Disk Heating, Galactoseismology, and the Formation of Stellar Halos
Abstract
:1. Introduction
- Astrometric data from the Hipparcos mission [1] led to the discovery of moving groups in the velocity distribution of solar-neighborhood stars [2]. Some of these likely correspond to destroyed star clusters (as expected), while others (unexpectedly) have been interpreted as signatures of resonances with the Galactic bar [3].
- Precise, large-area photometry from the Sloan Digital Sky Survey (hereafter, SDSS —[4,5,6]) led to the discovery of many “streams” of MSTO stars in the Galactic stellar halo. These are understood to be the remnants of long-dead satellite galaxies and dissolved globular clusters [7,8] and serve as a stunning confirmation that our Galaxy has indeed formed hierarchically (e.g., [9,10,11]).
- Mon/GASS is an arc-like or partial-ring feature of stars beyond the previously-expected edge of the Galactic disk, beyond the Sun in cylindrical radius [24]. Stars attributed to Mon/GASS span a large area of the sky and large range in distance: Galactic longitudes ≈120, latitudes , and heliocentric distances [17,18,25]. Radial velocity measurements of M giant stars associated with the structure follow a clear trend in mean velocity with Galactic longitude and have a velocity dispersion much smaller than the stellar halo [26].
- TriAnd was first discovered as a diffuse over-density of M giant stars covering the area ≈100, ≈ − 35, overlapping the Mon/GASS structure on the sky but at larger heliocentric distances of ≈15–25 kpc [27]. The M giants again exhibit a coherent radial-velocity sequence with a dispersion much smaller than the halo [27]. Deep photometry in the region revealed MSTO stars associated with the structure and proposed the existence of a second main sequence (“TriAnd 2”) at larger distance, ≈30–35 [22,28].
- A13 is another tenuous association of M giants in the North Galactic Hemisphere in the area ≈125, ≈20 at approximate distances of ≈10–20. It was initially discovered by applying a group finding algorithm [29] to all M giants in the 2MASS photometric catalogue [30]. Again, radial velocities of M giants in this structure have a small velocity dispersion around a roughly linear trend with Galactic longitude [15].
2. The Nature of Structures Around the Outer Disk—Summary of Observations
2.1. Low-resolution Spectroscopy: Metallicities and Radial Velocities
2.2. Stellar Populations and Other Kinematic Tracers
2.3. High-Resolution Spectroscopy: Abundance Patterns
2.4. Mapping Main-Sequence Stars in the Low-Latitude Structures
2.5. Connecting the Low-Latitude Structures to Velocity Structure Near the Solar Radius
3. The Nature of Structures Around the Outer Disk—Summary of Theoretical Interpretations
- the low-latitude structures—Mon/GASS, TriAnd, and A13 —each have low velocity dispersions supporting the genuine association of the candidate member stars;
- Mon/GASS, TriAnd, and A13 share a continuous sequence in mean GSR velocity as a function of Galactic longitude, suggestive of associations between these structures;
- the stellar populations in the structures (as indicated by ) are all more consistent with those in the Galactic disk rather than those observed in the stellar halo or Galactic satellites;
- the abundance patterns of stars in TriAnd and A13 are similar to those found in the disk of our Galaxy (although the discrepancy with prior work in this conclusion is still under investigation);
- the low-latitude structures (around the outer disk) may be connected to oscillating density and velocity structure on smaller scales, traced all the way back to the Solar neighborhood;
4. Discussion—Observational Prospects
4.1. The Milky Way
4.2. Other Galaxies
5. Conclusions—What Might These Structures Tell Us about Galaxies?
- Disk heating mechanisms—It has been understood for a long time that disks can evolve significantly due to mergers, major or minor, and hence that their current structures bear witness to their accretion history [105,106,107,108]. This understanding has fueled a significant literature on simulations investigating the importance of the heating of galactic disks in response to encounters with other dark matter halos (that may or may not contain their own galaxies) [109,110,111,112,113,114,115,116,117,118]. In general, these studies have concentrated on the overall effects of many encounters on global properties, such as the thickness and vertical velocity dispersion in disks. The results of these simulations have traditionally been compared to the spatial and velocity scales in samples of galaxies. In contrast, the identification and mapping of vertical waves associated with ongoing interactions in the Milky Way gives us the opportunity to dissect individual disk heating events in progress (e.g., the impact of Sgr). We can use this to check our understanding of the mechanism directly and in detail rather than assessing its importance through collective effects and longterm, phase-mixed signatures.
- Stellar halo formation processes— The last decade has seen increasing interest in assessing how much of the content of our stellar halo could be made “in situ” along with other components of the Milky Way rather than accreted from other objects. Hydrodynamical simulations of galaxy formation suggest that tens of percent of the stars in the inner halo might be formed “in situ”, either along their current orbits or “kicked-out” from orbits that were originally in the disk [119,120,121,122,123,124,125,126,127]. Preliminary arguments for the existence of an “in situ” population were based on transitions in the density or orbital structures of stellar halos (e.g., [128]). However, such transitions were also found to occur naturally in purely-accreted models of stellar halos [129]. More convincing observational evidence for stars in the halo that have been “kicked-out” of the disk is just beginning to emerge through studies that look for stars with halo-like kinematics, but disk-like abundances around M31 [130] and the Milky Way [70,131,132]. The work outlined above in Section 2 and Section 3 adds new perspectives on the “kicked-out-disk” stellar halo formation process with the detection and modeling of disk stars that may be in transition from the disk to the halo.
- Galactoseismic probes of interactions and dark matter—The response of a disk to an encounter will depend on its own properties, the properties of the dark matter halo in which it is embedded, and the mass and orbit of the perturbing satellite. This leads to the suggestion that, analogous to helioseismic investigations of the structure of our Sun, maps of a disk response—such as those described in Section 2 for our Milky Way—might be similarly inverted to tell us about, for example, the structure of the dark matter halo [71]. Indeed, recent investigations into the signatures of encounters in the very outskirts of extended HI disks have successfully used simulations combined with an analytic understanding to find how the observed characteristics of the disturbed gas can be simply related to properties of the perturbing object [133,134,135].
