# Quantum Gravity and Cosmological Density Perturbations

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Relativistic Treatment of Matter Density Perturbations

## 3. Relativistic Growth Index with $\mathbf{G}(\square )$

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Damour, T. Experimental Tests of Gravitational Theory. Available online: http://pdg.lbl.gov/2009/reviews/rpp2009-rev-gravity-tests.pdf (accessed on 11 November 2009).
- Yao, W.-M.; Particle Data Group. Review of Particle Physics. J. Phys. G Nucl. Part. Phys.
**2006**, 33. [Google Scholar] [CrossRef] - Damour, T.; Nordtvedt, K. General relativity as a cosmological attractor of tensor scalar theories. Phys. Rev. Lett.
**1993**, 70, 2217–2219. [Google Scholar] [CrossRef] [PubMed] - Damour, T.; Esposito-Farese, G. Testing gravity to second postNewtonian order: A Field theory approach. Phys. Rev. D
**1996**, 53. [Google Scholar] [CrossRef] - Veneziano, G. String cosmology: The Pre-Big Bang Scenario. ArXiv E-Prints
**2000**. arXiv:hep-th/0002094. [Google Scholar] - Gasperini, M.; Veneziano, G. String Theory and Pre-Big Bang Cosmology. ArXiv E-Prints
**2007**. arXiv:hep-th/0703055. [Google Scholar] - Israel, W.; Hawking, S.W. General Relativity—An Einstein Centenary Survey; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Hamber, H.W. Quantum Gravitationm - The Feynman Path Integral Approach; Springer: Berlin, Germany, 2009. [Google Scholar]
- Hamber, H.W. Quantum Gravity on the Lattice. Gen. Relativ. Gravit.
**2009**, 41, 817–876. [Google Scholar] [CrossRef] - Hamber, H.W. Ultraviolet Divergences and Scale-Dependent Gravitational Couplings. In Proceedings of the 12th Marcel Grossmann Conference on Recent Developments in General Relativity, Astrophysics and Relativistic Field Theories (MG-12), Paris, France, 12–18 July 2009.
- Hamber, H.W.; Williams, R.M. Higher Derivative Quantum Gravity on A Simplicial Lattice. Nucl. Phys. B
**1984**, 248, 392–414. [Google Scholar] [CrossRef] - Simplicial Quantum Gravity with Higher Derivative Terms: Formalism and Numerical Results in Four-Dimensions. Nucl. Phys. B
**1986**, 269, 712–743. - Hamber, H.W. Nonperturbative Simplicial Quantum Gravity. Phys. Lett. B
**1985**, 157, 368–374. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Newtonian potential in quantum Regge gravity. Nucl. Phys. B
**1995**, 435, 361–397. [Google Scholar] [CrossRef] - Hamber, H.W. Phases of four-dimensional simplicial quantum gravity. Phys. Rev. D
**1992**, 45. [Google Scholar] [CrossRef] - Hamber, H.W. Phases of Simplicial Quantum Gravity in Four Dimensions: Estimates for the Critical Exponents. Nucl. Phys. B
**1993**, 400, 347–389. [Google Scholar] [CrossRef] - Hamber, H.W. Gravitational scaling dimensions. Phys. Rev. D
**2000**, 61. [Google Scholar] [CrossRef] - Kawai, H. Renormalization group and quantum gravity. Nucl. Phys. B
**1990**, 336, 115–145. [Google Scholar] [CrossRef] - Aida, T.; Kitazawa, Y. Two-loop prediction for scaling exponents in (2 + ϵ)-dimensional quantum gravity. Nucl. Phys. B
**1997**, 491, 427–458. [Google Scholar] [CrossRef] - Reuter, M. Nonperturbative Evolution Equation for Quantum Gravity. Phys. Rev. D
**1998**, 57. [Google Scholar] [CrossRef] - Manrique, E.; Reuter, M.; Saueressig, F. Bimetric Renormalization Group Flows in Quantum Einstein Gravity. Ann. Phys.
**2011**, 326, 463–485. [Google Scholar] [CrossRef] - Vilkovisky, G.A. Quantum Theory of Gravity; Christensen, S., Ed.; Adam Hilger: Bristol, UK, 1984. [Google Scholar]
- Vilkovisky, G.A. The Unique Effective Action in Quantum Field Theory. Nucl. Phys. B
**1984**, 234, 125–137. [Google Scholar] [CrossRef] - Taylor, T.R.; Veneziano, G. Quantum Gravity at Large Distances and the Cosmological Constant. Nucl. Phys. B
**1990**, 345, 210–230. [Google Scholar] [CrossRef] - Taylor, T.R.; Veneziano, G. Quenching the Cosmological Constant. Phys. Lett. B
**1989**, 228, 311–316. [Google Scholar] [CrossRef] - Wilson, K.G. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B
**1971**, 4. [Google Scholar] [CrossRef] - Wilson, K.G. Renormalization group and critical phenomena. II. Phase space cell analysis of critical behavior. Phys. Rev. B
**1971**, 4. [Google Scholar] [CrossRef] - Wilson, K.G. Feynman-graph expansion for critical exponents. Phys. Rev. Lett.
**1972**, 28. [Google Scholar] [CrossRef] - Wilson, K.G. Quantum field-theory models in less than 4 dimensions. Phys. Rev. D
**1973**, 7. [Google Scholar] [CrossRef] - Wilson, K.G. The Renormalization Group: Critical Phenomena and the Kondo Problem. Rev. Mod. Phys.
**1975**, 47. [Google Scholar] [CrossRef] - Wilson, K.G. The renormalization group and critical phenomena. Rev. Mod. Phys.
**1983**, 55, 583–600. [Google Scholar] [CrossRef] - Parisi, G. Statistical Field Theory; Benjamin Cummings: San Francisco, CA, USA, 1981. [Google Scholar]
- Itzykson, C.; Drouffe, J.-M. Statistical Field Theory; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena, 4th ed.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Cardy, J. Scaling and Renormalization in Statistical Physics (Cambridge Lecture Notes in Physics); Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Brezin, E. Introduction to Statistical Field Theory; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Brezin, E.; Zinn-Justin, J. Renormalization of the nonlinear σ model in 2 + ϵ dimensions—Application to the Heisenberg ferromagnets. Phys. Rev. Lett.
