On the Origin of Morphological Structures of Planetary Nebulae
Abstract
:1. Introduction
2. Problems with Morphological Classifications
- (i).
- (ii).
- Dynamic range: if we go deep enough we see more/different structures. The well-known Messier PN M76 turned out to be bipolar when observed by CCD detectors, when earlier photographic plate images only showed the central torus. The bipolar lobes of Sh 1-89 were only found with narrow-band CCD imaging [11].
- (iii).
- (iv).
- limited wavelength coverage. Bipolar structures not obvious in visible images may reveal themselves in the infrared [14].
- (v).
- Internal dust extinction. Optical morphology of PNe may be affected by effects of circumstellar dust extinction [15].
3. Multipolar Nebulae
In the past, we have relied on slit spectroscopy to infer the kinematic structure of PNe. The best way to test the multipolar hypothesis is through integral field spectroscopy. The velocity maps from such observations can be compared with 3-D spatial-kinematic models to determine the true intrinsic structure of PNe.
4. Unseen “Dark” Matter in Planetary Nebulae
5. Discussion
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Curtis, H.D. The Planetary Nebulae. Publ. Lick Obs. 1918, 13, 55–74. [Google Scholar]
- Khromov, G.S.; Kohoutek, L. Morphological Study of Planetary Nebulae. In Symposium-International Astronomical Union; Cambridge University Press: Cambridge, UK, 1968; Volume 34, p. 227. [Google Scholar]
- Masson, C.R. On the Structure of Ionization-Bounded Planetary-Nebulae. Astrophys. J. 1990, 348, 580–587. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Kwok, S. A Morphological Study of Planetary Nebulae. Astrophys. J. Suppl. Ser. 1998, 117, 341. [Google Scholar] [CrossRef]
- Kwok, S. From red giants to planetary nebulae. Astrophys. J. 1982, 258, 280–288. [Google Scholar] [CrossRef]
- Balick, B. The evolution of planetary nebulae. I—Structures, ionizations, and morphological sequences. Astron. J. 1987, 94, 671–678. [Google Scholar] [CrossRef]
- Bryce, M.; Balick, B.; Meaburn, J. Investigating the Haloes of Planetary Nebulae—Part Four—NGC6720 the Ring Nebula. Mon. Not. R. Astron. Soc. 1994, 266, 721–732. [Google Scholar] [CrossRef]
- Meaburn, J.; Boumis, P.; López, J.A.; Harman, D.J.; Bryce, M.; Redman, M.P.; Mavromatakis, F. The creation of the Helix planetary nebula (NGC 7293) by multiple events. Mon. Not. R. Astron. Soc. 2005, 360, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Kwok, S.; Chong, S.-N.; Koning, N.; Hua, T.; Yan, C.-H. The True Shapes of the Dumbbell and the Ring. Astrophys. J. 2008, 689, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Latter, W.B.; Dayal, A.; Bieging, J.H.; Meakin, C.; Hora, J.L.; Kelly, D.M.; Tielens, A.G.G.M. Revealing the Photodissociation Region: HST/NICMOS Imaging of NGC 7027. Astrophys. J. 2000, 539, 783–797. [Google Scholar] [CrossRef]
- Hua, C.T. Deep morphologies of type I planetary nebulae. Astron. Astrophys. Suppl. Ser. 1997, 125, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Mampaso, A.; Corradi, R.L.; Viironen, K.; Leisy, P.; Greimel, R.; Drew, J.E.; Barlow, M.J.; Frew, D.J.; Irwin, J.; Morris, R.A.H.; et al. The “Príncipes de Asturias” nebula: A new quadrupolar planetary nebula from the IPHAS survey. Astron. Astrophys. 2006, 458, 203–212. [Google Scholar] [CrossRef]
- Zhang, Y.; Hsia, C.-H.; Kwok, S. Planetary Nebulae Detected in the Spitzer Space Telescope GLIMPSE 3D Legacy Survey. Astrophys. J. 2012, 745, 59. [Google Scholar] [CrossRef]
