Ionizing Spotlight of Active Galactic Nucleus
Abstract
:1. Introduction
- Study of the gas environment of galaxies (accretion of gas clouds, cosmological filaments, etc.)
- ‘Aracheology of active galactic nuclei’ [13]—a history of supermassive black hole activity at the light-travel time from the AGN to the gas clouds.
- Constrain of the unified model parameters related with the ionization cones: measuring the cone angle, looking for traces of their precession, constraints of absorbing matter distribution models.
2. Filaments of the Intergalactic Medium
2.1. The Nearest Example: Mrk 6
2.2. Cosmological Filaments
3. Galaxies with Fading Activity
3.1. Duty Cycle of AGN
3.2. Hanny’s Voorwerp
3.3. New Examples: ‘Voorwerpjes’
4. EELR Statistical Study
4.1. Surveys of Nearby AGNs
4.2. Cross-Ionization of a Companion
5. Activity of the Milky Way Nucleus
6. Ionization Cones and Nuclear Outflows
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active galaxy nucleus |
EELR | Extended Emission-Line Regions |
FPI | Fabry-Perot interferometer |
JWST | James Webb Space Telescope |
HST | Hubble Space Telescope |
HV | Hanni’s Voorwerp |
LINER | Low-ionization nuclear emission-line region |
LOFAR | International Low-Frequency Array |
MUSE | Multi Unit Spectroscopic Explorer |
SAI MSU | Sternberg Astronomical Institute of Lomonosov Moscow State University |
SAO RAS | Special Astrophysical Observatory of the Russian Academy of Sciences |
SCORPIO | Spectral Camera with Optical Reducer for Photometric and Interferometric Observations |
SDSS | Sloan Digital Sky Survey |
Sy | Seyfert galaxy |
References
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Antonucci, R. Unified models for active galactic nuclei and quasars. ARA&A 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Kormendy, J.; Kennicutt, R.C.J. Secular Evolution and the Formation of Pseudobulges in Disk Galaxies. ARA&A 2004, 42, 603–683. [Google Scholar] [CrossRef]
- Silk, J.; Mamon, G.A. The current status of galaxy formation. Res. Astron. Astrophys. 2012, 12, 917–946. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARA&A 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Pillepich, A.; Springel, V.; Nelson, D.; Genel, S.; Naiman, J.; Pakmor, R.; Hernquist, L.; Torrey, P.; Vogelsberger, M.; Weinberger, R.; et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 2018, 473, 4077–4106. [Google Scholar] [CrossRef]
- Brinkmann, S. On the Numerical Simulation of Advection Dominated Accretion Flows. Ph.D. Thesis, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany, 2009. [Google Scholar]
- Wilson, A.S.; Tsvetanov, Z.I. Ionization Cones and Radio Ejecta in Active Galaxies. Astron. J. 1994, 107, 1227. [Google Scholar] [CrossRef]
- Stockton, A.; Fu, H.; Canalizo, G. QSO extended emission-line regions. New Astron. Rev. 2006, 50, 694–700. [Google Scholar] [CrossRef]
- Keel, W.C.; Chojnowski, S.D.; Bennert, V.N.; Schawinski, K.; Lintott, C.J.; Lynn, S.; Pancoast, A.; Harris, C.; Nierenberg, A.M.; Sonnenfeld, A.; et al. The Galaxy Zoo survey for giant AGN-ionized clouds: Past and present black hole accretion events. Mon. Not. R. Astron. Soc. 2012, 420, 878–900. [Google Scholar] [CrossRef]