**1976**, 36. [Google Scholar] [CrossRef] - Brezin, E.; Zinn-Justin, J.; le Guillou, J.C. Renormalization of the Nonlinear σ Model in 2 + ϵ Dimensions. Phys. Rev. D
**1976**, 14. [Google Scholar] [CrossRef] - Brezin, E.; le Guillou, J.C.; Zinn-Justin, J. Phase Transitions and Critical Phenomena; Domb, C., Green, M.S., Eds.; Academic Press: Waltham, MA, USA, 1976; Volume 6. [Google Scholar]
- Guida, R.; Zinn-Justin, J. Critical Exponents of the N-vector Model. J. Phys. A Math. Gen.
**1998**, 31. [Google Scholar] [CrossRef] - Gross, D.J. Applications of the Renormalization Group to High-energy Physics. In Proceedings of the Methods in Field Theory, Les Houches, France, 28 July–6 September 1975.
- Hägler, P. Hadron Structure from Lattice Quantum Chromodynamics. Phys. Rep.
**2010**, 490, 49–175. [Google Scholar] [CrossRef] - Fodor, Z.; Hoelbling, C. Light Hadron Masses from Lattice QCD. Rev. Mod. Phys.
**2012**, 84. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Quantum Gravity in Large Dimensions. Phys. Rev. D
**2006**, 73. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Gravitational Wilson Loop and Large Scale Curvature. Phys. Rev. D
**2007**, 76. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Gravitational Wilson Loop in Discrete Quantum Gravity. Phys. Rev. D
**2010**, 81. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Nonlocal Effective Gravitational Field Equations and the Running of Newton’s Constant G. Phys. Rev. D
**2005**, 72. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Constraints on Gravitational Scaling Dimensions from Non-Local Effective Field Equations. Phys. Lett. B
**2006**, 643, 228–234. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Renormalization Group Running of Newton’s G: The Static Isotropic Case. Phys. Rev. D
**2007**, 75. [Google Scholar] [CrossRef] - Peebles, P.J.E. Principles of Physical Cosmology; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley & Sons: Hoboken, NJ, USA, 1972. [Google Scholar]
- Hamber, H.W. Invariant Correlations in Simplicial Gravity. Phys. Rev. D
**1994**, 50, 3932–3941. [Google Scholar] [CrossRef] - Hamber, H.W.; Toriumi, R. Cosmological Density Perturbations with a Scale-Dependent Newton’s constant G. Phys. Rev. D
**2010**, 82. [Google Scholar] [CrossRef] - Hamber, H.W.; Toriumi, R. Scale-Dependent Newton’s Constant G in the Conformal Newtonian Gauge. Phys. Rev. D
**2011**, 84. [Google Scholar] [CrossRef] - Hamber, H.W.; Toriumi, R. Inconsistencies from a Running Cosmological Constant. Int. J. Mod. Phys. D
**2013**, 22. [Google Scholar] [CrossRef] - Schmidt, F.; Vikhlinin, A.; Hu, W. Cluster Constraints on f(R) Gravity. Phys. Rev. D
**2009**, 80. [Google Scholar] [CrossRef] - Vikhlinin, A.; Murray, S.; Gilli, R.; Tozzi, P.; Paolillo, M.; Brandt, N.; Tagliaferri, G.; Bautz, M.; Allen, S.; Donahue, M.; et al. X-ray Cluster Cosmology. ArXiv E-Prints
**2009**. arXiv:0903.5320. [Google Scholar] - Vikhlinin, A.; Allen, S.W.; Arnaud, M.; Bautz, M.; Boehringer, H.; Bonamente, M.; Burns, J.; Evrard, A.; Henry, J.P.; Jones, C.; et al. Cosmological Studies With a Large-Area X-ray Telescope. ArXiv E-Prints
**2009**. arXiv:0903.2297. [Google Scholar] - Rapetti, D.; Allen, S.W.; Mantz, A.; Ebeling, H. The Observed Growth of Massive Galaxy Clusters III: Testing General Relativity on Cosmological Scales. ArXiv E-Prints
**2010**. arXiv:0911.1787. [Google Scholar] [CrossRef] - Uzan, J.-P. Tests of General Relativity on Astrophysical Scales. ArXiv E-Prints
**2009**. arXiv:0908.2243. [Google Scholar] [CrossRef]

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Hamber, H.W.; Toriumi, R.
Quantum Gravity and Cosmological Density Perturbations. *Galaxies* **2014**, *2*, 275-291.
https://doi.org/10.3390/galaxies2020275

**AMA Style**

Hamber HW, Toriumi R.
Quantum Gravity and Cosmological Density Perturbations. *Galaxies*. 2014; 2(2):275-291.
https://doi.org/10.3390/galaxies2020275

**Chicago/Turabian Style**

Hamber, Herbert W., and Reiko Toriumi.
2014. "Quantum Gravity and Cosmological Density Perturbations" *Galaxies* 2, no. 2: 275-291.
https://doi.org/10.3390/galaxies2020275