Comparative Photometry of the Quiet Quasar PDS 456 and the Radio-Loud Blazar 3C 273
Abstract
1. Introduction
2. Observational Data and Photometric Calibration
2.1. Robotic Observatory Data
Photometric Calibration and Data Selection
2.2. ATLAS Data
3. Results
3.1. 3C 273: Long-Term Optical and Chromatic Variability
3.1.1. Secular Evolution of the c-Band Magnitude
3.1.2. Long-Term BVR Color Index and Variability Patterns in 3C 273
3.1.3. Detection of Optical Flares in the c-Band
3.1.4. Chromatic Evolution of the Blazar 3C 273 Based on ATLAS Data
3.1.5. Temporal Correlation Between Optical Color Index and Gamma-Ray Flares
4. PDS 456: Radio-Quiet Quasar Analysis
4.1. Secular Evolution of the o-Band Magnitude
4.1.1. Detection of Optical Flares in the o-Band
4.1.2. Chromatic Analysis of PDS 456 Based on ATLAS Data
Statistical Characterization of the Color Index
Distribution and Variability Patterns
UV–Optical Chromatic Trends Post-Flaring
5. Comparative Analysis of 3C 273 and PDS 456
6. Conclusions
- Secular trends: ATLAS c-band photometry of 3C 273 (551 points) shows a robust secular dimming with a slope of , consistent with archival data. In contrast, PDS 456 shows a statistically significant secular brightening in the o-band , placing it among the few radio-quiet quasars with measurable long-term optical evolution.
- Short-term flares: We detect ten optical flares in 3C 273 and 75 outliers in PDS 456 using clipping on LOWESS residuals. Two of the 3C 273 flares coincide temporally with Fermi-LAT gamma-ray enhancements, favoring a leptonic scenario where optical synchrotron and gamma-ray inverse-Compton emissions originate from the same electron population.
- Chromatic variability: In 3C 273, a significant bluer-when-brighter trend is detected with the o-band magnitude (, ), while long-term color drift remains weak. PDS 456, by contrast, shows a non-Gaussian color distribution with low-amplitude, intermittent chromatic events and no persistent correlation between color and brightness.
- UV–optical coupling: In PDS 456, one brightening episode shows a UVW2 flux enhancement measured by Swift/UVOT within of ATLAS o-band flares, suggesting disk-related variability. However, most optical events exhibit only modest UV response, implying multiple variability drivers.
- Physical interpretation: Overall, 3C 273’s optical variability is primarily jet-driven on short timescales, superposed on a disk-dominated secular dimming. PDS 456, instead, shows disk-dominated variability and is currently in a phase of increasing radiative output, consistent with its expected location along the E1 main sequence.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://apps.aavso.org/vsd/stdfields, accessed on 17 June 2025. |
2 | https://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/, accessed on 20 June 2025. |
3 | https://heasarc.gsfc.nasa.gov/, accessed on 24 June 2025. |
References
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 1982, 200, 115–122. [Google Scholar] [CrossRef]
- Rees, M.J. Black Hole Models for Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 1984, 22, 471–506. [Google Scholar] [CrossRef]
- Schmidt, M. 3C 273: A Star-Like Object with Large Red-Shift. Nature 1963, 197, 1040. [Google Scholar] [CrossRef]