- Morganti, R. Archaeology of active galaxies across the electromagnetic spectrum. Nat. Astron. 2017, 1, 596–605. [Google Scholar] [CrossRef]
- Capetti, A.; Axon, D.J.; Kukula, M.; Macchetto, F.; Pedlar, A.; Sparks, W.B.; Boksenberg, A. The Emission-Line Jet in Markarian 6*. Astrophys. J. Lett. 1995, 454, L85. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Popović, L.Č.; Shapovalova, A.I.; Borisov, N.V.; Ilić, D. Variability in spectropolarimetric properties of Sy 1.5 galaxy Mrk 6. Mon. Not. R. Astron. Soc. 2014, 440, 519–529. [Google Scholar] [CrossRef]
- Kukula, M.J.; Holloway, A.J.; Pedlar, A.; Meaburn, J.; Lopez, J.A.; Axon, D.J.; Schilizzi, R.T.; Baum, S.A. Unusual radio and optical structures in the Seyfert galaxy Markarian 6. Mon. Not. R. Astron. Soc. 1996, 280, 1283–1292. [Google Scholar] [CrossRef]
- Smirnova, A.A.; Moiseev, A.V.; Dodonov, S.N. A close look at the well-known Seyfert galaxy: Extended emission filaments in Mrk 6. Mon. Not. R. Astron. Soc. 2018, 481, 4542–4547. [Google Scholar] [CrossRef]
- Sánchez Almeida, J.; Elmegreen, B.G.; Muñoz-Tuñón, C.; Elmegreen, D.M. Star formation sustained by gas accretion. Astron. Astrophys. Rev. 2014, 22, 71. [Google Scholar] [CrossRef]
- Sil’chenko, O.K. Empirical scenarios of galaxy evolution. Phys. Usp. 2022, 65, 1224–1247. [Google Scholar] [CrossRef]
- Cantalupo, S.; Arrigoni-Battaia, F.; Prochaska, J.X.; Hennawi, J.F.; Madau, P. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar. Nature 2014, 506, 63–66. [Google Scholar] [CrossRef]
- Sanderson, K.N.; Prescott, M.K.M.; Christensen, L.; Fynbo, J.; Møller, P. Mapping the Morphology and Kinematics of a Lyα-selected Nebula at z = 3.15 with MUSE. Astrophys. J. 2021, 923, 252. [Google Scholar] [CrossRef]
- Wang, W.; Wylezalek, D.; Vernet, J.; De Breuck, C.; Gullberg, B.; Swinbank, M.; Villar Martín, M.; Lehnert, M.; Drouart, G.; Arrigoni Battaia, F.; et al. 3D tomography of the giant Lyα nebulae of z ≈ 3–5 radio-loud AGN. arXiv 2023, arXiv:2309.15144. [Google Scholar] [CrossRef]
- Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; Kormendy, J.; et al. A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. Astrophys. J. Lett. 2000, 539, L13–L16. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. Lett. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Jogee, S. The Fueling and Evolution of AGN: Internal and External Triggers. In Physics of Active Galactic Nuclei at All Scales; Alloin, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 693, p. 143. [Google Scholar] [CrossRef]
- Combes, F. Fueling the AGN. In Advanced Lectures on the Starburst-AGN; Aretxaga, I., Kunth, D., Mújica, R., Eds.; World Scientific Publishing Company: Singapore, 2001; p. 223. [Google Scholar] [CrossRef]
- Combes, F. Circum-nuclear molecular disks: Role in AGN fueling and feedback. In Galaxy Evolution and Feedback across Different Environments; Storchi Bergmann, T., Forman, W., Overzier, R., Riffel, R., Eds.; Cambridge University Press: Cambridge, UK, 2021; Volume 359, pp. 312–317. [Google Scholar] [CrossRef]
- LaMassa, S.M.; Cales, S.; Moran, E.C.; Myers, A.D.; Richards, G.T.; Eracleous, M.; Heckman, T.M.; Gallo, L.; Urry, C.M. The Discovery of the First “Changing Look” Quasar: New Insights Into the Physics and Phenomenology of Active Galactic Nucleus. Astrophys. J. 2015, 800, 144. [Google Scholar] [CrossRef]
