Determination of the Hubble Constant and Sound Horizon from Dark Energy Spectroscopic Instrument Year 1 and Dark Energy Survey Year 6 Baryon Acoustic Oscillation
Abstract
:1. Introduction
2. Theoretical Background
2.1. Flat CDM Model
2.2. Non-Flat CDM Model
2.3. wCDM Model
2.4. Phenomenological Emergent Dark Energy (PEDE) Model
3. Data and Methodology
4. Analysis and Results
4.1. Flat CDM Model
4.2. Non-Flat CDM Model
4.3. wCDM Model
4.4. Phenomenological Emergent Dark Energy Model
5. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Planck Collaboration. Planck 2018 Results—VI. Cosmological Parameters. Astron. Astrophys. 2020, A6, 641. [Google Scholar]
- Bennett, C.L.; Larson, D.; Weil, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Final maps and results. Astrophys. J. Suppl. Ser. 2013, 208, 20. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gillil, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.; Casertano, S.; Lampeitl, H.; Ferguson, H.C.; Filippenko, A.V.; Jha, S.W.; Li, W.; Chornock, R. A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astron. J. 2011, 730, 119. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% determination of the local value of the Hubble constant. Astron. J. 2016, 826, 56. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astron. J. 2019, 876, 55. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Huang, Q.G.; Wang, K. How the dark energy can reconcile Planck with local determination of the Hubble constant. Eur. Phys. J. 2016, 76, 506. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Reconciling Planck with the local value of H0 in extended parameter space. Phys. Lett. B 2016, 761, 242–246. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Q.G. Detecting the neutrinos mass hierarchy from cosmological data. Sci. China Phys. Mech. Astron. 2018, 61, 039521. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Di Valentino, E.; Saridakis, E.N.; Chakraborty, S. Observational constraints on one-parameter dynamical dark-energy parametrizations and the H0 tension. Phys. Rev. D 2019, 99, 043543. [Google Scholar] [CrossRef]
- Poulin, V.; Smith, T.L.; Karwal, T.; Kamionkowsk, M. Early Dark Energy can Resolve the Hubble Tension. Phys. Rev. Lett. 2019, 122, 221301. [Google Scholar] [CrossRef] [PubMed]
- Vagnozzi, S. New physics in light of the H0 tension: An alternative view. Phys. Rev. D 2020, 102, 023518. [Google Scholar] [CrossRef]
- Liu, M.; Huang, Z.; Luo, X.; Miao, H.; Singh, N.K.; Huang, L. Can non-standard recombination resolve the Hubble tension? Sci. China Phys. Mech. Astron. 2020, 63, 290405. [Google Scholar] [CrossRef]
- Ding, Q.; Nakama, T.; Wang, Y. A gigaparsec-scale local void and the Hubble tension. Sci. China Phys. Mech. Astron. 2020, 63, 290403. [Google Scholar] [CrossRef]
- Ryan, J.; Chen, Y.; Ratra, B. Baryon acoustic oscillation, Hubble parameter, and angular size measurement constraints on the Hubble constant, dark energy dynamics, and spatial curvature. Mon. Not. R. Astron. Soc. 2019, 488, 3844–3856. [Google Scholar] [CrossRef]
- Zhao, G.B.; Raveri, M.; Pogosian, L.; Wang, Y.; Crittenden, R.G.; Handley, W.J.; Percival, W.J.; Beutler, F.; Brinkmann, J.; Chuang, C.; et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 2017, 1, 627–632. [Google Scholar] [CrossRef]
- Li, X.; Shafieloo, A. A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tension. Astrophys. J. Lett. 2019, 883, L3. [Google Scholar] [CrossRef]
- Di Valentino, E. Investigating Cosmic Discordance. Astrophys. J. Lett. 2021, 908, L9. [Google Scholar] [CrossRef]
- Haitao, M.; Zhiqi, H. The H0 Tension in Non-flat QCDM Cosmology. Astron. J. 2018, 868, 20. [Google Scholar]