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Space Agency (ESA) (Ed.) The HIPPARCOS and TYCHO Catalogues. Astrometric and Photometric Star Catalogues Derived from the ESA HIPPARCOS Space Astrometry Mission; ESA Special Publication; ESA Publications Division: Noordwijk, The Netherland, 1997; Volume 1200. [Google Scholar]
- Dehnen, W. The Distribution of Nearby Stars in Velocity Space Inferred from HIPPARCOS Data. Astron. J. 1998, 115, 2384–2396. [Google Scholar] [CrossRef]
- Dehnen, W. The Effect of the Outer Lindblad Resonance of the Galactic Bar on the Local Stellar Velocity Distribution. Astron. J. 2000, 119, 800–812. [Google Scholar] [CrossRef]
- York, D.G.; Adelman, J.; Anderson, J.E., Jr.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Barkhouser, R.; Bastian, S.; Berman, E.; et al. The Sloan Digital Sky Survey: Technical Summary. Astron. J. 2000, 120, 1579. [Google Scholar] [CrossRef]
- Stoughton, C.; Lupton, R.H.; Bernardi, M.; Blanton, M.R.; Burles, S.; Castander, F.J.; Connolly, A.J.; Eisenstein, D.J.; Frieman, J.A.; Hennessy, G.S.; et al. Sloan Digital Sky Survey: Early Data Release. Astron. J. 2002, 123, 485–548. [Google Scholar] [CrossRef]
- Abazajian, K.; Adelman-McCarthy, J.K.; Agüeros, M.A.; Allam, S.S.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Baldry, I.K.; Bastian, S.; Berlind, A.; et al. The First Data Release of the Sloan Digital Sky Survey. Astron. J. 2003, 126, 2081–2086. [Google Scholar] [CrossRef]
- Newberg, H.J.; Yanny, B.; Rockosi, C.; Grebel, E.K.; Rix, H.W.; Brinkmann, J.; Csabai, I.; Hennessy, G.; Hindsley, R.B.; Ibata, R.; et al. The Ghost of Sagittarius and Lumps in the Halo of the Milky Way. Astrophys. J. 2002, 569, 245–274. [Google Scholar] [CrossRef]
- Belokurov, V.; Zucker, D.B.; Evans, N.W.; Gilmore, G.; Vidrih, S.; Bramich, D.M.; Newberg, H.J.; Wyse, R.F.G.; Irwin, M.J.; Fellhauer, M.; et al. The Field of Streams: Sagittarius and Its Siblings. Astrophys. J. 2006, 642, L137–L140. [Google Scholar] [CrossRef]
- Bullock, J.S.; Kravtsov, A.V.; Weinberg, D.H. Hierarchical Galaxy Formation and Substructure in the Galaxy’s Stellar Halo. Astrophys. J. 2001, 548, 33–46. [Google Scholar] [CrossRef]
- Bullock, J.S.; Johnston, K.V. Tracing Galaxy Formation with Stellar Halos. I. Methods. Astrophys. J. 2005, 635, 931–949. [Google Scholar] [CrossRef]
- Bell, E.F.; Zucker, D.B.; Belokurov, V.; Sharma, S.; Johnston, K.V.; Bullock, J.S.; Hogg, D.W.; Jahnke, K.; de Jong, J.T.A.; Beers, T.C.; et al. The Accretion Origin of the Milky Way’s Stellar Halo. Astrophys. J. 2008, 680, 295–311. [Google Scholar] [CrossRef]
- Nikolaev, S.; Weinberg, M.D.; Skrutskie, M.F.; Cutri, R.M.; Wheelock, S.L.; Gizis, J.E.; Howard, E.M. A Global Photometric Analysis of 2MASS Calibration Data. Astrophys. J. 2000, 120, 3340–3350. [Google Scholar] [CrossRef]
- Majewski, S.R.; Skrutskie, M.F.; Weinberg, M.D.; Ostheimer, J.C. A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms. Astrophys. J. 2003, 599, 1082–1115. [Google Scholar] [CrossRef]
- Law, D.R.; Majewski, S.R. The Sagittarius Dwarf Galaxy: A Model for Evolution in a Triaxial Milky Way Halo. Astrophys. J. 2010, 714, 229–254. [Google Scholar] [CrossRef]
- Li, T.S.; Sheffield, A.A.; Johnston, K.V.; Marshall, J.L.; Majewski, S.R.; Price-Whelan, A.M.; Damke, G.J.; Beaton, R.L.; Richardson, W.; Sharma, S.; et al. Exploring Halo Substructure with Giant Stars. XV. Discovery of a Connection between the Monoceros Ring and the Triangulum-Andromeda Overdensity? Astrophys. J. 2017, 844. [Google Scholar] [CrossRef]
- Sheffield, A.A.; Johnston, K.V.; Majewski, S.R.; Damke, G.; Richardson, W.; Beaton, R.; Rocha-Pinto, H.J. Exploring Halo Substructure with Giant Stars. XIV. The Nature of the Triangulum-Andromeda Stellar Features. Astrophys. J. 2014, 793. [Google Scholar] [CrossRef]
- Yanny, B.; Newberg, H.J.; Grebel, E.K.; Kent, S.; Odenkirchen, M.; Rockosi, C.M.; Schlegel, D.; Subbarao, M.; Brinkmann, J.; Fukugita, M.; et al. A Low-Latitude Halo Stream around the Milky Way. Astrophys. J. 2003, 588, 824–841. [Google Scholar] [CrossRef]
- Ibata, R.A.; Irwin, M.J.; Lewis, G.F.; Ferguson, A.M.N.; Tanvir, N. One ring to encompass them all: A giant stellar structure that surrounds the Galaxy. Mon. Not. R. Astron. Soc. 2003, 340, L21–L27. [Google Scholar] [CrossRef]
- Grillmair, C.J. Substructure in Tidal Streams: Tributaries in the Anticenter Stream. Astrophys. J. Lett. 2006, 651, L29–L32. [Google Scholar] [CrossRef]
- Grillmair, C.J.; Carlin, J.L.; Majewski, S.R. Fishing in Tidal Streams: New Radial Velocity and Proper Motion Constraints on the Orbit of the Anticenter Stream. Astrophys. J. Lett. 2008, 689, L117–L120. [Google Scholar] [CrossRef]