- MacLeod, C.L.; Ross, N.P.; Lawrence, A.; Goad, M.; Horne, K.; Burgett, W.; Chambers, K.C.; Flewelling, H.; Hodapp, K.; Kaiser, N.; et al. A systematic search for changing-look quasars in SDSS. Mon. Not. R. Astron. Soc. 2016, 457, 389–404. [Google Scholar] [CrossRef]
- Ricci, C.; Trakhtenbrot, B. Changing-look Active Galactic Nuclei. arXiv 2022, arXiv:2211.05132. [Google Scholar] [CrossRef]
- Popović, L.Č.; Ilić, D.; Burenkov, A.; Patiño Alvarez, V.M.; Marčeta-Mandić, S.; Kovačević-Dojčinović, J.; Shablovinskaya, E.; Kovačević, A.B.; Marziani, P.; Chavushyan, V.; et al. Long-term optical spectral monitoring of a changing-look active galactic nucleus NGC 3516. II. Broad-line profile variability. Astron. Astrophys. 2023, 675, A178. [Google Scholar] [CrossRef]
- Shulevski, A.; Morganti, R.; Harwood, J.J.; Barthel, P.D.; Jamrozy, M.; Brienza, M.; Brunetti, G.; Röttgering, H.J.A.; Murgia, M.; White, G.J.; et al. Radiative age mapping of the remnant radio galaxy B2 0924+30: The LOFAR perspective. Astron. Astrophys. 2017, 600, A65. [Google Scholar] [CrossRef]
- Brocksopp, C.; Kaiser, C.R.; Schoenmakers, A.P.; de Bruyn, A.G. Three episodes of jet activity in the Fanaroff-Riley type II radio galaxy B0925+420. Mon. Not. R. Astron. Soc. 2007, 382, 1019–1028. [Google Scholar] [CrossRef]
- Chavan, K.; Dabhade, P.; Saikia, D.J. A giant radio galaxy with three cycles of episodic jet activity from LoTSS DR2. Mon. Not. R. Astron. Soc. 2023, 525, L87–L92. [Google Scholar] [CrossRef]
- Mahatma, V.H. The Dynamics and Energetics of Remnant and Restarting RLAGN. Galaxies 2023, 11, 74. [Google Scholar] [CrossRef]
- Lintott, C.J.; Schawinski, K.; Slosar, A.; Land, K.; Bamford, S.; Thomas, D.; Raddick, M.J.; Nichol, R.C.; Szalay, A.; Andreescu, D.; et al. Galaxy Zoo: Morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2008, 389, 1179–1189. [Google Scholar] [CrossRef]
- Keel, W.C.; Lintott, C.J.; Schawinski, K.; Bennert, V.N.; Thomas, D.; Manning, A.; Chojnowski, S.D.; van Arkel, H.; Lynn, S. The History and Environment of a Faded Quasar: Hubble Space Telescope Observations of Hanny’s Voorwerp and IC 2497. Astron. J. 2012, 144, 66. [Google Scholar] [CrossRef]
- Lintott, C.J.; Schawinski, K.; Keel, W.; van Arkel, H.; Bennert, N.; Edmondson, E.; Thomas, D.; Smith, D.J.B.; Herbert, P.D.; Jarvis, M.J.; et al. Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo? Mon. Not. R. Astron. Soc. 2009, 399, 129–140. [Google Scholar] [CrossRef]
- Józsa, G.I.G.; Garrett, M.A.; Oosterloo, T.A.; Rampadarath, H.; Paragi, Z.; van Arkel, H.; Lintott, C.; Keel, W.C.; Schawinski, K.; Edmondson, E. Revealing Hanny’s Voorwerp: Radio observations of IC 2497. Astron. Astrophys. 2009, 500, L33–L36. [Google Scholar] [CrossRef]
- Smith, D.J.B.; Krause, M.G.; Hardcastle, M.J.; Drake, A.B. Relic jet activity in ’Hanny’s Voorwerp’ revealed by the LOFAR two metre sky survey. Mon. Not. R. Astron. Soc. 2022, 514, 3879–3885. [Google Scholar] [CrossRef]