- Zhang, Y.; Kwok, S. Planetary Nebulae Detected in the Spitzer Space Telescope GLIMPSE II Legacy Survey. Astrophys. J. 2009, 706, 252–305. [Google Scholar] [CrossRef]
- Lee, T.-H.; Kwok, S. Dust Extinction in Compact Planetary Nebulae. Astrophys. J. 2005, 632, 340–354. [Google Scholar] [CrossRef] [Green Version]
- Manchado, A.; Stanghellini, L.; Guerrero, M.A. Quadrupolar Planetary Nebulae: A New Morphological Class. Astrophys. J. 1996, 466, L95. [Google Scholar] [CrossRef]
- Lopez, J.A.; Meaburn, J.; Bryce, M.; Holloway, A.J. The Morphology and Kinematics of the Complex Polypolar Planetary Nebula NGC 2440. Astrophys. J. 1998, 493, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Hsia, C.-H.; Chau, W.; Zhang, Y.; Kwok, S. Hubble Space Telescope Observations and Geometric Models of Compact Multipolar Planetary Nebulae. Astrophys. J. 2014, 787, 25. [Google Scholar] [CrossRef]
- Sahai, R. The starfish twins: Two young planetary nebulae with extreme multipolar morphology. Astrophys. J. 2000, 537, L43–L47. [Google Scholar] [CrossRef]
- Sahai, R.; Nyman, L.-Å.; Wootten, A. HE 2-113: A Multipolar Planetary Nebula with Rings around a Cool Wolf-Rayet Star. Astrophys. J. 2000, 543, 880–888. [Google Scholar] [CrossRef]
- López, J.A.; García-Díaz, M.T.; Steffen, W.; Riesgo, H.; Richer, M.G. Morpho-kinematic Analysis of the Point-symmetric, Bipolar Planetary Nebulae Hb 5 and K 3-17, A Pathway to Poly-polarity. Astrophys. J. 2012, 750, 131. [Google Scholar] [CrossRef]
- Lopez, J.A.; Vazquez, R.; Rodriguez, L.F. The Discovery of a Bipolar, Rotating, Episodic Jet (BRET) in the Planetary Nebula KjPn 8. Astrophys. J. 1995, 455, L63–L66. [Google Scholar] [CrossRef]
- Manchado, A.; García-Hernández, D.A.; Villaver, E.; de Massas, J.G. Morphological Classification of Post-AGB Stars. In Why Galaxies Care about AGB Stars II: Shining Examples and Common Inhabitants; Kerschbaum, F., Ed.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2011; p. 161. [Google Scholar]
- Sahai, R.; Morris, M.R.; Villar, G.G. Young Planetary Nebulae: Hubble Space Telescope Imaging and a New Morphological Classification System. Astron. J. 2011, 141, 134. [Google Scholar] [CrossRef]
- Chong, S.-N.; Kwok, S.; Imai, H.; Tafoya, D.; Chibueze, J. Multipolar Planetary Nebulae: Not as Geometrically Diversified as Thought. Astrophys. J. 2012, 760, 115. [Google Scholar] [CrossRef]
- Kwok, S. Physics and Chemistry of the Interstellar Medium; University Science Books; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Trung, D.-V.; Bujarrabal, V.; Castro-Carrizo, A.; Lim, J.; Kwok, S. Massive Expanding Torus and Fast Outflow in Planetary Nebula NGC 6302. Astrophys. J. 2008, 673, 934–941. [Google Scholar] [CrossRef] [Green Version]
- Santander-García, M.; Bujarrabal, V.; Alcolea, J.; Castro-Carrizo, A.; Contreras, C.S.; Quintana-Lacaci, G.; Corradi, R.L.M.; Neri, R. ALMA high spatial resolution observations of the dense molecular region of NGC 6302. Astron. Astrophys. 2017, 597, A27. [Google Scholar] [CrossRef] [PubMed]
- Muthumariappan, C.; Kwok, S.; Volk, K. Subarcsecond Mid-Infrared Imaging of Dust in the Bipolar Nebula Hen 3-401. Astrophys. J. 2006, 640, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Volk, K.; Hrivnak, B.J.; Su, K.Y.L.; Kwok, S. An Infrared Imaging Study of the Bipolar Proto-Planetary Nebula IRAS 16594-4656. Astrophys. J. 2006, 651, 294–300. [Google Scholar] [CrossRef]