- Slater, C.T.; Bell, E.F.; Schlafly, E.F.; Morganson, E.; Martin, N.F.; Rix, H.W.; Peñarrubia, J.; Bernard, E.J.; Ferguson, A.M.N.; Martinez-Delgado, D.; et al. The Complex Structure of Stars in the Outer Galactic Disk as Revealed by Pan-STARRS1. Astrophys. J. 2014, 791, 9. [Google Scholar] [CrossRef]
- Martin, N.F.; Ibata, R.A.; Rich, R.M.; Collins, M.L.M.; Fardal, M.A.; Irwin, M.J.; Lewis, G.F.; McConnachie, A.W.; Babul, A.; Bate, N.F.; et al. The PAndAS Field of Streams: Stellar Structures in the Milky Way Halo toward Andromeda and Triangulum. Astrophys. J. 2014, 787. [Google Scholar] [CrossRef]
- Deason, A.J.; Belokurov, V.; Hamren, K.M.; Koposov, S.E.; Gilbert, K.M.; Beaton, R.L.; Dorman, C.E.; Guhathakurta, P.; Majewski, S.R.; Cunningham, E.C. TriAnd and its siblings: Satellites of satellites in the Milky Way halo. Mon. Not. R. Astron. Soc. 2014, 444, 3975–3985. [Google Scholar] [CrossRef]
- Robin, A.C.; Creze, M.; Mohan, V. The edge of the Galactic disk. Astrophys. J. Lett. 1992, 400, L25–L27. [Google Scholar] [CrossRef]
- Morganson, E.; Conn, B.; Rix, H.W.; Bell, E.F.; Burgett, W.S.; Chambers, K.; Dolphin, A.; Draper, P.W.; Flewelling, H.; Hodapp, K.; et al. Mapping the Monoceros Ring in 3D with Pan-STARRS1. Astrophys. J. 2016, 825. [Google Scholar] [CrossRef]
- Crane, J.D.; Majewski, S.R.; Rocha-Pinto, H.J.; Frinchaboy, P.M.; Skrutskie, M.F.; Law, D.R. Exploring Halo Substructure with Giant Stars: Spectroscopy of Stars in the Galactic Anticenter Stellar Structure. Astrophys. J. Lett. 2003, 594, L119–L122. [Google Scholar] [CrossRef]
- Rocha-Pinto, H.J.; Majewski, S.R.; Skrutskie, M.F.; Crane, J.D.; Patterson, R.J. Exploring Halo Substructure with Giant Stars: A Diffuse Star Cloud or Tidal Debris around the Milky Way in Triangulum-Andromeda. Astrophys. J. 2004, 615, 732–737. [Google Scholar] [CrossRef]
- Martin, N.F.; Ibata, R.A.; Irwin, M. Galactic Halo Stellar Structures in the Triangulum-Andromeda Region. Astrophys. J. Lett. 2007, 668, L123–L126. [Google Scholar] [CrossRef]
- Sharma, S.; Johnston, K.V. A Group Finding Algorithm for Multidimensional Data Sets. Astrophys. J. 2009, 703, 1061–1077. [Google Scholar] [CrossRef]
- Sharma, S.; Johnston, K.V.; Majewski, S.R.; Muñoz, R.R.; Carlberg, J.K.; Bullock, J. Group Finding in the Stellar Halo Using M-giants in the Two Micron All Sky Survey: An Extended View of the Pisces Overdensity? Astrophys. J. 2010, 722, 750–759. [Google Scholar] [CrossRef]
- Peñarrubia, J.; Martínez-Delgado, D.; Rix, H.W.; Gómez-Flechoso, M.A.; Munn, J.; Newberg, H.; Bell, E.F.; Yanny, B.; Zucker, D.; Grebel, E.K. A Comprehensive Model for the Monoceros Tidal Stream. Astrophys. J. 2005, 626, 128–144. [Google Scholar] [CrossRef]
- Momany, Y.; Zaggia, S.R.; Bonifacio, P.; Piotto, G.; De Angeli, F.; Bedin, L.R.; Carraro, G. Probing the Canis Major stellar over-density as due to the Galactic warp. Astron. Astrophys. 2004, 421, L29–L32. [Google Scholar] [CrossRef]
- Momany, Y.; Zaggia, S.; Gilmore, G.; Piotto, G.; Carraro, G.; Bedin, L.R.; de Angeli, F. Outer structure of the Galactic warp and flare: explaining the Canis Major over-density. Astron. Astrophys. 2006, 451, 515–538. [Google Scholar] [CrossRef]
- Kazantzidis, S.; Bullock, J.S.; Zentner, A.R.; Kravtsov, A.V.; Moustakas, L.A. Cold Dark Matter Substructure and Galactic Disks. I. Morphological Signatures of Hierarchical Satellite Accretion. Astrophys. J. 2008, 688, 254–276. [Google Scholar] [CrossRef]
- Younger, J.D.; Besla, G.; Cox, T.J.; Hernquist, L.; Robertson, B.; Willman, B. On the Origin of Dynamically Cold Rings around the Milky Way. Astrophys. J. Lett. 2008, 676. [Google Scholar] [CrossRef]
- Purcell, C.W.; Bullock, J.S.; Tollerud, E.J.; Rocha, M.; Chakrabarti, S. The Sagittarius impact as an architect of spirality and outer rings in the Milky Way. Nature 2011, 477, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Newberg, H.J.; Carlin, J.L.; Liu, C.; Deng, L.; Li, J.; Schönrich, R.; Yanny, B. Rings and Radial Waves in the Disk of the Milky Way. Astrophys. J. 2015, 801. [Google Scholar] [CrossRef]
- Gómez, F.A.; White, S.D.M.; Marinacci, F.; Slater, C.T.; Grand, R.J.J.; Springel, V.; Pakmor, R. A fully cosmological model of a Monoceros-like ring. Mon. Not. R. Astron. Soc. 2016, 456, 2779–2793. [Google Scholar] [CrossRef]
- Chou, M.Y.; Majewski, S.R.; Cunha, K.; Smith, V.V.; Patterson, R.J.; Martínez-Delgado, D. The Chemical Evolution of the Monoceros Ring/Galactic Anticenter Stellar Structure. Astrophys. J. Lett. 2010, 720, L5–L10. [Google Scholar] [CrossRef]
- Chou, M.Y.; Majewski, S.R.; Cunha, K.; Smith, V.V.; Patterson, R.J.; Martínez-Delgado, D. First Chemical Analysis of Stars in the Triangulum–Andromeda Star Cloud. Astrophys. J. Lett. 2011, 731. [Google Scholar] [CrossRef]
