Black Holes and Baryon Number Violation: Unveiling the Origins of Early Galaxies and the Low-Mass Gap
Abstract
:1. Introduction
2. Sphaleron Process in Schwarzschild Spacetime
3. Horizon Singularities
4. Higgs Vacuum at the Horizon
5. Dynamic Chern–Simons
6. Early Galaxy Growth and the Low-Mass Gap
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BH | Black hole |
SNBH | Supermassive black hole |
IMBH | Intermediate-mass black hole |
SM | Standard model |
EW | Electroweak |
JWST | James Webb Space Telescope |
References
- Riotto, A.; Trodden, M. Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 1999, 49, 35. [Google Scholar] [CrossRef]
- Banks, T.; Seiberg, N. Symmetries and strings in field theory and gravity. Phys. Rev. D 2011, 83, 084019. [Google Scholar] [CrossRef]
- Antunes, V.; Bediaga, I.; Novello, M. Gravitational baryogenesis without CPT violation. J. Cosmol. Astropart. Phys. 2019, 10, 076. [Google Scholar] [CrossRef]
- Burda, P.; Gregory, R.; Moss, I. Gravity and the stability of the Higgs vacuum. Phys. Rev. Lett. 2015, 115, 071303. [Google Scholar] [CrossRef]
- Burda, P.; Gregory, R.; Moss, I. Vacuum metastability with black holes. J. High Energy Phys. 2015, 8, 114. [Google Scholar] [CrossRef]
- Tetradis, N. Black holes and Higgs stability. J. Cosmol. Astropart. Phys. 2016, 9, 036. [Google Scholar] [CrossRef]
- Gorbunov, D.; Levkov, D.; Panin, A. Fatal youth of the Universe: Black hole threat for the electroweak vacuum during preheating. J. Cosmol. Astropart. Phys. 2017, 10, 016. [Google Scholar] [CrossRef]
- Canko, D.; Gialamas, I.; Jelic-Cizmek, G.; Riotto, A.; Tetradis, N. On the catalysis of the electroweak vacuum decay by black holes at high temperature. Eur. Phys. J. C 2018, 78, 328. [Google Scholar] [CrossRef]
- Mukaida, K.; Yamada, M. False vacuum decay catalyzed by black holes. Phys. Rev. D 2017, 96, 103514. [Google Scholar] [CrossRef]
- Kohri, K.; Matsui, H. Electroweak vacuum collapse induced by vacuum fluctuations of the Higgs field around evaporating black holes. Phys. Rev. D 2018, 98, 123509. [Google Scholar] [CrossRef]
- Dai, D.C.; Gregory, R.; Stojkovic, D. Connecting the Higgs potential and primordial black holes. Phys. Rev. D 2020, 101, 125012. [Google Scholar] [CrossRef]
- ’t Hooft, G. On the quantum structure of a black hole. Nucl. Phys. B 1985, 256, 727. [Google Scholar] [CrossRef]
- Ghosh, K. Near-horizon geometry and the entropy of a minimally coupled scalar field in the Schwarzschild black hole. J. Phys. Soc. Jpn. 2016, 85, 014101. [Google Scholar] [CrossRef]
- Mukohyama, S.; Israel, W. Black holes, brick walls and the Boulware state. Phys. Rev. D 1998, 58, 104005. [Google Scholar] [CrossRef]
- Banerjee, S.; Das, S.; Dorband, M.; Kundu, A. Brickwall, normal modes, and emerging thermality. Phys. Rev. D 2024, 109, 126020. [Google Scholar] [CrossRef]
- Greene, J.E.; Strader, J.; Ho, L.C. Intermediate-mass black holes. Ann. Rev. Astron. Astrophys. 2020, 58, 257. [Google Scholar] [CrossRef]
- Ferrarese, L.; Ford, H. Supermassive black holes in galactic nuclei: Past, present and future research. Space Sci. Rev. 2005, 116, 523. [Google Scholar] [CrossRef]
- Gültekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-sigma and M-L relations in galactic bulges and determinations of their intrinsic scatter. Astrophys. J. 2009, 698, 198. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (or not) of supermassive black holes and host galaxies. Ann. Rev. Astron. Astrophys. 2013, 51, 511. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic jets from active galactic nuclei. Ann. Rev. Astron. Astrophys. 2019, 57, 467. [Google Scholar] [CrossRef]
- Komissarov, S.; Porth, O. Numerical simulations of jets. New. Astr. Rev. 2021, 92, 101610. [Google Scholar] [CrossRef]
- Labbé, I.; van Dokkum, P.; Nelson, E.; Bezanson, R.; Suess, K.A.; Leja, J.; Brammer, G.; Whitaker, K.; Mathews, E.; Stefanon, M.; et al. A population of red candidate massive galaxies ~600 Myr after the big bang. Nature 2023, 616, 266. [Google Scholar] [CrossRef]
- Harikane, Y.; Ouchi, M.; Oguri, M.; Ono, Y.; Nakajima, K.; Isobe, Y.; Umeda, H.; Mawatari, K.; Zhang, Y. A Comprehensive study of galaxies at z ∼ 9–16 found in the early JWST data: Ultraviolet luminosity functions and cosmic star formation history at the pre-reionization epoch. Astrophys. J. Suppl. 2023, 265, 5. [Google Scholar] [CrossRef]
- Maiolino, R.; Scholtz, J.; Curtis-Lake, E.; Carniani, S.; Baker, W.; de Graaff, A.; Tacchella, S.; Übler, H.; D’Eugenio, F.; Witstok, J.; et al. JADES. The diverse population of infant black holes at 4 < z < 11: Merging, tiny, poor, but mighty. Astron. Astrophys. 2024, 691, A145. [Google Scholar]
- Greene, J.E.; Labbe, I.; Goulding, A.D.; Furtak, L.J.; Chemerynska, I.; Kokorev, V.; Dayal, P.; Volonteri, M.; Williams, C.C.; Wang, B.; et al. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5. Astrophys. J. 2022, 941, 106. [Google Scholar] [CrossRef]
- Liu, B.; Bromm, V. Accelerating early massive galaxy formation with primordial black holes. Astrophys. J. Lett. 2022, 937, L30. [Google Scholar] [CrossRef]
- Fan, X.; Banados, E.; Simcoe, R.A. Quasars and the intergalactic medium at cosmic dawn. Annu. Rev. Astron. Astrophys. 2023, 61, 373. [Google Scholar] [CrossRef]
- Larson, R.L.; Finkelstein, S.L.; Kocevski, D.D.; Hutchison, T.A.; Trump, J.R.; Haro, P.A.; Bromm, V.; Cleri, N.J.; Dickinson, M.; Fujimoto, S.; et al. A CEERS discovery of an accreting supermassive black hole 570 Myr after the big bang: Identifying a progenitor of massive z > 6 quasars. Astrophys. J. Lett. 2023, 953, L29. [Google Scholar] [CrossRef]
- Übler, H.; Maiolino, R.; Pérez-González, P.G.; D’eugenio, F.; Perna, M.; Curti, M.; Arribas, S.; Bunker, A.; Carniani, S.; Charlot, S.; et al. GA-NIFS: JWST discovers an offset AGN 740 million years after the big bang. Mon. Not. Roy. Astron. Soc. 2024, 531, 355. [Google Scholar] [CrossRef]
- Onoue, M.; Inayoshi, K.; Ding, X.; Li, W.; Li, Z.; Molina, J.; Inoue, A.K.; Jiang, L.; Ho, L.C. A Candidate for the least-massive black hole in the first 1.1 billion years of the universe. Astrophys. J. Lett. 2023, 942, L17. [Google Scholar] [CrossRef]
- Maiolino, R.; Scholtz, J.; Witstok, J.; Carniani, S.; D’Eugenio, F.; de Graaff, A.; Übler, H.; Tacchella, S.; Curtis-Lake, E.; Arribas, S.; et al. A small and vigorous black hole in the early Universe. Nature 2024, 627, 59, Erratum in Nature 2024, 630, E2. [Google Scholar] [CrossRef]
- Xiao, M.; Oesch, P.A.; Elbaz, D.; Bing, L.; Nelson, E.J.; Weibel, A.; Illingworth, G.D.; van Dokkum, P.; Naidu, R.P.; Daddi, E.; et al. Accelerated formation of ultra-massive galaxies in the first billion years. Nature 2024, 635, 311. [Google Scholar] [CrossRef] [PubMed]