- Millon, M.; Galan, A.; Courbin, F.; Treu, T.; Suyu, S.H.; Ding, X.; Birrer, S.; Chen, G.C.-F.; Shajib, A.J.; Sluse, D.; et al. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. Astron. Astrophys. 2020, 639, A101. [Google Scholar] [CrossRef]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.-F.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW—XIII. A 2.4 percent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 2020, 498, 1420–1439. [Google Scholar] [CrossRef]
- Mooley, K.P.; Deller, A.T.; Gottlieb, O.; Nakar, E.; Hallinan, G.; Bourke, S.; Frail, D.A.; Horesh, A.; Corsi, A.; Hotokezaka, K. Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 2018, 561, 355–359. [Google Scholar] [CrossRef] [PubMed]
- The LIGO Scientific Collaboration and The Virgo Collaboration; The 1M2H Collaboration; The Dark Energy Camera GW-EM Collaboration and the DES Collaboration; The DLT40 Collaboration; The Las Cumbres Observatory Collaboration; The VINROUGE Collaboration; The MASTER Collaboration. A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Hotokezaka, K.; Nakar, E.; Gottlieb, O.; Nissanke, S.; Masuda, K.; Hallinan, G.; Mooley, K.P.; Deller, A.T. A Hubble constant measurement from the superluminal motion of the jet in GW170817. Nat. Astron. 2019, 3, 940–944. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, G.-Q.; Wang, F.-Y. An 8 percent determination of the Hubble constant from localized fast radio bursts. Mon. Not. R. Astron. Soc. Lett. 2022, 515, L1–L5. [Google Scholar] [CrossRef]
- James, C.W.; Ghosh, E.M.; Prochaska, J.X.; Bannister, K.W.; Bhari, S.; Day, C.K.; Deller, A.T.; Glowacki, M.; Gordon, A.C.; Heintz, K.E.; et al. A measurement of Hubble’s Constant using Fast Radio Bursts. Mon. Not. R. Astron. Soc. 2022, 516, 4862–4881. [Google Scholar] [CrossRef]
- Pesce, D.W.; Braatz, J.A.; Reid, M.J.; Riess, A.G.; Scolnic, D.; Condon, J.J.; Gao, F.; Henkel, C.; Impellizzeri, C.M.V.; Kuo, C.Y.; et al. The Megamaser Cosmology Project. XIII. Combined Hubble Constant Constraints. Astrophys. J. Lett. 2020, 891, L1. [Google Scholar] [CrossRef]
- Reid, J.; Pesce, D.W.; Riess, A.G. An Improved Distance to NGC 4258 and Its Implications for the Hubble Constant. Astrophys. J. Lett. 2019, 886, L27. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Braatz, J.A.; Lo, K.Y.; Reid, M.J.; Suyu, S.H.; Pesce, D.W.; Condon, J.J.; Henkel, C.; Impellizzeri, C.M.V. The Megamaser Cosmology Project. VI. Observations of NGC 6323. Astron. J. 2015, 800, 26. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hatt, D.; Hoyt, T.J.; Jang, I.S.; Beaton, R.L.; Burns, C.R.; Lee, M.G.; Monson, A.J.; Neeley, J.R.; et al. The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. Astron. J. 2019, 882, 34. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hoyt, T.; Jang, I.S.; Beaton, R.; Lee, M.G.; Monson, A.; Neeley, J.; Jeffrey, R. Calibration of the Tip of the Red Giant Branch. Astron. J. 2020, 891, 57. [Google Scholar] [CrossRef]
- Freedman, W.L. Measurements of the Hubble Constant: Tensions in Perspective. Astron. J. 2021, 919, 16. [Google Scholar] [CrossRef]
- Addison, G.E.; Watts, D.J.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Weil, J.L. Elucidating ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy. Astron. J. 2021, 853, 119. [Google Scholar] [CrossRef]
- Moresco, M.; Amati, L.; Amendola, L.; Birrer, S.; Blakeslee, J.P.; Cantiello, M.; Cimatti, A.; Darling, J.; Valle, M.D.; Fishbach, M.; et al. Unveiling the Universe with emerging cosmological probes. Living Rev. Relativ. 2022, 25, 6. [Google Scholar]
