Probing Neutrino Production in Blazars by Millimeter VLBI
Abstract
:1. Introduction: Current Status of High-Energy Neutrino Studies, Blazar–Neutrino Connections
2. Neutrino Production in Blazars: Open Questions
3. Neutrino Astronomy in the ngEHT Era
4. Planning ngEHT Experiments
- Pros:
- The most efficient strategy since it is linked to a specific event.
- Cons:
- It will only be able to probe the state of an associated object after neutrino arrival.
- Pros:
- This strategy is optimal in terms of the observed sample and complete temporal coverage of events.
- Cons:
- so far, a very limited number of cases are known with repeated neutrino detection from the same source (Table 1, column 5), but this list could grow.
- Pros:
- Offers full temporal coverage of the expected events, with the possibility to compare neutrino-emitting and neutrino-non-emitting blazars to calculate the robust significance of a coincidence [15,51]. Furthermore, the strategy provides the option to combine such observations with other ngEHT cases [20].
- Cons:
- Observationally expensive.
Blazar Name | z | Number of High-Energy | References | ||
---|---|---|---|---|---|
B1950 | Alias | (Jy) | Neutrinos (and Dates) | ||
0506+056 | 0.34 | 0.6 | 2 (2017-09-22, 2021-04-18) | [6,23] | |
0735+178 | OI 158 | 0.45 | 0.6 | 1–4 (2021-12-04&08) | [15,49] |
1253−055 | 3C 279 | 0.54 | 22.7 | 1 (2015-09-26) | [10,50] |
1502+106 | OR 103 | 1.84 | 0.6 | 1 (2019-07-30) | [10,49] |
1730−130 | NRAO 530 | 0.90 | 1.9 | 1 (2016-01-28) | [10,52] |
1741−038 | 1.05 | 3.2 | 2 (2011-09-30, 2022-02-05) | [15,49] | |
1749+096 | OT 081 | 0.32 | 2.4 | 1 (2022-03-03) | [15,49] |
2145+067 | 4C +06.69 | 1.00 | 3.6 | 1 (2015-08-12) | [10,52] |
- Jet kinematics will also deliver information about newborn jet features, e.g., [53,58], measure ejection epochs of features possibly associated with neutrino events, compare these with neutrino arrival times and locate the neutrino production zone from the measured delay. Comparison with similar analyses for VLBI--ray studies [59,60].
- Monitoring the overall changes in the millimeter parsec- and sub-parsec-scale structure of blazars at the extreme resolution of ngEHT will allow us to distinguish between flares in disks and in jets, e.g., [64,65] related to neutrino production if the resolution, sensitivity, and opacity permit. Observing in this regime, we will be able to overcome significant delays related to synchrotron self-absorption at lower radio frequencies (see Figure 1 and [60]).
5. Synergy with Other Facilities
6. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopper, C.; Whitehorn, N.; Kurahashi Neilson, N.; IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere Using Six Years of IceCube Data. Astrophys. J. 2016, 833, 3. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; et al. All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. Astrophys. J. Lett. 2018, 853, L7. [Google Scholar] [CrossRef] [Green Version]
- Allakhverdyan, V.A.; Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; Bardačová, Z.; Belolaptikov, I.A.; Borina, I.V.; Budnev, N.M.; Dik, V.Y.; Domogatsky, G.V.; et al. Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope. Phys. Rev. D 2023, 107, 042005. [Google Scholar] [CrossRef]
- Berezinsky, V. Extraterrestrial neutrino sources and high energy neutrino astrophysics. In Proceedings of the Neutrino-77 Conference, Moscow, Russia, 18–24 June 1977; p. 177. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, aat1378. [Google Scholar] [CrossRef] [Green Version]
- Neronov, A.; Semikoz, D.V.; Ptitsyna, K. Strong constraints on hadronic models of blazar activity from Fermi and IceCube stacking analysis. Astron. Astrophys. 2017, 603, A135. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Oikonomou, F.; Petropoulou, M. Blazar Flares as an Origin of High-energy Cosmic Neutrinos? Astrophys. J. 2018, 865, 124. [Google Scholar] [CrossRef]
