Spin and Maximal Acceleration
Abstract
:1. Introduction
2. Spin Currents
3. Dispersion Relations and Particle Motion
4. Conclusions
Conflicts of Interest
References
- Ashby, N. Relativity in the global positioning system. Liv. Rev. Relativ. 2003, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Demirel, B.; Sponar, S.; Hasegawa, Y. Measurement of the spin-rotation coupling in neutron polarimetry. New J. Phys. 2015, 17, 023065. [Google Scholar] [CrossRef]
- Mashhoon, B. Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett. 1988, 61, 2639. [Google Scholar] [CrossRef] [PubMed]
- Mashhoon, B. Limitations of spacetime measurements. Phys. Lett. A 1990, 143, 176. [Google Scholar] [CrossRef]
- Mashhoon, B. The hypothesis of locality in relativistic physics. Phys. Lett. A 1990, 145, 147–153. [Google Scholar] [CrossRef]
- Papini, G. Spin–gravity coupling and gravity-induced quantum phases. Gen. Relativ. Grav. 2008, 40, 1117–1144. [Google Scholar] [CrossRef]
- Everitt, C.W.F.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef] [PubMed]
- Iorio, L.; Ruggiero, M.L.; Corda, C. Novel considerations about the error budget of the LAGEOS-based tests of frame-dragging with GRACE geopotential models. Acta Astronaut. 2013, 91, 141–148. [Google Scholar] [CrossRef]
- Iorio, L.; Lichtenegger, H.I.M.; Ruggiero, M.L.; Corda, C. Phenomenology of the Lense-Thirring effect in the Solar System. Astrophys. Space Sci. 2011, 331, 351–395. [Google Scholar] [CrossRef]
- Grandy, W.T., Jr. Relativistic Quantum Mechanics of Leptons and Fields; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Papini, G. Spin-rotation coupling in compound spin objects. Phys. Lett. A 2013, 377, 960–963. [Google Scholar] [CrossRef]
- Caianiello, E.R. Geometry from quantum mechanics. Nuovo Cimento B 1980, 59, 350–366. [Google Scholar] [CrossRef]
- Caianiello, E.R. Is there a maximal acceleration? Lett. Nuovo Cimento 1981, 32, 65–70. [Google Scholar] [CrossRef]
- Caianiello, E.R. Quantum and other physica as systems theory. Riv. Nuovo Cimento 1992, 15, 1–65. [Google Scholar] [CrossRef]
- Caianiello, E.R. Maximal acceleration as a consequence of Heisenberg’s uncertainty relations. Lett. Nuovo Cimento 1984, 41, 370–372. [Google Scholar] [CrossRef]
- Wood, W.R.; Papini, G.; Cai, Y.Q. Maximal Acceleration and the Time-Energy Uncertainty Relation. Nuovo Cimento B 1989, 104, 361–369. [Google Scholar] [CrossRef]
- Papini, G. Revisiting Caianiello’s Maximal Acceleration. Nuovo Cimento B 2002, 117, 1325–1331. [Google Scholar]
- Das, A. Extended phase space. I. Classical fields. J. Math. Phys. 1980, 21, 1506. [Google Scholar] [CrossRef]
- Caianiello, E.R.; Vilasi, G. Extended Dirac particles and their spectra in curved phase-space. Lett. Nuovo Cimento 1981, 30, 469–473. [Google Scholar] [CrossRef]
- Caldirola, P. On the existence of a maximal acceleration in the relativistic theory ofelectron. Lett. Nuovo Cimento 1981, 32, 264–266. [Google Scholar] [CrossRef]
- Caianiello, E.R.; de Filippo, S.; Vilasi, G. Extended Dirac particles and their spectra in curved phase-space. Lett. Nuovo Cimento 1982, 33, 555–558. [Google Scholar] [CrossRef]