- Peterson, B.M. An Introduction to Active Galactic Nuclei; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Ghisellini, G.; Maraschi, L.; Tavecchio, F. The Fermi blazars’ divide. Mon. Not. R. Astron. Soc. 2010, 396, L105–L109. [Google Scholar] [CrossRef]
- Panessa, F.; Baldi, R.D.; Laor, A.; Padovani, P.; Behar, E.; McHardy, I. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 2019, 3, 387–396. [Google Scholar] [CrossRef]
- Blandford, R.D.; Rees, M.J. Some comments on radiation mechanisms in Lacertids. In BL Lac Objects; Wolfe, A.M., Ed.; University of Pittsburgh: Pittsburgh, PA, USA, 1978; pp. 328–341. [Google Scholar]
- Angel, J.R.P.; Stockman, H.S. Optical and infrared polarization of active extragalactic objects. Annu. Rev. Astron. Astrophys. 1980, 18, 321. [Google Scholar] [CrossRef]
- Ghisellini, G.; Celotti, A.; Fossati, G.; Maraschi, L.; Comastri, A. A theoretical unifying scheme for gamma-ray bright blazars. Mon. Not. R. Astron. Soc. 1998, 301, 451. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455. [Google Scholar] [CrossRef]
- Torres, C.A.O.; Quast, G.R.; Coziol, R.; Jablonski, F.; de la Reza, R.; Lépine, J.R.D.; Gregório-Hetem, J. Discovery of a Luminous Quasar in the Nearby Universe. Astrophys. J. 1997, 488, L19–L22. [Google Scholar] [CrossRef]
- Simpson, C.; Ward, M.; O’Brien, P.; Reeves, J. Optical and infrared observations of the luminous quasar PDS 456: A radio-quiet analogue of 3C 273? Mon. Not. R. Astron. Soc. 1999, 303, L23–L28. [Google Scholar] [CrossRef]
- Reeves, J.N.; O’Brien, P.T.; Ward, M.J. A deep XMM–Newton observation of the luminous quasar PDS 456: Revealing the high-velocity outflow. Mon. Not. R. Astron. Soc. 2003, 345, 705–713. [Google Scholar] [CrossRef][Green Version]
- Nardini, E.; Reeves, J.N.; Gofford, J.; Harrison, F.A.; Risaliti, G.; Braito, V.; Costa, M.T.; Matzeu, G.A.; Walton, D.J.; Behar, E.; et al. Black hole feedback in the luminous quasar PDS 456. Science 2015, 347, 860–863. [Google Scholar] [CrossRef] [PubMed]
- King, A.; Pounds, K. Powerful Outflows and Feedback from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 115–154. [Google Scholar] [CrossRef]
- Courvoisier, T.J.L. 3C 273: 30 years of multifrequency observations and interpretation. Astron. Astrophys. Rev. 1998, 9, 1–36. [Google Scholar] [CrossRef]
- Ulrich, M.H.; Maraschi, L.; Urry, C.M. Variability of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 1997, 35, 445–502. [Google Scholar] [CrossRef]
- Matzeu, G.A.; Reeves, J.N.; Nardini, E.; Braito, V.; Costa, M.T.; Tombesi, F. Monitoring the ultrafast outflow in PDS 456 with Swift. Mon. Not. R. Astron. Soc. 2016, 458, 1311–1318. [Google Scholar] [CrossRef]
- Tonry, J.L.; Denneau, L.; Heinze, A.N.; Stalder, B.; Smith, K.W.; Smartt, S.J.; Stubbs, C.W.; Weiland, H.J.; Rest, A. ATLAS: A High-cadence All-sky Survey System. Publ. Astron. Soc. Pac. 2018, 130, 064505. [Google Scholar] [CrossRef]
- Smith, K.W.; Smartt, S.J.; Young, D.R.; Tonry, J.L.; Denneau, L.; Flewelling, H.; Heinze, A.N.; Weiland, H.J.; Stalder, B.; Rest, A.; et al. Design and Operation of the ATLAS Transient Science Server. Publ. Astron. Soc. Pac. 2020, 132, 085002. [Google Scholar] [CrossRef]
- Nesci, R. ATel#15203: GB 1508+5714. Erratum. Astron. Telegr. 2022, 15203, 1; Erratum in Astron. Telegr. 2022, 15204, 1.
- Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.; Price-Whelan, A.M.; Astropy Collaboration; et al. Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar] [CrossRef]
- Landolt, A.U. UBVRI Photometric Standard Stars in the Magnitude Range 11.5 < V < 16.0 Around the Celestial Equator. Astron. J. 1992, 104, 340. [Google Scholar] [CrossRef]
- Warner, B.D. Initial Results of a Dedicated H-G Project. Minor Planet Bull. 2007, 34, 113–119. [Google Scholar]
- González-Pérez, J.N.; Kidger, M.R.; Martín-Luis, F. BVRI photometry of comparison stars in the fields of 20 quasars. Astron. Astrophys. 2001, 372, 730–738. [Google Scholar] [CrossRef]
- Doroshenko, V.T.; Sergeev, S.G.; Merkulova, N.I.; Sergeeva, E.A.; Golubinskiy, Y.V. BVRI photometry of comparison stars near selected active galactic nuclei. Astrophysics 2005, 48, 156–166. [Google Scholar] [CrossRef]
- Benson, P.J. Transformation Coefficients for Differential Photometry. Int. Amat.-Prof. Photoelectr. Photom. Commun. 1998, 72, 42. [Google Scholar]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; et al. Fermi-Large Area Telescope observations of the exceptional gamma-ray outbursts of 3C 273 in 2009 September. Astrophys. J. Lett. 2010, 714, L73–L78. [Google Scholar] [CrossRef]
- Rani, B.; Lott, B.; Krichbaum, T.P.; Fuhrmann, L.; Zensus, J.A. Constraining the location of rapid gamma-ray flares in the flat spectrum radio quasar 3C 273. Astron. Astrophys. 2013, 557, A71. [Google Scholar] [CrossRef]
- Böttcher, M. Modeling the emission processes in blazars. Astrophys. Space Sci. 2007, 309, 95–104. [Google Scholar] [CrossRef]
- Abdollahi, S.; Acero, F.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2020, 247, 33. [Google Scholar] [CrossRef]
- Reeves, J.N.; Braito, V.; Nardini, E.; Lobban, A.P.; Matzeu, G.A.; Costa, M.T. A new ultra-fast X-ray wind in the quasar PDS 456: Evolving disk–wind connection. ApJ Astrophys. J. Lett. 2021, 907, L33. [Google Scholar]
- Dai, B.Z.; Zha, M.; Liu, Z.; Wu, J.; Li, X.; Liu, Y. Optical Monitoring of 3C 273 from 2005 to 2008. Res. Astron. Astrophys. 2009, 9, 302–312. [Google Scholar]
- Bonning, E.; Urry, C.M.; Bailyn, C.; Buxton, M.; Chatterjee, R.; Coppi, P.; Fossati, G.; Isler, J.; Maraschi, L.; Scalzo, R. SMARTS Optical and Infrared Monitoring of Fermi Blazars. Astrophys. J. 2012, 756, 13. [Google Scholar] [CrossRef]
- Xiong, D.; Bai, J.M.; Zhang, H.J.; Fan, J.H.; Gu, M.; Yi, T.; Zhang, X. Multicolor Optical Monitoring of the Quasar 3C 273 from 2005 to 2016. Astrophys. J. Suppl. Ser. 2017, 229, 21. [Google Scholar] [CrossRef]
- Terrell, J.; Olsen, K.H. Power Spectrum of 3c 273 Light Fluctuations. Astrophys. J. 1970, 161, 399. [Google Scholar] [CrossRef]
- Britzen, S.; Fendt, C.; Eckart, A.; Karas, V.; Zajacek, M.; Czerny, B.; Stalevski, M.; Karovska, M. A precessing jet nozzle: Interpretation of the periodicity in OJ 287. Mon. Not. R. Astron. Soc. 2018, 478, 3199–3212. [Google Scholar] [CrossRef]
- Fernandes, S.; Patiño-Álvarez, V.M.; Chavushyan, V.; Schlegel, E.M.; Valdés, J.R. Multiwavelength analysis of the variability of the blazar 3C 273. Mon. Not. R. Astron. Soc. 2020, 497, 2066–2077. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.H.; Tao, J.; Qian, B.C.; Gupta, A.C.; Liu, Y.; Yuan, Y.H.; Yang, J.H.; Wang, H.G.; Huang, Y. Optical Photometrical Observations and Variability for Quasar 4C 29.45. Publ. Astron. Soc. Jpn. 2006, 58, 797–808. [Google Scholar] [CrossRef]