- Bogdán, Á.; Goulding, A.D.; Natarajan, P.; Kovács, O.E.; Tremblay, G.R.; Chadayammuri, U.; Volonteri, M.; Kraft, R.P.; Forman, W.R.; Jones, C.; et al. Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar. Nature Astron. 2024, 8, 126. [Google Scholar] [CrossRef]
- Furtak, L.J.; Labbé, I.; Zitrin, A.; Greene, J.E.; Dayal, P.; Chemerynska, I.; Kokorev, V.; Miller, T.B.; Goulding, A.D.; de Graaff, A.; et al. A high black hole to host mass ratio in a lensed AGN in the early Universe. Nature 2024, 628, 57. [Google Scholar] [CrossRef] [PubMed]
- Kovács, O.E.; Bogdán, Á.; Natarajan, P.; Werner, N.; Azadi, M.; Volonteri, M.; Tremblay, G.R.; Chadayammuri, U.; Forman, W.R.; Jones, C.; et al. A Candidate supermassive black hole in a gravitationally lensed galaxy at z ≈ 10. Astrophys. J. Lett. 2024, 965, L21. [Google Scholar] [CrossRef]
- Bailyn, C.D.; Jain, R.K.; Coppi, P.; Orosz, J.A. The Mass distribution of stellar black holes. Astrophys. J. 1998, 499, 367. [Google Scholar] [CrossRef]
- Ozel, F.; Psaltis, D.; Narayan, R.; McClintock, J.E. The Black hole mass distribution in the galaxy. Astrophys. J. 2010, 725, 1918. [Google Scholar] [CrossRef]
- Farr, W.M.; Sravan, N.; Cantrell, A.; Kreidberg, L.; Bailyn, C.D.; Mandel, I.; Kalogera, V. The Mass distribution of stellar-mass black holes. Astrophys. J. 2011, 741, 103. [Google Scholar] [CrossRef]
- Belczynski, K.; Wiktorowicz, G.; Fryer, C.; Holz, D.; Kalogera, V. Missing Black Holes unveil the supernova explosion mechanism. Astrophys. J. 2012, 757, 91. [Google Scholar] [CrossRef]
- Adler, S.L. Axial vector vertex in spinor electrodynamics. Phys. Rev. 1969, 177, 2426. [Google Scholar] [CrossRef]
- Bell, J.S.; Jackiw, R. A PCAC puzzle: π0→γγ in the σ model. Nuovo Cim. A 1969, 60, 47. [Google Scholar] [CrossRef]
- ’t Hooft, G. Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 1976, 37, 8. [Google Scholar] [CrossRef]
- Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 1985, 155, 36. [Google Scholar] [CrossRef]
- Fukugita, M.; Yanagida, T. Baryogenesis without grand unification. Phys. Lett. B 1986, 174, 45. [Google Scholar] [CrossRef]
- Shaposhnikov, M.E. Baryon asymmetry of the universe in standard electroweak theory. Nucl. Phys. B 1987, 287, 757. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifschitz, E.M. The Classical Theory of Fields; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Manton, N.S. Topology in the Weinberg-Salam theory. Phys. Rev. D 1983, 28, 2019. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Manton, N.S. A Saddle point solution in the Weinberg-Salam theory. Phys. Rev. D 1984, 30, 2212. [Google Scholar] [CrossRef]
- Luca, V.D.; Franciolini, G.; Kehagias, A.; Riotto, A. Standard model baryon number violation seeded by black holes. Phys. Lett. B 2021, 819, 136454. [Google Scholar] [CrossRef]
- Gregory, R.; Moss, I.G.; Withers, B. Black holes as bubble nucleation sites. J. High Energy Phys. 2014, 3, 81. [Google Scholar] [CrossRef]
- Coleman, S.R.; Luccia, F.D. Gravitational effects on and of vacuum decay. Phys. Rev. D 1980, 21, 3305. [Google Scholar] [CrossRef]
- Mellor, F.; Moss, I. Black holes and gravitational instantons. Class. Quant. Grav. 1989, 6, 1379. [Google Scholar] [CrossRef]