- Caianiello, E.R.; de Filippo, S.; Marmo, G.; Vilasi, G. Remarks on the maximal-acceleration hypothesis. Lett. Nuovo Cimento 1982, 34, 112–114. [Google Scholar] [CrossRef]
- Caianiello, E.R.; Landi, G. Maximal acceleration and Sakharov’s limiting temperature. Lett. Nuovo Cimento 1985, 42, 70–72. [Google Scholar] [CrossRef]
- Caianiello, E.R.; Marmo, G.; Scarpetta, G. (Pre)quantum geometry. Nuovo Cimento A 1985, 86, 337–355. [Google Scholar] [CrossRef]
- Sharma, C.S.; Srirankanatham, S. On Caianiello’s maximal acceleration. Lett. Nuovo Cimento 1985, 44, 275–276. [Google Scholar] [CrossRef]
- Gasperini, M. Very early cosmology in the maximal acceleration hypothesis. Astrophys. Space Sci. 1987, 138, 387–391. [Google Scholar] [CrossRef]
- Toller, M. Test particles with acceleration-dependent Lagrangian. J. Math. Phys. 2006, 47, 022904. [Google Scholar] [CrossRef]
- Toller, M. A Theory of Gravitation Covariant under Sp(4,R). arXiv, 2017; arXiv:hep-th/0312016. [Google Scholar]
- Toller, M. Lagrangian and Presymplectic Particle Dynamics with Maximal Acceleration. arXiv, 2004; arXiv:hep-th/0409317. [Google Scholar]
- Toller, M. Theories with limited acceleration: Free fields. Nuovo Cimento B 1988, 102, 261–308. [Google Scholar] [CrossRef]
- Toller, M. Maximal acceleration, maximal angular velocity and causal influence. Int. J. Theor. Phys. 1990, 29, 963–984. [Google Scholar] [CrossRef]
- Toller, M. Supersymmetry and maximal acceleration. Phys. Lett. B 1991, 256, 215–217. [Google Scholar] [CrossRef]
- Falla, D.F.; Landsberg, P.T. A black-hole minimum mass. Nuovo Cimento B 1991, 106, 669–671. [Google Scholar] [CrossRef]
- Pati, A.K. On the maximal acceleration and the maximal energy loss. Nuovo Cimento B 1992, 107, 895–901. [Google Scholar] [CrossRef]
- Pati, A.K. A note on maximal acceleration. Europhys. Lett. 1992, 18, 285. [Google Scholar] [CrossRef]
- Parentani, R.; Potting, R. Accelerating observer and the Hagedorn temperature. Phys. Rev. Lett. 1989, 63, 945. [Google Scholar] [CrossRef] [PubMed]
- Rama, S.K. Classical velocidy in κ-deformed Poincaré algebra and maximum aceleration. Mod. Phys. Lett. A 2003, 18, 527. [Google Scholar] [CrossRef]
- Schuller, F. Born-Infeld kinematics. Ann. Phys. 2002, 299, 174–207. [Google Scholar] [CrossRef]
- Schuller, F. Born-Infeld kinematics and correction to the Thomas precession. Phys. Lett. B 2002, 540, 119–124. [Google Scholar] [CrossRef]
- Schuller, F.; Wohlfarth, N.R.; Grimm, T.W. Pauli-Villars regularization and Born-Infeld kinematics. Class. Quant. Grav. 2003, 20, 4269. [Google Scholar] [CrossRef]
- Torrome, R.G. On a covariant version of Caianiello’s Model. arXiv, 2007; arXiv:gr-qc/0701091. [Google Scholar]
- Torrome, R.G. Emergent phenomenology from deterministic Cartan-Randers systems. arXiv, 2005; arXiv:gr-qc/0501094. [Google Scholar]
- Friedman, Y.; Gofman, Y. A new relativistic kinematics of accelerated systems. arXiv, 2005; arXiv:gr-qc/0509004. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Company: San Francisco, CA, USA, 1973. [Google Scholar]
- Brandt, H.E. Maximal proper acceleration relative to the vacuum. Lett. Nuovo Cimento 1983, 38, 522–524. [Google Scholar] [CrossRef]
- Brandt, H.E. Maximal proper acceleration and the structure of spacetime. Found. Phys. Lett. 1989, 2, 39–58. [Google Scholar] [CrossRef]