- Fan, J.H.; Peng, Q.S.; Tao, J.; Qian, B.C.; Shen, Z.Q. Optical Observations of 3C 273 From 2000 to 2008. Astron. J. 2009, 138, 1428–1434. [Google Scholar] [CrossRef]
- Dai, B.Z.; Li, X.H.; Liu, Z.M.; Zhang, B.K.; Na, W.W.; Wu, Y.F.; Hao, J.M.; Xiang, Y.; Jiang, Z.J.; Zhang, L. The long-term multiband optical observations and colour index for the quasar 3C 273. Mon. Not. R. Astron. Soc. 2009, 392, 1181–1192. [Google Scholar] [CrossRef]
- Zeng, W.; Zhao, Q.J.; Dai, B.Z.; Jiang, Z.J.; Geng, X.F.; Yang, S.B.; Liu, Z.; Wang, D.D.; Feng, Z.J.; Zhang, L. Study on Variability and Spectral Properties of Blazar 3C 273 with Long-term Multi-band Optical Monitoring from 2006 to 2015. Publ. Astron. Soc. Pac. 2018, 130, 024102. [Google Scholar] [CrossRef]
- Gorbachev, M.S.; Butuzova, M.S.; Sergeev, S.G.; Mokrushina, A.A.; Spiridonova, O.I.; Burenin, R.A.; Valeev, A.F. Long-term optical polarimetric and photometric observations of the blazar S5 0716+714: Evidence for spectral variability induced by jet orientation. Mon. Not. R. Astron. Soc. 2022, 516, 4352–4365. [Google Scholar] [CrossRef]
- Drake, A.J.; Djorgovski, S.G.; Graham, M.J.; Stern, D.; Mahabal, A.A.; Catelan, M.; Christensen, E.; Larson, S. Results of a systematic search for outburst events in 1.4 billion objects. Mon. Not. R. Astron. Soc. 2019, 482, 98–117. [Google Scholar] [CrossRef]
- Pietka, M.; Staley, T.D.; Pretorius, M.L.; Fender, R.P. On the use of variability time-scales as an early classifier of radio transients and variables. Mon. Not. R. Astron. Soc. 2017, 471, 3788–3805. [Google Scholar] [CrossRef]
- Pininti, V.R.; Bhatta, G.; Paul, S.; Kumar, A.; Rajgor, A.; Barnwal, R.; Gharat, S. Exploring short-term optical variability of blazars using TESS. Mon. Not. R. Astron. Soc. 2023, 518, 1459–1471. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Marscher, A.P.; Gear, W.K. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. Astrophys. J. 1985, 298, 114–127. [Google Scholar] [CrossRef]
- Giannios, D.; Uzdensky, D.A.; Begelman, M.C. Fast TeV variability in blazars: Jets in a jet. Mon. Not. R. Astron. Soc. 2009, 395, L29–L33. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef]
- Wang, H.T.; Yang, J.Y. The Variability Analysis of 3C 345 and 3C 273. Acta Astron. Sin. 2010, 51, 27–33. [Google Scholar]
- Yuan, Y.H.; Fan, J.H. Periodicity Analysis of the Spectral Index in 3c 273 and 3c 446. Int. J. Mod. Phys. D 2010, 19, 901–907. [Google Scholar] [CrossRef]
- Vol’vach, A.E.; Kutkin, A.M.; Vol’vach, L.N.; Larionov, M.G.; Lakhteenmaki, A.; Tornikoski, M.; Nieppola, E.; Tammi, J.; Savolainen, P.; Leon-Tavares, J.; et al. Results of long-term monitoring of 3C 273 over a wide range of wavelengths. Astron. Rep. 2013, 57, 34–45. [Google Scholar] [CrossRef]
- Fan, J.H.; Kurtanidze, O.; Liu, Y.; Richter, G.M.; Chanishvili, R.; Yuan, Y.H. Optical Monitoring of Two Brightest Nearby Quasars, PHL 1811 and 3C 273. Astrophys. J. Suppl. Ser. 2014, 213, 26. [Google Scholar] [CrossRef]