- Price-Whelan, A.M.; Johnston, K.V.; Sheffield, A.A.; Laporte, C.F.P.; Sesar, B. A reinterpretation of the Triangulum-Andromeda stellar clouds: A population of halo stars kicked out of the Galactic disc. Mon. Not. R. Astron. Soc. 2015, 452, 676–685. [Google Scholar] [CrossRef]
- Laporte, C.F.P.; Gómez, F.A.; Besla, G.; Johnston, K.V.; Garavito-Camargo, N. Response of the Milky Way’s disc to the Large Magellanic Cloud in a first infall scenario. Mon. Not. R. Astron. Soc. 2016, arXiv:1608.04743, 1–13. [Google Scholar]
- Koposov, S.E.; Rix, H.W.; Hogg, D.W. Constraining the Milky Way Potential with a Six-Dimensional Phase-Space Map of the GD-1 Stellar Stream. Astrophys. J. 2010, 712, 260–273. [Google Scholar] [CrossRef]
- Küpper, A.H.W.; Balbinot, E.; Bonaca, A.; Johnston, K.V.; Hogg, D.W.; Kroupa, P.; Santiago, B.X. Globular Cluster Streams as Galactic High-Precision Scales: The Poster Child Palomar 5. Astrophys. J. 2015, 803. [Google Scholar] [CrossRef]
- Bovy, J.; Bahmanyar, A.; Fritz, T.K.; Kallivayalil, N. The Shape of the Inner Milky Way Halo from Observations of the Pal 5 and GD–1 Stellar Streams. Astrophys. J. 2016, 833. [Google Scholar] [CrossRef]
- Johnston, K.V.; Bullock, J.S.; Sharma, S.; Font, A.; Robertson, B.E.; Leitner, S.N. Tracing Galaxy Formation with Stellar Halos. II. Relating Substructure in Phase and Abundance Space to Accretion Histories. Astrophys. J. 2008, 689, 936–957. [Google Scholar] [CrossRef]
- Law, N.M.; Kulkarni, S.R.; Dekany, R.G.; Ofek, E.O.; Quimby, R.M.; Nugent, P.E.; Surace, J.; Grillmair, C.C.; Bloom, J.S.; Kasliwal, M.M.; et al. The Palomar Transient Factory: System Overview, Performance, and First Results. Publ. Astron. Soc. Pac. 2009, 121. [Google Scholar] [CrossRef]
- Kirby, E.N.; Lanfranchi, G.A.; Simon, J.D.; Cohen, J.G.; Guhathakurta, P. Multi-element Abundance Measurements from Medium-resolution Spectra. III. Metallicity Distributions of Milky Way Dwarf Satellite Galaxies. Astrophys. J. 2011, 727. [Google Scholar] [CrossRef]
- Amrose, S.; Mckay, T. A Calculation of the Mean Local RR Lyrae Space Density Using ROTSE. Astrophys. J. Lett. 2001, 560, L151–L154. [Google Scholar] [CrossRef]
- Hayden, M.R.; Bovy, J.; Holtzman, J.A.; Nidever, D.L.; Bird, J.C.; Weinberg, D.H.; Andrews, B.H.; Majewski, S.R.; Allende Prieto, C.; Anders, F.; et al. Chemical Cartography with APOGEE: Metallicity Distribution Functions and the Chemical Structure of the Milky Way Disk. Astrophys. J. 2015, 808. [Google Scholar] [CrossRef]
- Reddy, B.E.; Tomkin, J.; Lambert, D.L.; Allende Prieto, C. The chemical compositions of Galactic disc F and G dwarfs. Mon. Not. R. Astron. Soc. 2003, 340, 304–340. [Google Scholar] [CrossRef]
- Bensby, T.; Feltzing, S.; Oey, M.S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 2014, 562. [Google Scholar] [CrossRef]
- Chou, M.Y.; Cunha, K.; Majewski, S.R.; Smith, V.V.; Patterson, R.J.; Martínez-Delgado, D.; Geisler, D. A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. VI. s-Process and Titanium Abundance Variations Along the Sagittarius Stream. Astrophys. J. 2010, 708, 1290–1309. [Google Scholar] [CrossRef]
- Battistini, C.; Bensby, T. The origin and evolution of r- and s-process elements in the Milky Way stellar disk. Astron. Astrophys. 2016, 586. [Google Scholar] [CrossRef]
- Shetrone, M.; Venn, K.A.; Tolstoy, E.; Primas, F.; Hill, V.; Kaufer, A. VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios. Astrophys. J. 2003, 125, 684–706. [Google Scholar] [CrossRef]
- Letarte, B.; Hill, V.; Jablonka, P.; Tolstoy, E.; François, P.; Meylan, G. VLT/UVES spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal galaxy. Astron. Astrophys. 2006, 453, 547–554. [Google Scholar] [CrossRef]
- Letarte, B.; Hill, V.; Tolstoy, E.; Jablonka, P.; Shetrone, M.; Venn, K.A.; Spite, M.; Irwin, M.J.; Battaglia, G.; Helmi, A.; et al. A high-resolution VLT/FLAMES study of individual stars in the centre of the Fornax dwarf spheroidal galaxy. Astron. Astrophys. 2010, 523. [Google Scholar] [CrossRef]
- Larsen, S.S.; Brodie, J.P.; Strader, J. Detailed abundance analysis from integrated high-dispersion spectroscopy: Globular clusters in the Fornax dwarf spheroidal. Astron. Astrophys. 2012, 546. [Google Scholar] [CrossRef]
- McWilliam, A.; Smecker-Hane, T.A. The Composition of the Sagittarius Dwarf Spheroidal Galaxy, and Implications for Nucleosynthesis and Chemical Evolution. In Astronomical Society of the Pacific Conference Series, Proceedings of the Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, Austin, TX, USA, 17–19 June 2004; Barnes, T.G., III, Bash, F.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 336, p. 221. [Google Scholar]