- Papini, G.; Wood, W.R. Maximal Acceleration of Thin Shells in Weyl Space. Phys. Lett. A 1992, 170, 409–412. [Google Scholar] [CrossRef]
- Wood, W.R.; Papini, G. Breaking Weyl Invariance in the Interior of a Bubble. Phys. Rev. D 1992, 45, 3617. [Google Scholar] [CrossRef]
- Wood, W.R.; Papini, G. A Geometric Formulation of the Causal Interpretation of Quantum Mechanics. Found. Phys. Lett. 1993, 6, 207–223. [Google Scholar] [CrossRef]
- Papini, G. Maximal Proper Acceleration. Math. Jpn. 1995, 41, 81. [Google Scholar]
- Vigier, J.P. Explicit mathematical construction of relativistic nonlinear De Broglie waves described by three-dimensional (wave and electromagnetic) solitons “piloted” (controlled) by corresponding solutions of associated linear Klein-Gordon and Schrödinger equations. Found. Phys. 1991, 21, 125–148. [Google Scholar] [CrossRef]
- McGuigan, M. Finite black hole entropy and string theory. Phys. Rev. D 1994, 50, 5225. [Google Scholar] [CrossRef]
- Nesterenko, V.V.; Feoli, A.; Lambiase, G.; Scarpetta, G. Regularizing properties of the maximal acceleration principle in quantum field theory. Phys. Rev. D 1998, 60, 065001. [Google Scholar] [CrossRef]
- Breckenridge, J.C.; Elias, V.; Steele, T.G. Massless scalar field theory in a quantized spacetime. Class. Quantum Grav. 1995, 12, 637. [Google Scholar] [CrossRef]
- Sanchez, N.; Veneziano, G. Jeans-like instabilities for strings in cosmological backgrounds. Nucl. Phys. B 1990, 333, 253–266. [Google Scholar] [CrossRef]
- Gasperini, M.; Sanchez, N.; Veneziano, G. Self-sustained inflation and dimensional reduction from fundamental strings. Nucl. Phys. B 1991, 364, 365–380. [Google Scholar] [CrossRef]
- Gasperini, M.; Sanchez, N.; Veneziano, G. Highly unstable fundmental strings in inflationary cosmologies. Int. J. Mod. Phys. A 1991, 6, 3853. [Google Scholar] [CrossRef]
- Gasperini, M. Kinematic interpretation of string instabilities in a background gravitational field. Phys. Lett. B 1991, 258, 70–74. [Google Scholar] [CrossRef]
- Gasperini, M. Causal horizons and strings. Gen. Rel. Grav. 1992, 24, 219. [Google Scholar] [CrossRef]
- Frolov, V.P.; Sanchez, N. Instability of accelerated strings and the problem of limiting acceleration. Nucl. Phys. B 1991, 349, 815–838. [Google Scholar] [CrossRef]
- Sanchez, N. Structure: From Physics to General Systems; Marinaro, M., Scarpetta, G., Eds.; World Scientific: Singapore, 1993; Volume 1, p. 118. [Google Scholar]
- Caianiello, E.R.; Gasperini, M.; Scarpetta, G. Inflation and singularity prevention in a model for extended- object-dominated cosmology. Class. Quantum Grav. 1991, 8, 659. [Google Scholar] [CrossRef]
- Gasperini, M. Advances in Theoretical Physics; Caianiello, E.R., Ed.; World Scientific: Singapore, 1991; p. 77. [Google Scholar]
- Capozziello, S.; Lambiase, G.; Scarpetta, G. Cosmological perturbations in singularity-free deflationary models. Nuovo Cimento B 1999, 114, 93–104. [Google Scholar]
- Feoli, A. String dynamics in Rindler spacein a model with maximal acceleration. Nucl. Phys. B 1993, 396, 261–269. [Google Scholar] [CrossRef]
- Capozziello, S.; Lambiase, G.; Scarpetta, G. Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 2000, 39, 15–22. [Google Scholar] [CrossRef]
