Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A
Abstract
:1. Introduction
2. Results
The 83 Ms X-ray Light-Curve of GRB 130427A
3. Discussion
- Jet break;
- Change of physical parameters of the shock emission: kinetic energy of the ejecta, fraction of energy given to electrons and magnetic field and , fraction of radiating electrons ξ;
- Change of density profile of the circumburst medium.
3.1. Models in Free Stellar Wind
3.2. Models in Non-Standard Stellar Wind
3.3. Constant Density Medium and Evolving Parameters
3.4. A Basic Constant Density Model
4. Conclusions
- Models in free stellar wind (P14, L13): the radius of the stellar wind bubble should be very large (several tens if not hundreds of parsecs in radius), and especially the density of the pre-existing medium should be as low as ∼ cm;
- Models in non-standard stellar wind: density should also be very low (K13), or we have evolving and unconstrained parameters (V14);
- The constant density model of M14 assumes an early jet break, which is not very steep because of evolving physical parameters. However, it is difficult to keep the decay slow this way for 83 Ms.
Acknowledgments
Conflicts of Interest
References
- Perley, D.A.; Cenko, S.B.; Corsi, A.; Tanvir, N.R.; Levan, A.J.; Kann, D.A.; Sonbas, E.; Wiersema, K.; Zheng, W.; Zhao, X.-H.; et al. The Afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 2014, 781, 37. [Google Scholar] [CrossRef]
- Kann, D.A.; Klose, S.; Zhang, B.; Malesani, D.; Nakar, E.; Pozanenko, A.; Wilson, A.C.; Butler, N.R.; Jakobsson, P.; Schulze, S.; et al. The afterglows of Swift-era Gamma-ray Bursts. I. Comparing pre-Swift and Swift-era long/soft (Type II) GRB optical afterglows. Astrophys. J. 2010, 720, 1513–1558. [Google Scholar] [CrossRef]
- Kocevski, D.; Butler, N. Gamma-ray Burst energetics in the Swift era. Astrophys. J. 2008, 680, 531. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; et al. Fermi-LAT Observations of the Gamma-ray Burst GRB 130427A. Science 2014, 343, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Preece, R.; Burgess, J.M.; von Kienlin, A.; Bhat, P.N.; Briggs, M.S.; Byrne, D.; Chaplin, V.; Cleveland, W.; Collazzi, A.C.; Connaughton, V.; et al. The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks. Astrophys. J. 2014, 343, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Kouveliotou, C.; Granot, J.; Racusin, J.L.; Bellm, E.; Vianello, G.; Oates, S.; Fryer, C.L.; Boggs, S.E.; Christensen, F.E.; Craig, W.W.; et al. NuSTAR Observations of GRB 130427A Establish a Single Component Synchrotron Afterglow Origin for the Late Optical to Multi-GeV Emission. Astrophys. J. 2013, 779, 1. [Google Scholar] [CrossRef]
- Van der Horst, A.J.; Paragi, Z.; de Bruyn, A.G.; Granot, J.; Kouveliotou, C.; Wiersema, K.; Starling, R.L.C.; Curran, P.A.; Wijers, R.A.M.J.; Rowlinson, A.; et al. A comprehensive radio view of the extremely bright gamma-ray burst 130427A. Mon. Not. Roy. Atro. Soc. 2014, 444, 3151–3163. [Google Scholar] [CrossRef]
- Maselli, A.; Melandri, A.; Nava, L.; Mundell, C.G.; Kawai, N.; Campana, S.; Covino, S.; Cummings, J.R.; Cusumano, G.; Evans, P.A.; et al. GRB 130427A: A Nearby Ordinary Monster. Science 2014, 343, 48–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pasquale, M.; Page, M.J.; Kann, D.A.; Oates, S.R.; Schulze, S.; Zhang, B.; Cano, Z.; Gendre, B.; Malesani, D.; Rossi, A.; et al. The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model. Mon. Not. Roy. Atro. Soc. 2016, 462, 1111–1122. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Alves, M.I.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; et al. Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 2014, 571, A1. [Google Scholar]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Sari, R.; Piran, T.; Narayan, R. Spectra and Light Curves of Gamma-ray Burst Afterglows. Astrophys. J. Lett. 1998, 497, 17. [Google Scholar] [CrossRef]
- Weaver, R.; McCray, R.; Castor, J.; Shapiro, P.; Moore, R. Interstellar bubbles. II—Structure and evolution. Astrophys. J. 1977, 218, 377–395. [Google Scholar] [CrossRef]
