Giant Branch Stars. Science 2006, 314, 1751. [Google Scholar] [CrossRef] [Green Version]
- Zamora, O.; García-Hernández, D.A.; Plez, B.; Manchado, A. Circumstellar effects on the Rb abundances in O-rich AGB stars. Astron. Astrophys. 2014, 564, L4. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Mesa, V.; Zamora, O.; García-Hernández, D.A.; Plez, B.; Manchado, A.; Karakas, A.I.; Lugaro, M. Rubidium and zirconium abundances in massive Galactic asymptotic giant branch stars revisited. Astron. Astrophys. 2017, 606, A20. [Google Scholar] [CrossRef] [Green Version]
- De Marco, O. The Origin and Shaping of Planetary Nebulae: Putting the Binary Hypothesis to the Test. Publ. Astron. Soc. Pac. 2009, 121, 316. [Google Scholar] [CrossRef] [Green Version]
- Hillwig, T.C.; Jones, D.; De Marco, O.; Bond, H.E.; Margheim, S.; Frew, D. Observational Confirmation of a Link Between Common Envelope Binary Interaction and Planetary Nebula Shaping. Astrophys. J. Lett. 2016, 832, 125. [Google Scholar] [CrossRef] [Green Version]
- Jones, D. Binary Central Stars of Planetary Nebulae. Galaxies 2020, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Boffin, H.M.; Miszalski, B.; Wesson, R.; Corradi, R.L.; Tyndall, A.A. The post-common-envelope, binary central star of the planetary nebula Hen 2-11. Astron. Astrophys. 2014, 562, A89. [Google Scholar] [CrossRef] [Green Version]
- Izzard, R.G.; Dray, L.M.; Karakas, A.I.; Lugaro, M.; Tout, C.A. Population nucleosynthesis in single and binary stars. I. Model. Astron. Astrophys. 2006, 460, 565–572. [Google Scholar] [CrossRef]
- Jones, D. Observational Constraints on the Common Envelope Phase. In Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology; Kamath, J., Ed.; Springer Nature: Berlin, Germany, 2020. [Google Scholar]
1. | Vacuum wavelengths are used in this paper for NIR lines and air wavelengths for optical transitions. |
2. | Enhanced abundances of Se and Kr in Hen 2-436 indicated by their NIR lines were first reported by Wood et al. [43]. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sterling, N.C. Neutron-Capture Element Abundances in Planetary Nebulae. Galaxies 2020, 8, 50. https://doi.org/10.3390/galaxies8020050
Sterling NC. Neutron-Capture Element Abundances in Planetary Nebulae. Galaxies. 2020; 8(2):50. https://doi.org/10.3390/galaxies8020050
Chicago/Turabian StyleSterling, N. C. 2020. "Neutron-Capture Element Abundances in Planetary Nebulae" Galaxies 8, no. 2: 50. https://doi.org/10.3390/galaxies8020050
APA StyleSterling, N. C. (2020). Neutron-Capture Element Abundances in Planetary Nebulae. Galaxies, 8(2), 50. https://doi.org/10.3390/galaxies8020050