- Larionov, V.M.; Villata, M.; Raiteri, C.M. The nature of optical and near-infrared variability of BL Lacertae. Astron. Astrophys. 2010, 510, A93. [Google Scholar] [CrossRef]
- Raiteri, C.M.; Villata, M.; D’Ammando, F.; Larionov, V.M.; Gurwell, M.A.; Mirzaqulov, D.O.; Smith, P.S.; Acosta-Pulido, J.A.; Agudo, I.; Arévalo, M.J.; et al. The awakening of BL Lacertae: Observations by Fermi, Swift and the GASP-WEBT. Mon. Not. R. Astron. Soc. 2013, 436, 1530–1545. [Google Scholar] [CrossRef]
- Massaro, E.; Perri, M.; Giommi, P.; Nesci, R. Log-parabolic spectra and particle acceleration in the BL Lac object Mkn 421: Spectral analysis of the complete BeppoSAX wide band X-ray data set. Astron. Astrophys. 2004, 413, 489–503. [Google Scholar] [CrossRef]
- Ikejiri, Y.; Uemura, M.; Sasada, M.; Ito, R.; Yamanaka, M.; Sakimoto, K.; Arai, A.; Fukazawa, Y.; Ohsugi, T.; Kawabata, K.S.; et al. Photopolarimetric Monitoring of Blazars in the Optical and Near-Infrared Bands with the Kanata Telescope. I. Correlations between Flux, Color, and Polarization. Publ. Astron. Soc. Jpn. 2011, 63, 639. [Google Scholar] [CrossRef]
- Itoh, R.; Fukazawa, Y.; Tanaka, Y.T.; Abe, Y.; Akitaya, H.; Arai, A.; Hayashi, M.; Hori, T.; Isogai, M.; Izumiura, H.; et al. Dense Optical and Near-infrared Monitoring of CTA 102 during High State in 2012 with OISTER: Detection of Intra-night “Orphan Polarized Flux Flare”. Astrophys. J. Lett. 2013, 768, L24. [Google Scholar] [CrossRef]
- Smith, A.G. Multiple timescales of AGN variability. In Blazar Continuum Variability; ASP Conference Series; Miller, H.R., Webb, J.R., Noble, J.C., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1996; Volume 110, p. 3. [Google Scholar]
- Angione, R.J.; Smith, H.J. Optical variability of twenty-two quasi-stellar objects. In Proceedings of the IAU Symposium 44, External Galaxies and Quasi-Stellar Objects, Madrid, Spain, 11–13 May 1972; Evans, D.S., Wills, D., Wills, B.J., Eds.; Cambridge University Press: Cambridge, UK, 1972; p. 171. [Google Scholar]
- Breedt, E.; Arévalo, P.; McHardy, I.M.; Uttley, P.; Sergeev, S.G.; Minezaki, T.; Yoshii, Y.; Gaskell, C.M.; Cackett, E.M.; Koshida, S. Long term optical and X-ray variability of the Seyfert galaxy Markarian 79. Mon. Not. R. Astron. Soc. 2009, 394, 427–437. [Google Scholar] [CrossRef]
- Bachev, R.S. Quasar optical variability: Searching for interband time delays. Astron. Astrophys. 2009, 493, 907–911. [Google Scholar] [CrossRef]
- Wolf, C.; Lai, S.; Tang, J.J.; Tonry, J. Timescales of Quasar Accretion Discs from Low to High Black Hole Masses and new Variability Structure Functions at the High Masses. arXiv 2024, arXiv:2411.02759. [Google Scholar] [CrossRef]
- Gaskell, C.M.; Benker, A.J.; Campbell, J.S.; George, T.A.; Hedrick, C.H.; Hiller, M.E.; Klimek, E.S.; Leonard, J.P.; Masatoshi, S.; Peterson, B.W.; et al. Optical variability of the three brightest nearby quasars. In Proceedings of the AGN Variability from X-rays to Radio Waves, Crimea, Ukraine, 14–16 June 2004; Gaskell, C.M., McHardy, I.M., Peterson, B.M., Sergeev, S.G., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2006. ASP Conference Series. Volume 360, pp. 41–44. [Google Scholar]