- Sbordone, L.; Bonifacio, P.; Buonanno, R.; Marconi, G.; Monaco, L.; Zaggia, S. The exotic chemical composition of the Sagittarius dwarf spheroidal galaxy. Astron. Astrophys. 2007, 465, 815–824. [Google Scholar] [CrossRef]
- Mucciarelli, A.; Bellazzini, M.; Ibata, R.; Romano, D.; Chapman, S.C.; Monaco, L. Chemical abundances in the nucleus of the Sagittarius dwarf spheroidal galaxy. Astron. Astrophys. 2017. [Google Scholar] [CrossRef]
- Vogt, S.S.; Allen, S.L.; Bigelow, B.C.; Bresee, L.; Brown, B.; Cantrall, T.; Conrad, A.; Couture, M.; Delaney, C.; Epps, H.W.; et al. HIRES: The high-resolution echelle spectrometer on the Keck 10-m Telescope. In Instrumentation in Astronomy VIII; Crawford, D.L., Craine, E.R., Eds.; SPIE: Bellingham, WA, USA, 1994; Volume 2198, Proc. SPIE; p. 362. [Google Scholar]
- Fuhrmann, K. Nearby stars of the Galactic disk and halo. III. Astron. Nachr. 2004, 325, 3–80. [Google Scholar] [CrossRef]
- Bergemann, M.; Ruchti, G.R.; Serenelli, A.; Feltzing, S.; Alves-Brito, A.; Asplund, M.; Bensby, T.; Gruyters, P.; Heiter, U.; Hourihane, A.; et al. The Gaia-ESO Survey: Radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk. Astron. Astrophys. 2014, 565. [Google Scholar] [CrossRef]
- Bonifacio, P.; Hill, V.; Molaro, P.; Pasquini, L.; Di Marcantonio, P.; Santin, P. First results of UVES at VLT: Abundances in the Sgr dSph. Astron. Astrophys. 2000, 359, 663–668. [Google Scholar]
- Shetrone, M.D.; Côté, P.; Sargent, W.L.W. Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies. Astrophys. J. 2001, 548, 592–608. [Google Scholar] [CrossRef]
- Tolstoy, E.; Hill, V.; Tosi, M. Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group. Ann. Rev. Astron. Astrophys. 2009, 47, 371–425. [Google Scholar] [CrossRef]
- De Boer, T.J.L.; Tolstoy, E.; Lemasle, B.; Saha, A.; Olszewski, E.W.; Mateo, M.; Irwin, M.J.; Battaglia, G. The episodic star formation history of the Carina dwarf spheroidal galaxy. Astron. Astrophys. 2014, 572. [Google Scholar] [CrossRef]
- Bergemann, M. Ionization balance of Ti in the photospheres of the Sun and four late-type stars. Mon. Not. R. Astron. Soc. 2011, 413, 2184–2198. [Google Scholar] [CrossRef]
- Sheffield, A.A.; Majewski, S.R.; Johnston, K.V.; Cunha, K.; Smith, V.V.; Cheung, A.M.; Hampton, C.M.; David, T.J.; Wagner-Kaiser, R.; Johnson, M.C.; et al. Identifying Contributions to the Stellar Halo from Accreted, Kicked-out, and In Situ Populations. Astrophys. J. 2012, 761. [Google Scholar] [CrossRef]
- Widrow, L.M.; Gardner, S.; Yanny, B.; Dodelson, S.; Chen, H.Y. Galactoseismology: Discovery of Vertical Waves in the Galactic Disk. Astrophys. J. Lett. 2012, 750. [Google Scholar] [CrossRef]
- Yanny, B.; Gardner, S. The Stellar Number Density Distribution in the Local Solar Neighborhood is North-South Asymmetric. Astrophys. J. 2013, 777. [Google Scholar] [CrossRef]
- Steinmetz, M.; Zwitter, T.; Siebert, A.; Watson, F.G.; Freeman, K.C.; Munari, U.; Campbell, R.; Williams, M.; Seabroke, G.M.; Wyse, R.F.G.; et al. The Radial Velocity Experiment (RAVE): First Data Release. Astrophys. J. 2006, 132, 1645–1668. [Google Scholar] [CrossRef]
- Williams, M.E.K.; Steinmetz, M.; Binney, J.; Siebert, A.; Enke, H.; Famaey, B.; Minchev, I.; de Jong, R.S.; Boeche, C.; Freeman, K.C.; et al. The wobbly Galaxy: Kinematics north and south with RAVE red-clump giants. Mon. Not. R. Astron. Soc. 2013, 436, 101–121. [Google Scholar] [CrossRef]
- Cui, X.Q.; Zhao, Y.H.; Chu, Y.Q.; Li, G.P.; Li, Q.; Zhang, L.P.; Su, H.J.; Yao, Z.Q.; Wang, Y.N.; Xing, X.Z.; et al. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Res. Astron. Astrophys. 2012, 12, 1197–1242. [Google Scholar] [CrossRef]
- Deng, L.C.; Newberg, H.J.; Liu, C.; Carlin, J.L.; Beers, T.C.; Chen, L.; Chen, Y.Q.; Christlieb, N.; Grillmair, C.J.; Guhathakurta, P.; et al. LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) —The survey’s science plan. Res. Astron. Astrophys. 2012, 12, 735–754. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, Y.H.; Chu, Y.Q.; Jing, Y.P.; Deng, L.C. LAMOST spectral survey—An overview. Res. Astron. Astrophys. 2012, 12, 723–734. [Google Scholar] [CrossRef]
- Carlin, J.L.; DeLaunay, J.; Newberg, H.J.; Deng, L.; Gole, D.; Grabowski, K.; Jin, G.; Liu, C.; Liu, X.; Luo, A.L.; et al. Substructure in Bulk Velocities of Milky Way Disk Stars. Astrophys. J. Lett. 2013, 777. [Google Scholar] [CrossRef]
- Widrow, L.M.; Barber, J.; Chequers, M.H.; Cheng, E. Bending and breathing modes of the Galactic disc. Mon. Not. R. Astron. Soc. 2014, 440, 1971–1981. [Google Scholar] [CrossRef]
- Weinberg, M.D.; Blitz, L. A Magellanic Origin for the Warp of the Galaxy. Astrophys. J. Lett. 2006, 641, L33–L36. [Google Scholar] [CrossRef]