- Caianiello, E.R.; Gasperini, M.; Scarpetta, G. Phenomenological consequences of a geometric model with limited proper acceleration. Nuovo Cimento B 1990, 105, 259–278. [Google Scholar] [CrossRef]
- Bozza, V.; Lambiase, G.; Papini, G.; Scarpetta, G. Quantum Violations of the Equivalence Principle in a modified Schwarzschild Geometry. Neutrino Oscillations. Phys. Lett. A 2001, 279, 163–168. [Google Scholar] [CrossRef]
- Bozza, V.; Capozziello, S.; Lambiase, G.; Scarpetta, G. Neutrino oscillations in Caianiello quantum geometry model. Int. J. Theor. Phys. 2001, 40, 849–859. [Google Scholar] [CrossRef]
- Lambiase, G.; Papini, G.; Punzi, R.; Scarpetta, G. Lower neutrino mass bound from SN1987A data and quantum geometry. Class. Quant. Grav. 2006, 23, 1347. [Google Scholar] [CrossRef]
- Gibbons, G.; Hawking, S.W. Cosmological event horizons, thermodynamics and particle creation. Phys. Rev. D 1977, 15, 2738. [Google Scholar] [CrossRef]
- Feoli, A.; Lambiase, G.; Papini, G.; Scarpetta, G. Schwarzschild Field with Maximal Acceleration Corrections. Phys. Lett. A 1999, 263, 147–153. [Google Scholar] [CrossRef]
- Capozziello, S.; Feoli, A.; Lambiase, G.; Papini, G.; Scarpetta, G. Massive Scalar Particles in a Modified Schwarzschild Geometry. Phys. Lett. A 2000, 268, 247–254. [Google Scholar] [CrossRef]
- Bozza, V.; Feoli, A.; Papini, G.; Scarpetta, G. Maximal Acceleration Effects in Reissner-Nordstrom Space. Phys. Lett. A 2000, 271, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Bozza, V.; Feoli, A.; Lambiase, G.; Papini, G.; Scarpetta, G. Maximal Acceleration Effects in Kerr Space. Phys. Lett. A 2001, 283, 53–61. [Google Scholar] [CrossRef]
- Papini, G.; Scarpetta, G.; Bozza, V.; Feoli, A.; Lambiase, G. Radiation Bursts from Particles in the Field of Compact, Impenetrable Astrophysical Objects. Phys. Lett. A 2002, 300, 603–610. [Google Scholar] [CrossRef]
- Feoli, A.; Lambiase, G.; Papini, G.; Scarpetta, G. Classical Electrodynamics of a Particle with Maximal Acceleration Corrections. Nuovo Cimento B 1997, 112, 913–922. [Google Scholar]
- Lambiase, G.; Papini, G.; Scarpetta, G. Maximal Acceleration Limits on the Mass of the Higgs Boson. Nuovo Cimento B 1999, 114, 189–197. [Google Scholar]
- Kuwata, S. Higgs-boson mass and the modification of the Higgs-fermion interaction owing to the existence of a maximal acceleration. Nuovo Cimento B 1996, 111, 893–899. [Google Scholar] [CrossRef]
- Lambiase, G.; Papini, G.; Scarpetta, G. Maximal Acceleration Corrections to the Lamb Shift of Hydrogen, Deuterium and He+. Phys. Lett. A 1998, 244, 349–354. [Google Scholar] [CrossRef]
- Chen, C.X.; Lambiase, G.; Mobed, G.; Papini, G.; Scarpetta, G. Helicity and Chirality Precessions of Maximally Accelerated Fermions. Nuovo Cimento B 1999, 114, 1335–1343. [Google Scholar]
- Chen, C.X.; Lambiase, G.; Mobed, G.; Papini, G.; Scarpetta, G. Maximal Acceleration Corrections to the Lamb Shift of Muonic Hydrogen. Nuovo Cimento B 1999, 114, 199–205. [Google Scholar]
- Benedetto, E.; Feoli, A. Unruh temperature with maximal acceleration. Mod. Phys. Lett. A 2015, 30, 1550075. [Google Scholar] [CrossRef]