- Reeves, J.N.; O’Brien, P.T.; Braito, V.; Behar, E.; Miller, L.; Turner, T.J.; Fabian, A.C.; Kaspi, S.; Mushotzky, R.; Ward, M. A Compton-thick Wind in the High-luminosity Quasar, PDS 456. Astrophys. J. 2009, 701, 493–507. [Google Scholar] [CrossRef]
- Roming, P.W.A.; Kennedy, T.E.; Mason, K.O.; Nousek, J.A.; Ahr, L.; Bingham, R.E.; Broos, P.S.; Carter, M.J.; Hancock, B.K.; Huckle, H.E.; et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 2005, 120, 95–142. [Google Scholar] [CrossRef]
- Poole, T.S.; Breeveld, A.A.; Page, M.J.; Landsman, W.; Holland, S.T.; Roming, P.; Kuin, N.P.M.; Brown, P.J.; Gronwall, C.; Hunsberger, S.; et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 2008, 383, 627–645. [Google Scholar] [CrossRef]
- Breeveld, A.A.; Landsman, W.; Holland, S.T.; Roming, P.; Kuin, N.P.M.; Page, M.J. An Updated Ultraviolet Calibration for the Swift/UVOT. AIP Conf. Proc. 2011, 1358, 373–376. [Google Scholar] [CrossRef]
- Bessell, M.S. Standard Photometric Systems. Annu. Rev. Astron. Astrophys. 2005, 43, 293–336. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Reeves, J.N.; Braito, V.; Porquet, D.; Lobban, A.P.; Matzeu, G.A.; Nardini, E. The flaring X-ray corona in the quasar PDS 456. Mon. Not. R. Astron. Soc. 2021, 500, 1974–1991. [Google Scholar] [CrossRef]
- Vaughan, S.; Edelson, R.; Warwick, R.S.; Uttley, P. On characterizing the variability properties of X-ray light curves from active galaxies. Mon. Not. R. Astron. Soc. 2003, 345, 1271–1284. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Zwitter, T.; Marziani, P.; Dultzin-Hacyan, D. Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2000, 38, 521–571. [Google Scholar] [CrossRef]
- Reeves, J.N.; Braito, V.; Chartas, G.; Hamann, F.; Laha, S.; Nardini, E. Resolving the Soft X-Ray Ultrafast Outflow in PDS 456. Astrophys. J. 2020, 895, 37. [Google Scholar] [CrossRef]
- Ganci, V.; Marziani, P.; D’Onofrio, M.; del Olmo, A.; Bon, E.; Bon, N.; Negrete, C.A. Radio loudness along the quasar main sequence. Astron. Astrophys. 2019, 630, A110. [Google Scholar] [CrossRef]
JD | B–V | V–R | V |
---|---|---|---|
2,460,316.636 | — | ||
2,460,318.646 | |||
2,460,319.577 | |||
2,460,323.817 | |||
2,460,329.622 | |||
2,460,331.564 | |||
2,460,332.595 | — | ||
2,460,342.528 | |||
2,460,342.671 | |||
2,460,347.553 |
MJD | c-Band Magnitude | Residual (mag) |
---|---|---|
57,896.372 | ||
58,846.555 | ||
58,846.557 | ||
58,846.562 | ||
58,846.573 | ||
59,224.594 | ||
60,145.704 | ||
60,145.707 | ||
60,145.713 | ||
60,444.948 |
Mean MJD | c | o | |
---|---|---|---|
57,506.96778 | |||
57,808.61823 | |||
57,808.64202 | |||
57,812.60939 | |||
57,826.57846 | |||
57,841.02690 | |||
57,857.00976 | |||
57,882.92872 | |||
57,898.86425 | |||
58,252.45468 | |||
58,971.96334 | |||
59,608.87673 | |||
59,642.90558 | |||
59,712.60368 | |||
59,964.87374 | |||
59,968.79979 | |||
60,020.69771 | |||
60,350.73672 | |||
60,432.62362 | |||
60,436.61584 | |||
60,458.70910 | |||
60,462.69647 | |||
60,488.58022 | |||
60,496.50709 | |||
60,684.83287 | |||
60,702.77204 | |||
60,706.79951 | |||
60,712.52941 | |||
60,732.72881 |
MJD | Magnitude | Residual |
---|---|---|
59,781.13982 | ||
58,919.60627 | ||
59,785.16742 | ||