- Dowker, F.; Gauntlett, J.P.; Kastor, D.A.; Traschen, J.H. Pair creation of dilaton black holes. Phys. Rev. D 1994, 49, 2909. [Google Scholar] [CrossRef] [PubMed]
- Hawking, S.W.; Turok, N. Open inflation without false vacua. Phys. Lett. B 1998, 425, 25. [Google Scholar] [CrossRef]
- Coleman, S.R. The Fate of the false cacuum. 1. Semiclassical theory. Phys. Rev. D 1977, 15, 2929, Erratum in Phys. Rev. D 1977, 16, 1248. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Springer: Clarendon, NY, USA, 1983. [Google Scholar]
- Carroll, S. Spacetime and Geometry: An Introduction to General Relativity; Addison-Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Gogberashvili, M. Einstein’s hole argument and Schwarzschild singularities. Annals Phys. 2023, 452, 169274. [Google Scholar] [CrossRef]
- Colombeau, J.F. New Generalized Functions and Multiplication of Distributions; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Colombeau, J.F. Elementary Introduction to New Generalized Functions; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Gelfand, I.M.; Schilov, G.E. Generalized Functions. Vol. I: Properties and Operations; Academic Press: New York, NY, USA; London, UK, 1964. [Google Scholar]
- Pantoja, N.R.; Rago, H. Energy-momentum tensor valued distributions for the Schwarzschild and Reissner-Nordstrom geometries. arXiv 1997, arXiv:gr-qc/9710072. [Google Scholar]
- Heinzle, J.M.; Steinbauer, R. Remarks on the distributional Schwarzschild geometry. J. Math. Phys. 2002, 43, 1493. [Google Scholar] [CrossRef]
- Foukzon, J.; Potapov, A.; Menkova, E. Was Polchinski wrong? Colombeau distributional Rindler space-time with distributional Levi-Civitá connection induced vacuum dominance. Unruh effect revisited. J. High Energy Phys. Gravit. Cosmol. 2018, 4, 361. [Google Scholar] [CrossRef]
- Foukzon, J.; Men’kova, E.R.; Potapov, A.A.; Podosenov, S.A. Was Polchinski wrong? Colombeau distributional Rindler space-time with distributional Levi-Cività connection induced vacuum dominance. Unruh effect revisited. J. Phys. Conf. Ser. 2018, 1141, 012100. [Google Scholar] [CrossRef]
- Giddings, S.B. Black hole information, unitarity, and nonlocality. Phys. Rev. D 2006, 74, 106005. [Google Scholar] [CrossRef]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortsch. Phys. 2013, 61, 781. [Google Scholar] [CrossRef]
- Kerr, R.P. Do black holes have singularities? arXiv 2023, arXiv:2312.00841. [Google Scholar]
- Cardoso, V.; Pani, P. Testing the nature of dark compact objects: A status report. Living Rev. Rel. 2019, 22, 4. [Google Scholar] [CrossRef]
- Ansoldi, S. Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources. arXiv 2008, arXiv:0802.0330. [Google Scholar]
- Malafarina, D. Classical collapse to black holes and quantum bounces: A review. Universe 2017, 3, 48. [Google Scholar] [CrossRef]
- Gogberashvili, M.; Pantskhava, L. Black hole information problem and wave bursts. Int. J. Theor. Phys. 2018, 57, 1763. [Google Scholar] [CrossRef]
- Gogberashvili, M. Can quantum particles cross a horizon? Int. J. Theor. Phys. 2019, 58, 3711. [Google Scholar] [CrossRef]
- Beradze, R.; Gogberashvili, M.; Pantskhava, L. Reflective black holes. Mod. Phys. Lett. A 2021, 36, 2150200. [Google Scholar] [CrossRef]
- Howard, K.W.; Candelas, P. Quantum stress tensor in Schwarzschild space-time. Phys. Rev. Lett. 1984, 53, 403. [Google Scholar] [CrossRef]