- Fryer, C.; Rockfeller, G.; Young, P. The environments around long duration gamma-ray progenitors. Astrophys. J. 2006, 647, 1269–1285. [Google Scholar] [CrossRef]
- Hunt, L.K.; Hirashita, H. The size-density relation of extragalactic H II regions. Astron. Astrophys. 2009, 507, 1327–1343. [Google Scholar] [CrossRef]
- Peimbert, A.; Peimbert, M. Densities, Temperatures, Pressures, and Abundances Derived from O II Recombination Lines in H II Regions and their Implications. Astrophys. J. 2013, 778, 89. [Google Scholar] [CrossRef]
- Levan, A.J.; Tanvir, N.R.; Starling, R.L.C.; Wiersema, K.; Page, K.L.; Perley, D.A.; Schulze, S.; Wynn, G.A.; Chornock, R.; Hjorth, J.; et al. A New Population of Ultra-long Duration Gamma-ray Bursts. Astrophys. J. 2014, 781, 13. [Google Scholar] [CrossRef]
- Sharma, P.; Roy, A.; Nath, B.; Shchekinov, Y. In a hot bubble: Why does superbubble feedback work, but isolated supernovae do not? Mon. Not. Roy. Atro. Soc. 2013, 443, 3463–3476. [Google Scholar] [CrossRef]
- Yadav, N.; Mukherjee, D.; Sharma, P.; Nath, B.B. Supernovae under microscope: How supernovae overlap to form superbubbles. arXiv 2016. [Google Scholar]
- Zhang, W.-Q.; MacFadyen, A. The Dynamics and Afterglow Radiation of Gamma-ray Bursts. I. Constant Density Medium. Astrophys. J. 2009, 698, 1261–1272. [Google Scholar] [CrossRef]
- Cenko, S.B.; Frail, D.A.; Harrison, F.A.; Haislip, J.B.; Reichart, D.E.; Butler, N.R.; Cobb, B.E.; Cucchiara, A.; Berger, E.; Bloom, J.S.; et al. Afterglow Observations of Fermi Large Area Telescope Gamma-ray Bursts and the Emerging Class of Hyper-energetic Events. Astrophys. J. 2011, 732, 29. [Google Scholar] [CrossRef]
- Frail, D.A.; Kulkarni, S.R.; Djorgovski, S.G.; Bloom, J.S.; Galama, T.J.; Reichart, D.E.; Berger, E.; Harrison, F.A.; Price, P.A.; Yost, S.A.; et al. Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir. Astrophys. J. Lett. 2001, 562, 55–58. [Google Scholar] [CrossRef]
- Racusin, J.L.; Liang, E.W.; Burrows, D.N.; Falcone, A.; Sakamoto, T.; Zhang, B.B.; Zhang, B.; Evans, P.; Osborne, J. Jet Breaks and Energetics of Swift Gamma-ray Burst X-ray Afterglows. Astrophys. J. 2009, 698, 43–74. [Google Scholar] [CrossRef]
- Mészáros, P.; Rees, M.; Wijers, R. Viewing Angle and Environment Effects in Gamma-ray Bursts: Sources of Afterglow Diversity. Astrophys. J. 1998, 499, 301. [Google Scholar] [CrossRef]
- Rossi, E.; Lazzati, D.; Rees, M. Afterglow light curves, viewing angle and the jet structure of γ-ray bursts. Mon. Not. Roy. Atro. Soc. 2002, 332, 945–950. [Google Scholar] [CrossRef]
- Zhang, B.; Mészáros, P. Gamma-ray Burst Beaming: A Universal Configuration with a Standard Energy Reservoir? Astrophys. J. 2002, 571, 876–879. [Google Scholar] [CrossRef]
- Nandra, K.; Berret, D.; Barcons, X.; Fabian, A.; den Herder, J.-W.; Piro, L.; Watson, M.; Adami, C.; Aird, J.; Afonso, J.M.; et al. The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. arXiv 2013. [Google Scholar]
- 1. g cm corresponds to a mass lost rate of year with a wind speed cm s.
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Pasquale, M.; Page, M.; Kann, D.A.; Oates, S.R.; Schulze, S.; Zhang, B.; Cano, Z.; Gendre, B.; Malesani, D.; Rossi, A.; et al. Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. Galaxies 2017, 5, 6. https://doi.org/10.3390/galaxies5010006
De Pasquale M, Page M, Kann DA, Oates SR, Schulze S, Zhang B, Cano Z, Gendre B, Malesani D, Rossi A, et al. Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. Galaxies. 2017; 5(1):6. https://doi.org/10.3390/galaxies5010006
Chicago/Turabian StyleDe Pasquale, Massimiliano, Mathew Page, David Alexander Kann, Samantha R. Oates, Steve Schulze, Bing Zhang, Zach Cano, Bruce Gendre, Daniele Malesani, Andrea Rossi, and et al. 2017. "Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A" Galaxies 5, no. 1: 6. https://doi.org/10.3390/galaxies5010006
APA StyleDe Pasquale, M., Page, M., Kann, D. A., Oates, S. R., Schulze, S., Zhang, B., Cano, Z., Gendre, B., Malesani, D., Rossi, A., Gehrels, N., Troja, E., Piro, L., Boër, M., & Stratta, G. (2017). Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. Galaxies, 5(1), 6. https://doi.org/10.3390/galaxies5010006