- D’Onghia, E.; Madau, P.; Vera-Ciro, C.; Quillen, A.; Hernquist, L. Excitation of Coupled Stellar Motions in the Galactic Disk by Orbiting Satellites. Astrophys. J. 2016, 823. [Google Scholar] [CrossRef]
- Monari, G.; Famaey, B.; Siebert, A.; Grand, R.J.J.; Kawata, D.; Boily, C. The effects of bar-spiral coupling on stellar kinematics in the Galaxy. Mon. Not. R. Astron. Soc. 2016, 461, 3835–3846. [Google Scholar] [CrossRef]
- Gómez, F.A.; Minchev, I.; O’Shea, B.W.; Beers, T.C.; Bullock, J.S.; Purcell, C.W. Vertical density waves in the Milky Way disc induced by the Sagittarius dwarf galaxy. Mon. Not. R. Astron. Soc. 2013, 429, 159–164. [Google Scholar] [CrossRef]
- Li, J.; Newberg, H.J.; Carlin, J.L.; Deng, L.; Newby, M.; Willett, B.A.; Xu, Y.; Luo, Z. On Rings and Streams in the Galactic Anti-Center. Astrophys. J. 2012, 757. [Google Scholar] [CrossRef]
- Carlin, J.L.; Casetti-Dinescu, D.I.; Grillmair, C.J.; Majewski, S.R.; Girard, T.M. Kinematics in Kapteyn’s Selected Area 76: Orbital Motions Within the Highly Substructured Anticenter Stream. Astrophys. J. 2010, 725, 2290–2311. [Google Scholar] [CrossRef]
- De Boer, T.J.L.; Belokurov, V.; Koposov, S.E. The fall of the Northern Unicorn: Tangential motions in the Galactic Anti-centre with SDSS and Gaia. Mon. Not. R. Astron. Soc. 2017, 1–16. [Google Scholar]
- Gaia Collaboration; Prusti, T.; de Bruijne, J.H.J.; Brown, A.G.A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.L.; Bastian, U.; Biermann, M.; Evans, D.W.; et al.; Gaia Collaboration The Gaia mission. Astron. Astrophys. 2016, 595. [Google Scholar] [CrossRef]
- Ivezic, Z.; Axelrod, T.; Brandt, W.N.; Burke, D.L.; Claver, C.F.; Connolly, A.; Cook, K.H.; Gee, P.; Gilmore, D.K.; Jacoby, S.H.; et al. Large Synoptic Survey Telescope: From Science Drivers To Reference Design. Serbian Astron. J. 2008, 176, 1–13. [Google Scholar] [CrossRef]
- Dalton, G.; Trager, S.; Abrams, D.C.; Bonifacio, P.; Aguerri, J.A.L.; Middleton, K.; Benn, C.; Dee, K.; Sayède, F.; Lewis, I.; et al. Final design and progress of WEAVE: The next generation wide-field spectroscopy facility for the William Herschel Telescope. In Proceedings of the SPIE Ground-based and Airborne Instrumentation for Astronomy VI, Edinburgh, UK, 26–30 June 2016; Volume 9908, p. 99081G. [Google Scholar]
- Walcher, C.J.; de Jong, R.S.; Dwelly, T.; Bellido, O.; Boller, T.; Chiappini, C.; Feltzing, S.; Irwin, M.; McMahon, R.; Merloni, A.; et al. 4MOST: Science operations for a large spectroscopic survey program with multiple science cases executed in parallel. In Proceedings of the SPIE Observatory Operations: Strategies, Processes, and Systems VI, Edinburgh, UK, 26 June–1 July 2016; Volume 9910, p. 99101N. [Google Scholar]
- Tamura, N.; PFS Collaboration. Prime Focus Spectrograph (PFS): A Very Wide-Field, Massively Multi-Object, Optical and Near-Infrared Fiber-Fed Spectrograph on the Subaru Telescope. In Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys, and Wide Fields; Skillen, I., Barcells, M., Trager, S., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2016; Volume 507, p. 387. [Google Scholar]
- Majewski, S.R.; APOGEE Team; APOGEE-2 Team. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) and its successor, APOGEE-2. Astron. Nachr. 2016, 337. [Google Scholar] [CrossRef]
- Majewski, S.R.; Ostheimer, J.C.; Rocha-Pinto, H.J.; Patterson, R.J.; Guhathakurta, P.; Reitzel, D. Detection of the Main-Sequence Turnoff of a Newly Discovered Milky Way Halo Structure in the Triangulum-Andromeda Region. Astrophys. J. 2004, 615, 738–743. [Google Scholar] [CrossRef]
- Ferguson, A.M.N.; Irwin, M.J.; Ibata, R.A.; Lewis, G.F.; Tanvir, N.R. Evidence for Stellar Substructure in the Halo and Outer Disk of M31. Astrophys. J. 2002, 124, 1452–1463. [Google Scholar] [CrossRef]
- Ibata, R.; Chapman, S.; Ferguson, A.M.N.; Lewis, G.; Irwin, M.; Tanvir, N. On the Accretion Origin of a Vast Extended Stellar Disk around the Andromeda Galaxy. Astrophys. J. 2005, 634, 287–313. [Google Scholar] [CrossRef]
- Monachesi, A.; Bell, E.F.; Radburn-Smith, D.J.; Vlajić, M.; de Jong, R.S.; Bailin, J.; Dalcanton, J.J.; Holwerda, B.W.; Streich, D. Testing Galaxy Formation Models with the GHOSTS Survey: The Color Profile of M81’s Stellar Halo. Astrophys. J. 2013, 766. [Google Scholar] [CrossRef]
- Crnojević, D.; Sand, D.J.; Spekkens, K.; Caldwell, N.; Guhathakurta, P.; McLeod, B.; Seth, A.; Simon, J.D.; Strader, J.; Toloba, E. The Extended Halo of Centaurus A: Uncovering Satellites, Streams, and Substructures. Astrophys. J. 2016, 823. [Google Scholar] [CrossRef]