- Chilingarian, I.V.; Di Matteo, P.; Combes, F.; Melchior, A.L.; Semelin, B. The GalMer database: Galaxy mergers in the virtual observatory. Astron. Astrophys. 2010, 518, A61. [Google Scholar] [CrossRef]
- Keel, W.C.; Maksym, W.P.; Bennert, V.N.; Lintott, C.J.; Chojnowski, S.D.; Moiseev, A.; Smirnova, A.; Schawinski, K.; Urry, C.M.; Evans, D.A.; et al. HST Imaging of Fading AGN Candidates. I. Host-galaxy Properties and Origin of the Extended Gas. Astron. J. 2015, 149, 155. [Google Scholar] [CrossRef]
- Garrett, M.A. Hannyís Voorwerp and the Antikythera Mechanism-similarities, differences and insights. In Proceedings of the from Antikythera to the Square Kilometre Array: Lessons from the Ancients, Kerastari, Greece, 12–15 June 2012; p. 47. [Google Scholar] [CrossRef]
- Fu, H.; Stockton, A. Extended Emission-Line Regions: Remnants of Quasar Superwinds? Astrophys. J. 2009, 690, 953–973. [Google Scholar] [CrossRef]
- Harrison, C.M.; Alexander, D.M.; Mullaney, J.R.; Swinbank, A.M. Kiloparsec-scale outflows are prevalent among luminous AGN: Outflows and feedback in the context of the overall AGN population. Mon. Not. R. Astron. Soc. 2014, 441, 3306–3347. [Google Scholar] [CrossRef]
- Rupke, D.S.N.; Veilleux, S. Integral Field Spectroscopy of Massive, Kiloparsec-scale Outflows in the Infrared-luminous QSO Mrk 231. Astrophys. J. Lett. 2011, 729, L27. [Google Scholar] [CrossRef]
- Vayner, A.; Wright, S.A.; Murray, N.; Armus, L.; Boehle, A.; Cosens, M.; Larkin, J.E.; Mieda, E.; Walth, G. A Spatially Resolved Survey of Distant Quasar Host Galaxies. I. Dynamics of Galactic Outflows. Astrophys. J. 2021, 919, 122. [Google Scholar] [CrossRef]
- Villar Martín, M.; Emonts, B.H.C.; Cabrera Lavers, A.; Bellocchi, E.; Alonso Herrero, A.; Humphrey, A.; Dall’Agnol de Oliveira, B.; Storchi-Bergmann, T. Interactions between large-scale radio structures and gas in a sample of optically selected type 2 quasars. Astron. Astrophys. 2021, 650, A84. [Google Scholar] [CrossRef]
- Keel, W.C.; Lintott, C.J.; Maksym, W.P.; Bennert, V.N.; Chojnowski, S.D.; Moiseev, A.; Smirnova, A.; Schawinski, K.; Sartori, L.F.; Urry, C.M.; et al. Fading AGN Candidates: AGN Histories and Outflow Signatures. Astrophys. J. 2017, 835, 256. [Google Scholar] [CrossRef]
- Villar-Martín, M.; Cabrera-Lavers, A.; Humphrey, A.; Silva, M.; Ramos Almeida, C.; Piqueras-López, J.; Emonts, B. A 100 kpc nebula associated with the ‘Teacup’ fading quasar. Mon. Not. R. Astron. Soc. 2018, 474, 2302–2312. [Google Scholar] [CrossRef]
- Moiseev, A.V.; Ikhsanova, A.I. Gas and Stars in the Teacup Quasar Looking with the 6-m Telescope. Universe 2023, 9, 66. [Google Scholar] [CrossRef]
- Moiseev, A. Polar Structures in Late-Type Galaxies. In Multi-Spin Galaxies; Astronomical Society of the Pacific Conference Series; Iodice, E., Corsini, E.M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2014; Volume 486, p. 61. [Google Scholar] [CrossRef]
- Osterbrock, D.E.; Ferland, G.J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei; University Science Books: Herndon, VA, USA, 2006. [Google Scholar]
- French, K.D.; Earl, N.; Novack, A.B.; Pardasani, B.; Pillai, V.R.; Tripathi, A.; Verrico, M.E. Fading AGNs in Poststarburst Galaxies. Astrophys. J. 2023, 950, 153. [Google Scholar] [CrossRef]