- Su, K.Y.L.; Kelly, D.M.; Latter, W.B.; Misselt, K.A.; Frank, A.; Volk, K.; Engelbracht, C.W.; Gordon, K.D.; Hines, D.C.; Morrison, J.E.; et al. High spatial resolution mid- and far-infrared imaging study of NGC 2346. Astrophys. J. Suppl. Ser. 2004, 154, 302–308. [Google Scholar] [CrossRef]
- Ueta, T. Spitzer MIPS Imaging of NGC 650: Probing the History of Mass Loss on the Asymptotic Giant Branch. Astrophys. J. 2006, 650, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Izumiura, H.; Ueta, T.; Yamamura, I.; Nakada, Y.; Matsunaga, N.; Ita, Y.; Matsuura, M.; Fukushi, H.; Mito, H.; Tanabe, T. Far-IR Imaging Survey of the Extended Dust Shells of Evolved Stars with AKARI. In AKARI, a Light to Illuminate the Misty Universe; Onaka, T., Ed.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2009; p. 127. [Google Scholar]
- Ueta, T.; Ladjal, D.; Exter, K.M.; Otsuka, M.; Szczerba, R.; Siódmiak, N.; Aleman, I.; van Hoof, P.A.M.; Kastner, J.H.; Montez, R.; et al. The Herschel Planetary Nebula Survey (HerPlaNS)-I. Data overview and analysis demonstration with NGC 6781. Astron. Astrophys. 2014, 565, A36. [Google Scholar] [CrossRef]
- Van Hoof, P.A.M.; Van de Steene, G.C.; Exter, K.M.; Barlow, M.J.; Ueta, T.; Groenewegen, M.A.T.; Gear, W.K.; Gomez, H.L.; Hargrave, P.C.; Ivison, R.J.; et al. A Herschel study of NGC 650. Astron. Astrophys. 2013, 560, A7. [Google Scholar] [CrossRef]
- Van de Steene, G.C.; van Hoof, P.A.M.; Exter, K.M.; Barlow, M.J.; Cernicharo, J.; Etxaluze, M.; Gear, W.K.; Goicoechea, J.R.; Gomez, H.L.; Groenewegen, M.A.T.; et al. Herschel imaging of the dust in the Helix nebula (NGC 7293). Astron. Astrophys. 2015, 574, A134. [Google Scholar] [CrossRef]
- Koning, N.; Kwok, S.; Steffen, W. Post Asymptotic Giant Branch Bipolar Reflection Nebulae: Result of Dynamical Ejection or Selective Illumination? Astrophys. J. 2013, 765, 92. [Google Scholar] [CrossRef]
- Steffen, W.; Koning, N.; Esquivel, A.; García-Segura, G.; García-Díaz, M.T.; López, J.A.; Magnor, M. A wind-shell interaction model for multipolar planetary nebulae. Mon. Not. R. Astron. Soc. 2013, 436, 470–478. [Google Scholar] [CrossRef]
- Schönberner, D.; Jacob, R.; Lehmann, H.; Hildebrandt, G.; Steffen, M.; Zwanzig, A.; Sandin, C.; Corradi, R.L.M. A hydrodynamical study of multiple-shell planetary nebulae. III. Expansion properties and internal kinematics: Theory versus observation. Astron. Nachr. 2014, 335, 378–408. [Google Scholar] [CrossRef]
- Parker, Q.A.; Phillipps, S.; Pierce, M.J.; Hartley, M.; Hambly, N.C.; Read, M.A.; MacGillivray, H.T.; Tritton, S.B.; Cass, C.P.; Cannon, R.D.; et al. The AAO/UKST superCOSMOS Hα survey. Mon. Not. R. Astr. Soc. 2005, 362, 689–710. [Google Scholar] [CrossRef] [Green Version]
- Parker, Q.A.; Acker, A.; Frew, D.J.; Hartley, M.; Peyaud, A.E.J.; Ochsenbein, F.; Phillipps, S.; Russeil, D.; Beaulieu, S.F.; Cohen, M.; et al. The Macquarie/AAO/Strasbourg Hα planetary nebula catalogue: MASH. Mon. Not. R. Astr. Soc. 2006, 373, 79–94. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwok, S. On the Origin of Morphological Structures of Planetary Nebulae. Galaxies 2018, 6, 66. https://doi.org/10.3390/galaxies6030066
Kwok S. On the Origin of Morphological Structures of Planetary Nebulae. Galaxies. 2018; 6(3):66. https://doi.org/10.3390/galaxies6030066
Chicago/Turabian StyleKwok, Sun. 2018. "On the Origin of Morphological Structures of Planetary Nebulae" Galaxies 6, no. 3: 66. https://doi.org/10.3390/galaxies6030066
APA StyleKwok, S. (2018). On the Origin of Morphological Structures of Planetary Nebulae. Galaxies, 6(3), 66. https://doi.org/10.3390/galaxies6030066