- Ballard, W.; Palmese, A.; Magaña, I.; BenZvi, S.; Moon, J.; Ross, A.J.; Rossi, G.; Aguilar, J.; Ahlen, S.; Blum, R.; et al. A dark siren measurement of the Hubble constant with the LIGO/Virgo gravitational wave event GW190412 and DESI galaxies. arXiv 2023, arXiv:2311.13062. [Google Scholar] [CrossRef]
- Alfradique, V.; Bom, C.R.; Palmese, A.; Teixeira, G.; Santana-Silva, L.; Drlica-Wagner, A.; Riley, A.H.; Rossi, G.; Martínez-Vázquez, C.E.; Sand, D.J.; et al. A dark siren measurement of the Hubble constant using gravitational wave events from the first three LIGO/Virgo observing runs and DELVE. Mon. Not. R. Astron. Soc. 2024, 528, 3249–3259. [Google Scholar] [CrossRef]
- DESI Collaboration. DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations. arXiv 2024, arXiv:2404.03002. [Google Scholar]
- DES Collaboration. Dark Energy Survey: A 2.1% measurement of the angular Baryonic Acoustic Oscillation scale at redshift zeff = 0.85 from the final dataset. arXiv 2024, arXiv:2402.10696. [Google Scholar]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astron. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Jimenez, R.; Loeb, A. Constraining Cosmological Parameters Based on Relative Galaxy Ages. Astrophys. J. 2002, 573, 37. [Google Scholar] [CrossRef]
- Handley, W.J.; Hobson, M.P.; Lasenby, A.N. POLYCHORD: Nested sampling for cosmology. Mon. Not. R. Astron. Soc. Lett. 2015, 450, L61–L65. [Google Scholar] [CrossRef]
- Lewis, A. GetDist: A Python package for analysing Monte Carlo samples. Instrumentation and Methods for Astrophysics. arXiv 2019, arXiv:1910.13970. [Google Scholar]
- Lozano Torres, J.A. Testing Cosmic Acceleration from the Late-Time Universe. Astronomy 2023, 2, 300–314. [Google Scholar] [CrossRef]
- Kazantzidis, L.; Perivolaropoulos, L. Evolution of the fσ8 tension with the Planck15/ΛCDM determination and implications for modified gravity theories. Phys. Rev. D 2018, 97, 103503. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Statist. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Cong, Z.; Han, Z.; Shuo, Y.; Siqi, L.; Tong-Jie, Z.; Yan-Chun, S. Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 2014, 14, 1221. [Google Scholar]
- Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 2005, 71, 123001. [Google Scholar] [CrossRef]
- Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.; Mignoli, M.; Pearce, H.; et al. Improved constraints on the expansion rate of the Universe up to z ≈ 1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 2012, 8, 6. [Google Scholar] [CrossRef]
- Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A 6 percent measurement of the Hubble parameter at z ≈ 0.45: Direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 2016, 5, 14. [Google Scholar] [CrossRef]
- Ratsimbazafy, A.L.; Loubser, S.I.; Crawford, S.M.; Cress, C.M.; Bassett, B.A.; Nichol, R.C.; Väisänen, P. Age-dating luminous red galaxies observed with the Southern African Large Telescope. Mon. Not. R. Astron. Soc. 2017, 467, 3239–3254. [Google Scholar] [CrossRef]
- Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S.A. Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. J. Cosmol. Astropart. Phys. 2010, 2, 8. [Google Scholar] [CrossRef]
- Borghi, N.; Moresco, M.; Cimatti, A. Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z) at z ≈ 0.7. Astrophys. J. Lett. 2022, 928, L4. [Google Scholar] [CrossRef]
- Jiao, K.; Borghi, N.; Moresco, M.; Zhang, T.-J. New Observational H(z) Data from Full-spectrum Fitting of Cosmic Chronometers in the LEGA-C Survey. Astrophys. J. Suppl. Ser. 2023, 265, 48. [Google Scholar] [CrossRef]