- Ibata, R.; Martin, N.F.; Irwin, M.; Chapman, S.; Ferguson, A.M.N.; Lewis, G.F.; McConnachie, A.W. The Haunted Halos of Andromeda and Triangulum: A Panorama of Galaxy Formation in Action. Astrophys. J. 2007, 671, 1591–1623. [Google Scholar] [CrossRef]
- Harmsen, B.; Monachesi, A.; Bell, E.F.; de Jong, R.S.; Bailin, J.; Radburn-Smith, D.J.; Holwerda, B.W. Diverse stellar haloes in nearby Milky Way mass disc galaxies. Mon. Not. R. Astron. Soc. 2017, 466, 1491–1512. [Google Scholar] [CrossRef]
- Martínez-Delgado, D.; Gabany, R.J.; Crawford, K.; Zibetti, S.; Majewski, S.R.; Rix, H.W.; Fliri, J.; Carballo-Bello, J.A.; Bardalez-Gagliuffi, D.C.; Peñarrubia, J.; et al. Stellar Tidal Streams in Spiral Galaxies of the Local Volume: A Pilot Survey with Modest Aperture Telescopes. Astrophys. J. 2010, 140, 962–967. [Google Scholar] [CrossRef]
- Van Dokkum, P.G.; Abraham, R.; Merritt, A. First Results from the Dragonfly Telephoto Array: The Apparent Lack of a Stellar Halo in the Massive Spiral Galaxy M101. Astrophys. J. Lett. 2014, 782. [Google Scholar] [CrossRef]
- Duc, P.A.; Cuillandre, J.C.; Karabal, E.; Cappellari, M.; Alatalo, K.; Blitz, L.; Bournaud, F.; Bureau, M.; Crocker, A.F.; Davies, R.L.; et al. The ATLAS3D project - XXIX. The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images. Mon. Not. R. Astron. Soc. 2015, 446, 120–143. [Google Scholar] [CrossRef]
- Spavone, M.; Capaccioli, M.; Napolitano, N.R.; Iodice, E.; Grado, A.; Limatola, L.; Cooper, A.; Cantiello, M.; Forbes, D.A.; Paolillo, M.; et al. VEGAS: A VST Early-type GAlaxy Survey. II. Photometric study of giant ellipticals and their stellar halos. Astron. Astrophys. 2017. [Google Scholar] [CrossRef]
- Spergel, D.; Gehrels, N.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; Hirata, C.; Kalirai, J.; et al. WFIRST-2.4: What Every Astronomer Should Know. ArXiv 2013, arXiv:1305.5425. [Google Scholar]
- Toth, G.; Ostriker, J.P. Galactic disks, infall, and the global value of Omega. Astrophys. J. 1992, 389, 5–26. [Google Scholar] [CrossRef]
- Quinn, P.J.; Hernquist, L.; Fullagar, D.P. Heating of galactic disks by mergers. Astrophys. J. 1993, 403, 74–93. [Google Scholar] [CrossRef]
- Walker, I.R.; Mihos, J.C.; Hernquist, L. Quantifying the Fragility of Galactic Disks in Minor Mergers. Astrophys. J. 1996, 460. [Google Scholar] [CrossRef]
- Velazquez, H.; White, S.D.M. Sinking satellites and the heating of galaxy discs. Mon. Not. R. Astron. Soc. 1999, 304, 254–270. [Google Scholar] [CrossRef]
- Font, A.S.; Navarro, J.F.; Stadel, J.; Quinn, T. Halo Substructure and Disk Heating in a Λ Cold Dark Matter Universe. Astrophys. J. Lett. 2001, 563, L1–L4. [Google Scholar] [CrossRef]
- Ardi, E.; Tsuchiya, T.; Burkert, A. Constraints of the Clumpiness of Dark Matter Halos through Heating of the Disk Galaxies. Astrophys. J. 2003, 596, 204–215. [Google Scholar] [CrossRef]
- Benson, A.J.; Lacey, C.G.; Frenk, C.S.; Baugh, C.M.; Cole, S. Heating of galactic discs by infalling satellites. Mon. Not. R. Astron. Soc. 2004, 351, 1215–1236. [Google Scholar] [CrossRef] [Green Version]
- Stewart, K.R.; Bullock, J.S.; Wechsler, R.H.; Maller, A.H.; Zentner, A.R. Merger Histories of Galaxy Halos and Implications for Disk Survival. Astrophys. J. 2008, 683, 597–610. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Younger, J.D.; Besla, G. The Radical Consequences of Realistic Satellite Orbits for the Heating and Implied Merger Histories of Galactic Disks. Astrophys. J. 2008, 688, 757–769. [Google Scholar] [CrossRef]
- Villalobos, Á.; Helmi, A. Simulations of minor mergers–I. General properties of thick discs. Mon. Not. R. Astron. Soc. 2008, 391, 1806–1827. [Google Scholar] [CrossRef]
- Purcell, C.W.; Kazantzidis, S.; Bullock, J.S. The Destruction of Thin Stellar Disks Via Cosmologically Common Satellite Accretion Events. Astrophys. J. Lett. 2009, 694, L98–L102. [Google Scholar] [CrossRef]
- Kazantzidis, S.; Zentner, A.R.; Kravtsov, A.V.; Bullock, J.S.; Debattista, V.P. Cold Dark Matter Substructure and Galactic Disks. II. Dynamical Effects of Hierarchical Satellite Accretion. Astrophys. J. 2009, 700, 1896–1920. [Google Scholar] [CrossRef]
- Sachdeva, S.; Saha, K. Survival of Pure Disk Galaxies over the Last 8 Billion Years. Astrophys. J. Lett. 2016, 820. [Google Scholar] [CrossRef]
- Moetazedian, R.; Just, A. Impact of cosmological satellites on the vertical heating of the Milky Way disc. Mon. Not. R. Astron. Soc. 2016, 459, 2905–2924. [Google Scholar] [CrossRef]
- Abadi, M.G.; Navarro, J.F.; Steinmetz, M. Stars beyond galaxies: The origin of extended luminous haloes around galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 747–758. [Google Scholar] [CrossRef]