- Crenshaw, D.M.; Kraemer, S.B.; Schmitt, H.R.; Jaffé, Y.L.; Deo, R.P.; Collins, N.R.; Fischer, T.C. The Geometry of Mass Outflows and Fueling Flows in the Seyfert 2 Galaxy MRK 3. Astron. J. 2010, 139, 871–877. [Google Scholar] [CrossRef]
- Binette, L.; Robinson, A. Fossil nebulae in the context of active galaxies. I. Time evolution of a single cloud. Astron. Astrophys. 1987, 177, 11–21. [Google Scholar]
- Schweizer, F.; Seitzer, P.; Kelson, D.D.; Villanueva, E.V.; Walth, G.L. The [O III] Nebula of the Merger Remnant NGC 7252: A Likely Faint Ionization Echo. Astrophys. J. 2013, 773, 148. [Google Scholar] [CrossRef]
- Schirmer, M.; Diaz, R.; Holhjem, K.; Levenson, N.A.; Winge, C. A Sample of Seyfert-2 Galaxies with Ultraluminous Galaxy-wide Narrow-line Regions: Quasar Light Echoes? Astrophys. J. 2013, 763, 60. [Google Scholar] [CrossRef]
- Prieto, J.L.; Krühler, T.; Anderson, J.P.; Galbany, L.; Kochanek, C.S.; Aquino, E.; Brown, J.S.; Dong, S.; Förster, F.; Holoien, T.W.S.; et al. MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li. Astrophys. J. Lett. 2016, 830, L32. [Google Scholar] [CrossRef]
- Comerford, J.M.; Barrows, R.S.; Müller-Sánchez, F.; Nevin, R.; Greene, J.E.; Pooley, D.; Stern, D.; Harrison, F.A. An Active Galactic Nucleus Caught in the Act of Turning Off and On. Astrophys. J. 2017, 849, 102. [Google Scholar] [CrossRef]
- Keel, W.C.; Tate, J.; Wong, O.I.; Banfield, J.K.; Lintott, C.J.; Masters, K.L.; Simmons, B.D.; Scarlata, C.; Cardamone, C.; Smethurst, R.; et al. Gems of the Galaxy Zoos-A Wide-ranging Hubble Space Telescope Gap-filler Program. Astron. J. 2022, 163, 150. [Google Scholar] [CrossRef]
- Yan, R.; Tremonti, C.; Bershady, M.A.; Law, D.R.; Schlegel, D.J.; Bundy, K.; Drory, N.; MacDonald, N.; Bizyaev, D.; Blanc, G.A.; et al. SDSS-IV/MaNGA: Spectrophotometric Calibration Technique. Astron. J. 2016, 151, 8. [Google Scholar] [CrossRef]
- Knese, E.D.; Keel, W.C.; Knese, G.; Bennert, V.N.; Moiseev, A.; Grokhovskaya, A.; Dodonov, S.N. An [O III] search for extended emission around AGN with H I mapping: A distant cloud ionized by Mkn 1. Mon. Not. R. Astron. Soc. 2020, 496, 1035–1050. [Google Scholar] [CrossRef]
- Keel, W.C.; Moiseev, A.; Kozlova, D.V.; Ikhsanova, A.I.; Oparin, D.V.; Uklein, R.I.; Smirnova, A.A.; Eselevich, M.V. The TELPERION survey for distant [O III] clouds around luminous and hibernating AGN. Mon. Not. R. Astron. Soc. 2022, 510, 4608–4625. [Google Scholar] [CrossRef]
- Baldwin, J.A.; Phillips, M.M.; Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 1981, 93, 5–19. [Google Scholar] [CrossRef]
- Groves, B.A.; Allen, M.G. ITERA: IDL tool for emission-line ratio analysis. New Astron. 2010, 15, 614–620. [Google Scholar] [CrossRef]
- Postnikova, V.K.; Bizyaev, D. SDSS-IV MaNGA: Ionization Sources of the Extra-planar Diffuse Ionized Gas. Astron. Lett. 2023, 49, 151–166. [Google Scholar] [CrossRef]
- Kewley, L.J.; Groves, B.; Kauffmann, G.; Heckman, T. The host galaxies and classification of active galactic nuclei. Mon. Not. R. Astron. Soc. 2006, 372, 961–976. [Google Scholar] [CrossRef]
- Dey, A.; Schlegel, D.J.; Lang, D.; Blum, R.; Burleigh, K.; Fan, X.; Findlay, J.R.; Finkbeiner, D.; Herrera, D.; Juneau, S.; et al. Overview of the DESI Legacy Imaging Surveys. Astron. J. 2019, 157, 168. [Google Scholar] [CrossRef]