- Tomasetti, E.; Borghi, N.; Moresco, M.; Jiao, K.; Cimmatti, A.; Pozzetti, L.; Carnall, A.C.; McLure, R.J.; Pentericci, L. A new measurement of the expansion history of the Universe at z = 1.26 with cosmic chronometers in VANDELS. Astron. Astrophys. 2023, 265, 48. [Google Scholar] [CrossRef]
- Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z ≈ 2. Astrophys. J. Suppl. Ser. 2023, A96, 18. [Google Scholar] [CrossRef]
- Nunes, R.C.; Yadav, S.K.; Jesus, J.F.; Bernui, A. Cosmological parameter analyses using transversal BAO data. Mon. Not. R. Astron. Soc. 2020, 497, 2133–2141. [Google Scholar] [CrossRef]
- Nunes, R.C.; Bernui, A. BAO signatures in the 2-point angular correlations and the Hubble tension. Eur. Phys. J. C. 2020, 80, 1025. [Google Scholar] [CrossRef]
- Verde, L.; Bernal, J.L.; Heavens, A.F.; Jimenez, R. The length of the low-redshift standard ruler. Mon. Not. R. Astron. Soc. 2017, 467, 731–736. [Google Scholar] [CrossRef]
- Lemos, T.; Ruchika; Carvalho, J.C.; Alcaniz, J. Low-redshift estimates of the absolute scale of baryon acoustic oscillations. Eur. Phys. J. C 2023, 83, 495. [Google Scholar] [CrossRef]
- Pogosian, L.; Zhao, G.-B.; Jedamzik, K. Recombination-independent Determination of the Sound Horizon and the Hubble Constant from BAO. Astrophys. J. Lett. 2020, 904, L7. [Google Scholar] [CrossRef]
- Luongo, O.; Muccino, M. Model independent cosmographic constraints from DESI 2024. arXiv 2024, arXiv:2404.07070. [Google Scholar] [CrossRef]
- Carloni, Y.; Luongo, O.; Muccino, M. Does dark energy really revive using DESI 2024 data. arXiv 2024, arXiv:2404.12068. [Google Scholar]
- Liu, G.; Wang, Y.; Zhao, W. Impact of LRG1 and LRG2 in DESI 2024 BAO data on dark energy evolution. arXiv 2024, arXiv:2407.04385. [Google Scholar]
- Giare, W.; Najafi, M.; Pan, S.; Di Valentino, E.; Firouzjaee, J.T. Robust Preference for Dynamical Dark Energy in DESI BAO and SN Measurements. arXiv 2024, arXiv:2407.16689. [Google Scholar]
- Dinda, B.R.; Maartens, R. Model-agnostic assessment of dakr energy after DESI DR1 BAO. arXiv 2024, arXiv:2407.17252. [Google Scholar]
- Jiang, J.-Q.; Giare, W.; Gariazzo, S.; Dainotti, M.G.; Di Valentino, E.; Mena, O.; Pedrotti, D.; Santos da Costa, S.; Vagnozzi, S. Neutrino cosmology after DESI: Tightest mass upper limits, preference for the normal ordering, and tension with terrestrial observations. arXiv 2024, arXiv:2407.18047. [Google Scholar]
Observable | Measurement | Error | Year | Dataset Survey | Reference | |
---|---|---|---|---|---|---|
0.295 | 7.93 | 0.15 | 2024 | DESI BGS | [38] | |
0.510 | 13.62 | 0.25 | 2024 | DESI LRG | [38] | |
0.510 | 20.98 | 0.61 | 2024 | DESI LRG | [38] | |
0.706 | 16.85 | 0.32 | 2024 | DESI LRG | [38] | |
0.706 | 20.08 | 0.60 | 2024 | DESI LRG | [38] | |
0.850 | 19.51 | 0.41 | 2024 | DES Year 6 | [39] | |
0.930 | 21.71 | 0.28 | 2024 | DESI LRG+ELG | [38] | |
0.930 | 17.88 | 0.35 | 2024 | DESI LRG+ELG | [38] | |
1.317 | 27.79 | 0.69 | 2024 | DESI ELG | [38] | |
1.317 | 13.82 | 0.42 | 2024 | DESI ELG | [38] | |
1.491 | 26.07 | 0.67 | 2024 | DESI QSO | [38] | |
2.330 | 39.71 | 0.94 | 2024 | DESI Lya QSO | [38] | |
2.330 | 8.52 | 0.17 | 2024 | DESI Lya QSO | [38] |
z | Method | Reference | ||
---|---|---|---|---|
0.07 | 69 | 19.6 | Full-spectrum fitting | [48] |
0.09 | 69 | 12 | Full-spectrum fitting | [49] |
0.12 | 68.6 | 26.2 | Full-spectrum fitting | [48] |
0.17 | 83 | 8 | Full-spectrum fitting | [49] |
0.179 | 75 | 4 | Calibrated D4000 | [50] |
0.199 | 75 | 5 | Calibrated D4000 | [50] |
0.20 | 72.9 | 29.6 | Full-spectrum fitting | [48] |
0.27 | 77 | 14 | Full-spectrum fitting | [49] |
0.28 | 88.8 | 36.6 | Full-spectrum fitting | [48] |
0.352 | 83 | 14 | Calibrated D4000 | [50] |