- Zolotov, A.; Willman, B.; Brooks, A.M.; Governato, F.; Brook, C.B.; Hogg, D.W.; Quinn, T.; Stinson, G. The Dual Origin of Stellar Halos. Astrophys. J. 2009, 702, 1058–1067. [Google Scholar] [CrossRef]
- Zolotov, A.; Willman, B.; Brooks, A.M.; Governato, F.; Hogg, D.W.; Shen, S.; Wadsley, J. The Dual Origin of Stellar Halos. II. Chemical Abundances as Tracers of Formation History. Astrophys. J. 2010, 721, 738–743. [Google Scholar] [CrossRef]
- Font, A.S.; McCarthy, I.G.; Crain, R.A.; Theuns, T.; Schaye, J.; Wiersma, R.P.C.; Dalla Vecchia, C. Cosmological simulations of the formation of the stellar haloes around disc galaxies. Mon. Not. R. Astron. Soc. 2011, 416, 2802–2820. [Google Scholar] [CrossRef]
- McCarthy, I.G.; Font, A.S.; Crain, R.A.; Deason, A.J.; Schaye, J.; Theuns, T. Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 2012, 420, 2245–2262. [Google Scholar] [CrossRef] [Green Version]
- Tissera, P.B.; Scannapieco, C.; Beers, T.C.; Carollo, D. Stellar haloes of simulated Milky-Way-like galaxies: Chemical and kinematic properties. Mon. Not. R. Astron. Soc. 2013, 432, 3391–3400. [Google Scholar] [CrossRef] [Green Version]
- Tissera, P.B.; Beers, T.C.; Carollo, D.; Scannapieco, C. Stellar haloes in Milky Way mass galaxies: From the inner to the outer haloes. Mon. Not. R. Astron. Soc. 2014, 439, 3128–3138. [Google Scholar] [CrossRef]
- Pillepich, A.; Madau, P.; Mayer, L. Building Late-type Spiral Galaxies by In-situ and Ex-situ Star Formation. Astrophys. J. 2015, 799. [Google Scholar] [CrossRef]
- Cooper, A.P.; Parry, O.H.; Lowing, B.; Cole, S.; Frenk, C. Formation of in situ stellar haloes in Milky Way-mass galaxies. Mon. Not. R. Astron. Soc. 2015, 454, 3185–3199. [Google Scholar] [CrossRef]
- Carollo, D.; Beers, T.C.; Lee, Y.S.; Chiba, M.; Norris, J.E.; Wilhelm, R.; Sivarani, T.; Marsteller, B.; Munn, J.A.; Bailer-Jones, C.A.L.; et al. Two stellar components in the halo of the Milky Way. Nature 2007, 450, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Deason, A.J.; Belokurov, V.; Evans, N.W.; Johnston, K.V. Broken and Unbroken: The Milky Way and M31 Stellar Halos. Astrophys. J. 2013, 763, 113. [Google Scholar] [CrossRef]
- Dorman, C.E.; Widrow, L.M.; Guhathakurta, P.; Seth, A.C.; Foreman-Mackey, D.; Bell, E.F.; Dalcanton, J.J.; Gilbert, K.M.; Skillman, E.D.; Williams, B.F. A New Approach to Detailed Structural Decomposition from the SPLASH and PHAT Surveys: Kicked-up Disk Stars in the Andromeda Galaxy? Astrophys. J. 2013, 779. [Google Scholar] [CrossRef]
- Hawkins, K.; Kordopatis, G.; Gilmore, G.; Masseron, T.; Wyse, R.F.G.; Ruchti, G.; Bienaymé, O.; Bland-Hawthorn, J.; Boeche, C.; Freeman, K.; et al. Characterizing the high-velocity stars of RAVE: The discovery of a metal-rich halo star born in the Galactic disc. Mon. Not. R. Astron. Soc. 2015, 447, 2046–2058. [Google Scholar] [CrossRef]
- Bonaca, A.; Conroy, C.; Wetzel, A.; Hopkins, P.F.; Keres, D. Gaia reveals a metal-rich in-situ component of the local stellar halo. Astrophys. J. 2017. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Blitz, L. Tidal imprints of a dark subhalo on the outskirts of the Milky Way. Mon. Not. R. Astron. Soc. 2009, 399, L118–L122. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Bigiel, F.; Chang, P.; Blitz, L. Finding Dwarf Galaxies from Their Tidal Imprints. Astrophys. J. 2011, 743. [Google Scholar] [CrossRef]
- Chang, P.; Chakrabarti, S. Dark subhaloes and disturbances in extended H I discs. Mon. Not. R. Astron. Soc. 2011, 416, 618–628. [Google Scholar] [CrossRef]
1. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnston, K.V.; Price-Whelan, A.M.; Bergemann, M.; Laporte, C.; Li, T.S.; Sheffield, A.A.; Majewski, S.R.; Beaton, R.S.; Sesar, B.; Sharma, S. Disk Heating, Galactoseismology, and the Formation of Stellar Halos. Galaxies 2017, 5, 44. https://doi.org/10.3390/galaxies5030044
Johnston KV, Price-Whelan AM, Bergemann M, Laporte C, Li TS, Sheffield AA, Majewski SR, Beaton RS, Sesar B, Sharma S. Disk Heating, Galactoseismology, and the Formation of Stellar Halos. Galaxies. 2017; 5(3):44. https://doi.org/10.3390/galaxies5030044
Chicago/Turabian StyleJohnston, Kathryn V., Adrian M. Price-Whelan, Maria Bergemann, Chervin Laporte, Ting S. Li, Allyson A. Sheffield, Steven R. Majewski, Rachael S. Beaton, Branimir Sesar, and Sanjib Sharma. 2017. "Disk Heating, Galactoseismology, and the Formation of Stellar Halos" Galaxies 5, no. 3: 44. https://doi.org/10.3390/galaxies5030044
APA StyleJohnston, K. V., Price-Whelan, A. M., Bergemann, M., Laporte, C., Li, T. S., Sheffield, A. A., Majewski, S. R., Beaton, R. S., Sesar, B., & Sharma, S. (2017). Disk Heating, Galactoseismology, and the Formation of Stellar Halos. Galaxies, 5(3), 44. https://doi.org/10.3390/galaxies5030044