- Keel, W.C.; Moiseev, A.; Uklein, R.I.; Smirnova, A. The TELPERION Survey for Extended Emission Regions around AGN: A strongly-interacting and merging galaxy sample. Mon. Not. R. Astron. Soc. 2024. sumbitted. [Google Scholar]
- Moran, E.C.; Halpern, J.P.; Bothun, G.D.; Becker, R.H. WAS 49: Mirror for a Hidden Seyfert 1 Nucleus. Astron. J. 1992, 104, 990. [Google Scholar] [CrossRef]
- Merluzzi, P.; Busarello, G.; Dopita, M.A.; Thomas, A.D.; Haines, C.P.; Grado, A.; Limatola, L.; Mercurio, A. An Interacting Galaxy Pair at the Origin of a Light Echo. Astrophys. J. 2018, 852, 113. [Google Scholar] [CrossRef]
- Moiseev, A.V.; Smirnova, A.A.; Movsessian, T.A. Enigmatic Emission Structure around Mrk 783: Cross-Ionization of a Companion 100 kpc Away. Universe 2023, 9, 493. [Google Scholar] [CrossRef]
- Keel, W.C.; Bennert, V.N.; Pancoast, A.; Harris, C.E.; Nierenberg, A.; Chojnowski, S.D.; Moiseev, A.V.; Oparin, D.V.; Lintott, C.J.; Schawinski, K.; et al. AGN photoionization of gas in companion galaxies as a probe of AGN radiation in time and direction. Mon. Not. R. Astron. Soc. 2019, 483, 4847–4865. [Google Scholar] [CrossRef]
- Watkins, A.E.; Mihos, J.C.; Bershady, M.; Harding, P. Discovery of a Vast Ionized Gas Cloud in the M51 System. Astrophys. J. Lett. 2018, 858, L16. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J. Ghost in the Shell: Evidence for Past Active Galactic Nucleus Activities in NGC 5195 from a Newly Discovered Large-scale Ionized Structure. Astrophys. J. 2023, 943, 28. [Google Scholar] [CrossRef]
- Gravity Collaboration; Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Coudé Du Foresto, V.; de Zeeuw, P.T.; et al. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. Astron. Astrophys. 2019, 625, L10. [Google Scholar] [CrossRef]
- Su, M.; Slatyer, T.R.; Finkbeiner, D.P. Giant Gamma-ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind? Astrophys. J. 2010, 724, 1044–1082. [Google Scholar] [CrossRef]
- Barkov, M.V.; Bosch-Ramon, V. Formation of large-scale magnetic structures associated with the Fermi bubbles. Astron. Astrophys. 2014, 565, A65. [Google Scholar] [CrossRef]
- Predehl, P.; Sunyaev, R.A.; Becker, W.; Brunner, H.; Burenin, R.; Bykov, A.; Cherepashchuk, A.; Chugai, N.; Churazov, E.; Doroshenko, V.; et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 2020, 588, 227–231. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Ruszkowski, M.; Zweibel, E.G. Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole. Nat. Astron. 2022, 6, 584–591. [Google Scholar] [CrossRef]
- Bland-Hawthorn, J.; Maloney, P.R.; Sutherland, R.S.; Madsen, G.J. Fossil Imprint of a Powerful Flare at the Galactic Center along the Magellanic Stream. Astrophys. J. 2013, 778, 58. [Google Scholar] [CrossRef]
- Bland-Hawthorn, J.; Maloney, P.R.; Sutherland, R.; Groves, B.; Guglielmo, M.; Li, W.; Curzons, A.; Cecil, G.; Fox, A.J. The Large-scale Ionization Cones in the Galaxy. Astrophys. J. 2019, 886, 45. [Google Scholar] [CrossRef]
- Singha, M.; O’Dea, C.P.; Baum, S.A. What Drives the Ionized Gas Outflows in Radio-Quiet AGN? Galaxies 2023, 11, 85. [Google Scholar] [CrossRef]