- Mathur, S.D. The Fuzzball proposal for black holes: An Elementary review. Fortsch. Phys. 2005, 53, 793. [Google Scholar] [CrossRef]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black holes: Complementarity or firewalls? J. High Energy Phys. 2013, 2, 62. [Google Scholar] [CrossRef]
- Einstein, A. On a stationary system with spherical symmetry consisting of many gravitating masses. Ann. Math. 1939, 40, 922. [Google Scholar] [CrossRef]
- Schwarzschild, K. On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber Preuss. Akad. Wiss. Phys. Math. Kl. 1916, 1916, 189–196. [Google Scholar]
- Chitishvili, M.; Gogberashvili, M.; Konoplich, R.; Sakharov, A.S. Higgs field-induced triboluminescence in binary black hole mergers. Universe 2023, 9, 301. [Google Scholar] [CrossRef]
- Coleman, S.R.; Weinberg, E.J. Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 1973, 7, 1888. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Perseus Books: Reading, PA, USA, 1995. [Google Scholar]
- Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Tye, S.H.H.; Wong, S.S.C. The Chern-Simons number as a dynamical variable. Ann. Math. Sci. Appl. 2016, 1, 123. [Google Scholar] [CrossRef]
- Zhuang, M.-Y.; Ho, L.C. Evolutionary paths of active galactic nuclei and their host galaxies. Nat. Astron. 2023, 7, 1376. [Google Scholar] [CrossRef]
- Ricarte, A.; Narayan, R.; Curd, B. Recipes for jet feedback and spin evolution of black holes with strongly magnetized super-Eddington accretion disks. Astrophys. J. Lett. 2023, 954, L22. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. [Event Horizon Telescope Collaboration] First Sagittarius A* Event Horizon Telescope Results. VIII. Physical interpretation of the polarized ring. Astrophys. J. Lett. 2024, 964, L26. [Google Scholar] [CrossRef]
- Inayoshi, K.; Visbal, E.; Haiman, Z. The assembly of the first massive black holes. Ann. Rev. Astron. Astrophys. 2020, 58, 27. [Google Scholar] [CrossRef]
- Volonteri, M.; Habouzit, M.; Colpi, M. The origins of massive black holes. Nature Rev. Phys. 2021, 3, 732. [Google Scholar] [CrossRef]
- Volonteri, M.; Lodato, G.; Natarajan, P. The evolution of massive black hole seeds. Mon. Not. Roy. Astron. Soc. 2008, 383, 1079. [Google Scholar] [CrossRef]
- Marulli, F.; Bonoli, S.; Branchini, E.; Moscardini, L.; Springel, V. Modeling the cosmological co-evolution of supermassive black holes and galaxies. 1. BH scaling relations and the AGN luminosity function. Mon. Not. Roy. Astron. Soc. 2008, 385, 1846. [Google Scholar] [CrossRef]
- Dayal, P.; Rossi, E.M.; Shiralilou, B.; Piana, O.; Choudhury, T.R.; Volonteri, M. The hierarchical assembly of galaxies and black holes in the first billion years: Predictions for the era of gravitational wave astronomy. Mon. Not. Roy. Astron. Soc. 2019, 486, 2336. [Google Scholar] [CrossRef]
- Piana, O.; Dayal, P.; Volonteri, M.; Choudhury, T.R. The mass assembly of high-redshift black holes. Mon. Not. Roy. Astron. Soc. 2020, 500, 2146. [Google Scholar] [CrossRef]
- Trinca, A.; Schneider, R.; Valiante, R.; Graziani, L.; Zappacosta, L.; Shankar, F. The low-end of the black hole mass function at cosmic dawn. Mon. Not. Roy. Astron. Soc. 2022, 511, 616. [Google Scholar] [CrossRef]