- Rovelli, C.; Vidotto, F. Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity. Phys. Rev. Lett. 2013, 111, 091303. [Google Scholar] [CrossRef] [PubMed]
- Rovelli, C.; Vidotto, F. Covariant Loop and Quantum Gravity; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Papini, G. Spin-Gravity Coupling and Gravity-Induced Quantum Phases. Gen. Relativ. Gravit. 2008, 40, 1117–1144. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Papini, G. Particle Interferometry in Weak Gravitational Fields. Class. Quantum Grav. 1989, 6, 407. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Papini, G. Neutrino Helicity Flip from Gravity-Spin Coupling. Phys. Rev. Lett. 1991, 66, 1259. [Google Scholar] [CrossRef] [PubMed]
- Papini, G.; Scarpetta, G.; Feoli, A.; Lambiase, G. Optics of Spin-1 Particles from Gravity-Induced Phases. Int. J. Mod. Phys. D 2009, 18, 485. [Google Scholar] [CrossRef]
- Papini, G. Spin-2 Particles in Gravitational Fields. Phys. Rev. D 2007, 75, 044022. [Google Scholar] [CrossRef]
- Lambiase, G.; Papini, G.; Punzi, R.; Scarpetta, G. Neutrino Optics and Oscillations in Gravitational Fields. Phys. Rev. D 2005, 71, 073011. [Google Scholar] [CrossRef]
- Papini, G. Radiative Processes in External Gravitational Fields. Phys. Rev. D 2010, 82, 024041. [Google Scholar] [CrossRef]
- Papini, G. Fermion antifermion mixing in gravitational fields. Mod. Phys. Lett. A 2013, 28, 1350071. [Google Scholar] [CrossRef]
- De Oliveira, C.G.; Tiomno, J. Representations of Dirac equation in general relativity. Nuovo Cimento 1962, 24, 672–687. [Google Scholar] [CrossRef]
- Colella, R.; Overhauser, A.W.; Werner, S.A. Observation of gravitationally induced quantum interferometry. Phys. Rev. Lett. 1975, 34, 1472. [Google Scholar] [CrossRef]
- Page, L.A. Effect of Earth’s rotation in neutron interferometry. Phys. Rev. Lett. 1979, 35, 543, Werner, S.A.; Staudenmann, J.L.; Colella, R. Effect of Earth’s rotation on the quantum mechanical phase of the neutron. Phys. Rev. Lett. 1979, 42, 1103. [Google Scholar] [CrossRef]
- Bonse, V.; Wroblewski, T. Measurement of the neutron quantum interference in noninertial frames. Phys. Rev. Lett. 1983, 51, 1401. [Google Scholar] [CrossRef]
- Hehl, F.W.; Ni, W.-T. Inertial effects of a Dirac particle. Phys. Rev. D 1990, 42, 2045. [Google Scholar] [CrossRef]
- Singh, D.; Papini, G. Spin-1/2 Particles in Nonininertial Reference Frames: Low- and High-Energy Approximations. Nuovo Cimento B 2000, 115, 223. [Google Scholar]
- Bini, D.; Cherubini, Ch.; Mashhoon, B. Spin, acceleration and gravity. Class. Quantum Grav. 2004, 21, 3893. [Google Scholar] [CrossRef]
- Lanczos, C. The Variational Principles Of Mechanics; Dover Publications: New York, NY, USA, 1970. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papini, G. Spin and Maximal Acceleration. Galaxies 2017, 5, 103. https://doi.org/10.3390/galaxies5040103
Papini G. Spin and Maximal Acceleration. Galaxies. 2017; 5(4):103. https://doi.org/10.3390/galaxies5040103
Chicago/Turabian StylePapini, Giorgio. 2017. "Spin and Maximal Acceleration" Galaxies 5, no. 4: 103. https://doi.org/10.3390/galaxies5040103
APA StylePapini, G. (2017). Spin and Maximal Acceleration. Galaxies, 5(4), 103. https://doi.org/10.3390/galaxies5040103