- Venturi, G.; Treister, E.; Finlez, C.; D’Ago, G.; Bauer, F.; Harrison, C.M.; Ramos Almeida, C.; Revalski, M.; Ricci, F.; Sartori, L.F.; et al. Complex AGN feedback in the Teacup galaxy. A powerful ionised galactic outflow, jet-ISM interaction, and evidence for AGN-triggered star formation in a giant bubble. Astron. Astrophys. 2023, 678, A127. [Google Scholar] [CrossRef]
- Bieri, R.; Dubois, Y.; Rosdahl, J.; Wagner, A.; Silk, J.; Mamon, G.A. Outflows driven by quasars in high-redshift galaxies with radiation hydrodynamics. Mon. Not. R. Astron. Soc. 2017, 464, 1854–1873. [Google Scholar] [CrossRef]
- Kakiichi, K.; Graziani, L.; Ciardi, B.; Meiksin, A.; Compostella, M.; Eide, M.B.; Zaroubi, S. The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium. Mon. Not. R. Astron. Soc. 2017, 468, 3718–3736. [Google Scholar] [CrossRef]
- Graziani, L.; Ciardi, B.; Glatzle, M. X-ray ionization of the intergalactic medium by quasars. Mon. Not. R. Astron. Soc. 2018, 479, 4320–4335. [Google Scholar] [CrossRef]
- Cicone, C.; Maiolino, R.; Gallerani, S.; Neri, R.; Ferrara, A.; Sturm, E.; Fiore, F.; Piconcelli, E.; Feruglio, C. Very extended cold gas, star formation and outflows in the halo of a bright quasar at z > 6. Astron. Astrophys. 2015, 574, A14. [Google Scholar] [CrossRef]
- Fujimoto, S.; Ouchi, M.; Ferrara, A.; Pallottini, A.; Ivison, R.J.; Behrens, C.; Gallerani, S.; Arata, S.; Yajima, H.; Nagamine, K. First Identification of 10 kpc [C II] 158 μm Halos around Star-forming Galaxies at z = 5–7. Astrophys. J. 2019, 887, 107. [Google Scholar] [CrossRef]
- Pizzati, E.; Ferrara, A.; Pallottini, A.; Gallerani, S.; Vallini, L.; Decataldo, D.; Fujimoto, S. Outflows and extended [C II] haloes in high-redshift galaxies. Mon. Not. R. Astron. Soc. 2020, 495, 160–172. [Google Scholar] [CrossRef]
- Vayner, A.; Zakamska, N.L.; Ishikawa, Y.; Sankar, S.; Wylezalek, D.; Rupke, D.S.N.; Veilleux, S.; Bertemes, C.; Barrera-Ballesteros, J.K.; Chen, H.W.; et al. First Results from the JWST Early Release Science Program Q3D: Ionization Cone, Clumpy Star Formation, and Shocks in a z = 3 Extremely Red Quasar Host. Astrophys. J. 2023, 955, 92. [Google Scholar] [CrossRef]
- Veilleux, S.; Liu, W.; Vayner, A.; Wylezalek, D.; Rupke, D.S.N.; Zakamska, N.L.; Ishikawa, Y.; Bertemes, C.; Barrera-Ballesteros, J.K.; Chen, H.W.; et al. First Results from the JWST Early Release Science Program Q3D: The Warm Ionized Gas Outflow in z 1.6 Quasar XID 2028 and Its Impact on the Host Galaxy. Astrophys. J. 2023, 953, 56. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moiseev, A.V.; Smirnova, A.A. Ionizing Spotlight of Active Galactic Nucleus. Galaxies 2023, 11, 118. https://doi.org/10.3390/galaxies11060118
Moiseev AV, Smirnova AA. Ionizing Spotlight of Active Galactic Nucleus. Galaxies. 2023; 11(6):118. https://doi.org/10.3390/galaxies11060118
Chicago/Turabian StyleMoiseev, Alexei V., and Aleksandrina A. Smirnova. 2023. "Ionizing Spotlight of Active Galactic Nucleus" Galaxies 11, no. 6: 118. https://doi.org/10.3390/galaxies11060118
APA StyleMoiseev, A. V., & Smirnova, A. A. (2023). Ionizing Spotlight of Active Galactic Nucleus. Galaxies, 11(6), 118. https://doi.org/10.3390/galaxies11060118