- Toubiana, A.; Sberna, L.; Volonteri, M.; Barausse, E.; Babak, S.; Enficiaud, R.; Villalba, D.I.; Gair, J.R.; Greene, J.E.; Leclere, H.Q. Reconciling PTA and JWST and preparing for LISA with POMPOCO: A Parametrisation Of the Massive black hole POpulation for Comparison to Observations. arXiv 2024, arXiv:2410.17916. [Google Scholar]
- Croton, D.J.; Springel, V.; White, S.D.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. Roy. Astron. Soc. 2006, 365, 11, Erratum in Mon. Not. Roy. Astron. Soc. 2006, 367, 864. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. Roy. Astron. Soc. 2015, 446, 521. [Google Scholar] [CrossRef]
- Sijacki, D.; Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Snyder, G.F.; Nelson, D.; Hernquist, L. The Illustris simulation: The evolving population of black holes across cosmic time. Mon. Not. Roy. Astron. Soc. 2015, 452, 575. [Google Scholar] [CrossRef]
- Ellis, J.; Fairbairn, M.; Urrutia, J.; Vaskonen, V. What is the origin of the JWST SMBHs? arXiv 2024, arXiv:2410.24224. [Google Scholar]
- Pacucci, F.; Nguyen, B.; Carniani, S.; Maiolino, R.; Fan, X. JWST CEERS and JADES active galaxies at z = 4–7 violate the local M• - M★ relation at >3σ: Implications for low-mass black holes and seeding models. Astrophys. J. Lett. 2023, 957, L3. [Google Scholar] [CrossRef]
- Pacucci, F.; Loeb, A.; Juodžbalis, I. The Host galaxy of a dormant, overmassive black hole at z = 6.7 may be restarting star formation. Res. Notes AAS 2024, 8, 105. [Google Scholar] [CrossRef]
- Asaka, T.; Grigoriev, D.; Kuzmin, V.; Shaposhnikov, M. Late reheating, hadronic jets and baryogenesis. Phys. Rev. Lett. 2004, 92, 101303. [Google Scholar] [CrossRef]
- Arnold, P.B.; McLerran, L.D. Sphalerons, small fluctuations and baryon number violation in electroweak theory. Phys. Rev. D 1987, 36, 581. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.B.; Son, D.; Yaffe, L.G. The Hot baryon violation rate is O (alpha-w**5 T**4). Phys. Rev. D 1997, 55, 6264. [Google Scholar] [CrossRef]
- Moore, G.D. Sphaleron rate in the symmetric electroweak phase. Phys. Rev. D 2000, 62, 085011. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Rummukainen, K.; Tranberg, A. Sphaleron rate in the minimal standard model. Phys. Rev. Lett. 2014, 113, 141602. [Google Scholar] [CrossRef] [PubMed]
- Gavela, M.B.; Hernandez, P.; Orloff, J.; Pene, O. Standard model CP violation and baryon asymmetry. Mod. Phys. Lett. A 1994, 9, 795. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogberashvili, M.; Sakharov, A.S. Black Holes and Baryon Number Violation: Unveiling the Origins of Early Galaxies and the Low-Mass Gap. Galaxies 2025, 13, 4. https://doi.org/10.3390/galaxies13010004
Gogberashvili M, Sakharov AS. Black Holes and Baryon Number Violation: Unveiling the Origins of Early Galaxies and the Low-Mass Gap. Galaxies. 2025; 13(1):4. https://doi.org/10.3390/galaxies13010004
Chicago/Turabian StyleGogberashvili, Merab, and Alexander S. Sakharov. 2025. "Black Holes and Baryon Number Violation: Unveiling the Origins of Early Galaxies and the Low-Mass Gap" Galaxies 13, no. 1: 4. https://doi.org/10.3390/galaxies13010004
APA StyleGogberashvili, M., & Sakharov, A. S. (2025). Black Holes and Baryon Number Violation: Unveiling the Origins of Early Galaxies and the Low-Mass Gap. Galaxies, 13(1), 4. https://doi.org/10.3390/galaxies13010004