0.38 | 83 | 13.5 | Calibrated D4000 | [51] |
0.4 | 95 | 17 | Full-spectrum fitting | [49] |
0.4004 | 77 | 10.2 | Calibrated D4000 | [51] |
0.4247 | 87.1 | 11.2 | Calibrated D4000 | [51] |
0.4497 | 92.8 | 12.9 | Calibrated D4000 | [51] |
0.47 | 89.0 | 49.6 | Full-spectrum fitting | [52] |
0.4783 | 80.9 | 9 | Calibrated D4000 | [51] |
0.48 | 97 | 62 | Full-spectrum fitting | [53] |
0.5929 | 104 | 13 | Calibrated D4000 | [50] |
0.6797 | 92 | 8 | Calibrated D4000 | [50] |
0.75 | 98.8 | 33.6 | Lick indices | [54] |
0.7812 | 105 | 12 | Calibrated D4000 | [50] |
0.80 | 113.1 | 28.5 | Full-spectrum fitting | [55] |
0.8754 | 125 | 17 | Calibrated D4000 | [50] |
0.88 | 90 | 40 | Full-spectrum fitting | [53] |
0.9 | 117 | 23 | Full-spectrum fitting | [49] |
1.037 | 154 | 20 | Calibrated D4000 | [50] |
1.26 | 135 | 65 | Full-spectrum fitting | [56] |
1.3 | 168 | 17 | Full-spectrum fitting | [49] |
1.363 | 160 | 33.6 | Calibrated D4000 | [57] |
1.43 | 177 | 18 | Full-spectrum fitting | [49] |
1.53 | 140 | 14 | Full-spectrum fitting | [49] |
1.75 | 202 | 40 | Full-spectrum fitting | [49] |
1.965 | 186.5 | 50.4 | Calibrated D4000 | [57] |
Parameter | BAO | BAO + OHD + Pantheon | BAO + OHD + Pantheon + R22 |
---|---|---|---|
(km ) | — | 69.70 ± 1.11 | 71.54 ± 0.71 |
0.263 ± 0.027 | 0.264 ± 0.016 | 0.259 ± 0.015 | |
0.726 ± 0.020 | 0.724 ± 0.011 | 0.728 ± 0.010 | |
(Mpc) | — | 147.14 ± 2.56 | 143.64 ± 1.53 |
Parameter | BAO | BAO + OHD + Pantheon | BAO + OHD + Pantheon + R22 |
---|---|---|---|
(km ) | — | 69.43 ± 1.23 | 71.48 ± 0.76 |
0.256 ± 0.035 | 0.249 ± 0.022 | 0.246 ± 0.020 | |
0.679 ± 0.032 | 0.706 ± 0.020 | 0.716 ± 0.019 | |
0.055 ± 0.032 | 0.031 ± 0.028 | 0.023 ± 0.025 | |
(Mpc) | — | 147.65 ± 2.70 | 143.76 ± 1.56 |
Parameter | BAO | BAO + OHD + Pantheon | BAO + OHD + Pantheon + R22 |
---|---|---|---|
(km ) | — | 69.65 ± 1.20 | 71.50 ± 0.80 |
0.125 ± 0.094 | 0.273 ± 0.027 | 0.269 ± 0.026 | |
0.830 ± 0.072 | 0.717 ± 0.020 | 0.720 ± 0.019 | |
w | −0.725 ± 0.119 | −1.026 ± 0.054 | −1.029 ± 0.051 |
(Mpc) | — | 147.24 ± 2.36 | 143.83 ± 1.78 |
Parameter | BAO | BAO + OHD + Pantheon | BAO + OHD + Pantheon + R22 |
---|---|---|---|
(km ) | — | 70.01 ± 1.14 | 71.79 ± 0.79 |
0.283 ± 0.017 | 0.315 ± 0.007 | 0.312 ± 0.008 | |
0.713 ± 0.014 | 0.682 ± 0.007 | 0.685 ± 0.006 | |
(Mpc) | — | 146.97 ± 2.45 | 144.55 ± 1.56 |
Model | AIC | BIC | AIC | BIC |
---|---|---|---|---|
Flat CDM | 92.536 | 93.276 | 0 | 0 |
Non-flat CDM | 94.977 | 96.027 | 2.441 | 2.751 |
wCDM | 94.468 | 95.518 | 1.932 | 2.242 |
PEDE | 91.657 | 92.398 | −0.879 | −0.878 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano Torres, J.A. Determination of the Hubble Constant and Sound Horizon from Dark Energy Spectroscopic Instrument Year 1 and Dark Energy Survey Year 6 Baryon Acoustic Oscillation. Galaxies 2024, 12, 48. https://doi.org/10.3390/galaxies12040048
Lozano Torres JA. Determination of the Hubble Constant and Sound Horizon from Dark Energy Spectroscopic Instrument Year 1 and Dark Energy Survey Year 6 Baryon Acoustic Oscillation. Galaxies. 2024; 12(4):48. https://doi.org/10.3390/galaxies12040048
Chicago/Turabian StyleLozano Torres, Jose Agustin. 2024. "Determination of the Hubble Constant and Sound Horizon from Dark Energy Spectroscopic Instrument Year 1 and Dark Energy Survey Year 6 Baryon Acoustic Oscillation" Galaxies 12, no. 4: 48. https://doi.org/10.3390/galaxies12040048
APA StyleLozano Torres, J. A. (2024). Determination of the Hubble Constant and Sound Horizon from Dark Energy Spectroscopic Instrument Year 1 and Dark Energy Survey Year 6 Baryon Acoustic Oscillation. Galaxies, 12(4), 48. https://doi.org/10.3390/galaxies12040048