59,655.37404 | ||
59,421.42573 | ||
58,919.58674 | ||
59,742.35348 | ||
59,785.14536 | ||
59,785.14904 | ||
58,919.58997 | ||
60,739.34464 | ||
59,819.83821 | ||
60,739.36349 | ||
60,458.26818 | ||
60,735.39055 | ||
60,442.28403 | ||
60,442.24279 | ||
60,721.36584 | ||
60,360.65913 | ||
59,709.27420 | ||
60,442.24095 | ||
60,442.27024 | ||
59,358.38563 | ||
60,558.07891 | ||
60,721.38508 | ||
60,739.35427 | ||
59,358.42088 | ||
60,721.38882 | ||
59,515.20129 | ||
60,721.35842 | ||
59,819.85561 | ||
59,358.38837 | ||
59,819.84137 | ||
60,187.13460 | ||
60,398.31558 | ||
60,398.28632 | ||
60,558.08450 | ||
60,187.11838 |
MJD | Magnitude | Residual |
---|---|---|
60,558.07566 | ||
59,710.36622 | ||
60,187.11242 | ||
60,558.09510 | ||
59,741.16267 | ||
60,742.37770 | ||
60,747.31812 | ||
60,742.38047 | ||
59,741.16965 | ||
59,515.19806 | ||
60,750.34293 | ||
59,710.35596 | ||
60,742.38964 | ||
60,742.37493 | ||
60,739.34831 | ||
59,742.17138 | ||
59,741.16618 | ||
60,398.29174 | ||
60,750.32962 | ||
60,750.34843 | ||
60,750.33289 | ||
60,398.28812 | ||
59,741.17910 | ||
60,562.04650 | ||
59,710.34664 | ||
59,515.20820 | ||
59,742.18804 | ||
60,747.31447 | ||
60,377.38048 | ||
60,747.32545 | ||
60,751.38583 | ||
60,751.40451 | ||
60,751.40165 | ||
60,747.33965 | ||
60,562.04329 | ||
59,680.11169 | ||
59,819.82223 |
Mean MJD | c | o | |
---|---|---|---|
57,895.08 | |||
57,899.08 | |||
57,903.06 | |||
57,980.84 | |||
58,253.04 | |||
58,332.90 | |||
58,396.76 | |||
58,573.10 | |||
58,965.03 | |||
58,969.02 | |||
58,985.05 | |||
58,988.96 | |||
58,997.03 | |||
59,015.96 | |||
59,040.89 | |||
59,048.87 | |||
59,069.84 | |||
59,080.81 | |||
59,371.04 | |||
59,375.03 |
Mean MJD | c | o | |
---|---|---|---|
59,378.90 | |||
59,408.89 | |||
59,453.83 | |||
59,680.33 | |||
59,787.51 | |||
59,812.08 | |||
59,812.86 | |||
59,814.96 | |||
59,818.91 | |||
59,820.06 | |||
59,822.65 | |||
Mean MJD | c | o | |
59,836.91 | |||
59,850.10 | |||
60,034.75 | |||
60,142.52 | |||
60,193.44 | |||
60,436.72 | |||
60,442.64 | |||
60,448.02 | |||
60,466.48 | |||
60,466.51 | |||
60,490.58 | |||
60,554.48 | |||
60,558.51 | |||
60,732.89 | |||
60,739.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betzler, A.S.; Delfino, I.d.S.; dos Santos, A.B.; Dias, R.M.; de Sousa, O.F. Comparative Photometry of the Quiet Quasar PDS 456 and the Radio-Loud Blazar 3C 273. Galaxies 2025, 13, 110. https://doi.org/10.3390/galaxies13050110
Betzler AS, Delfino IdS, dos Santos AB, Dias RM, de Sousa OF. Comparative Photometry of the Quiet Quasar PDS 456 and the Radio-Loud Blazar 3C 273. Galaxies. 2025; 13(5):110. https://doi.org/10.3390/galaxies13050110
Chicago/Turabian StyleBetzler, Alberto Silva, Ingrid dos Santos Delfino, Agábio Brasil dos Santos, Roberto Mendes Dias, and Orahcio Felicio de Sousa. 2025. "Comparative Photometry of the Quiet Quasar PDS 456 and the Radio-Loud Blazar 3C 273" Galaxies 13, no. 5: 110. https://doi.org/10.3390/galaxies13050110
APA StyleBetzler, A. S., Delfino, I. d. S., dos Santos, A. B., Dias, R. M., & de Sousa, O. F. (2025). Comparative Photometry of the Quiet Quasar PDS 456 and the Radio-Loud Blazar 3C 273. Galaxies, 13(5), 110. https://doi.org/10.3390/galaxies13050110