- Kadler, M.; Krauß, F.; Mannheim, K.; Ojha, R.; Müller, C.; Schulz, R.; Anton, G.; Baumgartner, W.; Beuchert, T.; Buson, S.; et al. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nat. Phys. 2016, 12, 807–814. [Google Scholar] [CrossRef]
- Plavin, A.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S. Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies. Astrophys. J. 2020, 894, 101. [Google Scholar] [CrossRef]
- Plavin, A.V.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S.V. Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars. Astrophys. J. 2021, 908, 157. [Google Scholar] [CrossRef]
- Hovatta, T.; Lindfors, E.; Kiehlmann, S.; Max-Moerbeck, W.; Hodges, M.; Liodakis, I.; Lähteemäki, A.; Pearson, T.J.; Readhead, A.C.S.; Reeves, R.A.; et al. Association of IceCube neutrinos with radio sources observed at Owens Valley and Metsähovi Radio Observatories. Astrophys. J. 2021, 650, A83. [Google Scholar] [CrossRef]
- Illuminati, G.; ANTARES Collaboration. ANTARES search for neutrino flares from the direction of radio-bright blazars. In Proceedings of the 37th International Cosmic Ray Conference, Barcelona, Spain, 4–8 July 2022; p. 972. [Google Scholar] [CrossRef]
- Allakhverdyan, V.A.; Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; Bannasch, R.; Bardačová, Z.; Zaborov, D.N. The Baikal-GVD neutrino telescope: Search for high-energy cascades. arXiv 2021, arXiv:2108.01894. [Google Scholar]
- Plavin, A.V.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S.V. Growing evidence for high-energy neutrinos originating in radio blazars. Mon. Not. R. Astron. Soc. 2023, 523, 1799–1808. [Google Scholar] [CrossRef]
- Buson, S.; Tramacere, A.; Oswald, L.; Barbano, E.; Fichet de Clairfontaine, G.; Pfeiffer, L.; Azzollini, A.; Baghmanyan, V.; Ajello, M. Extragalactic neutrino factories. arXiv 2023, arXiv:2305.11263. [Google Scholar] [CrossRef]
- Britzen, S.; Zajaček, M.; Popović, L.Č.; Fendt, C.; Tramacere, A.; Pashchenko, I.N.; Jaron, F.; Pánis, R.; Petrov, L.; Aller, M.F.; et al. A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106. Mon. Not. R. Astron. Soc. 2021, 503, 3145–3178. [Google Scholar] [CrossRef]
- Lico, R.; Jorstad, S.G.; Marscher, A.P.; Gómez, J.L.; Liodakis, I.; Dahale, R.; Alberdi, A.; Gold, R.; Traianou, E.; Toscano, T.; et al. Multi-Wavelength and Multi-Messenger Studies Using the Next-Generation Event Horizon Telescope. Galaxies 2023, 11, 17. [Google Scholar] [CrossRef]
- Raymond, A.W.; Palumbo, D.; Paine, S.N.; Blackburn, L.; Córdova Rosado, R.; Doeleman, S.S.; Farah, J.R.; Johnson, M.D.; Roelofs, F.; Tilanus, R.P.J.; et al. Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl. 2021, 253, 5. [Google Scholar] [CrossRef]
- Johnson, M.D.; Akiyama, K.; Blackburn, L.; Bouman, K.L.; Broderick, A.E.; Cardoso, V.; Fender, R.P.; Fromm, C.M.; Galison, P.; Gómez, J.L.; et al. Key Science Goals for the Next-Generation Event Horizon Telescope. Galaxies 2023, 11, 61. [Google Scholar] [CrossRef]
- Doeleman, S.S.; Barrett, J.; Blackburn, L.; Bouman, K.; Broderick, A.E.; Chaves, R.; Fish, V.L.; Fitzpatrick, G.; Fuentes, A.; Freeman, M.; et al. Reference Array and Design Consideration for the next-generation Event Horizon Telescope. arXiv 2023, arXiv:2306.08787. [Google Scholar] [CrossRef]
- Abdollahi, S.; Ajello, M.; Baldini, L.; Ballet, J.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Berretta, A.; Bissaldi, E.; Bonino, R.; et al. The Fermi-LAT Lightcurve Repository. Astrophys. J. Suppl. 2023, 265, 31. [Google Scholar] [CrossRef]
- Erkenov, A.K.; Kosogorov, N.A.; Kovalev, Y.A.; Kovalev, Y.Y.; Plavin, A.V.; Popkov, A.V.; Pushkarev, A.B.; Semikoz, D.V.; Sotnikova, Y.V.; Troitsky, S.V.; et al. High-energy neutrino-induced cascade from the direction of the flaring radio blazar TXS 0506+056 observed by the Baikal Gigaton Volume Detector in 2021. arXiv 2022, arXiv:2210.01650. [Google Scholar] [CrossRef]
- Troitsky, S. Constraints on models of the origin of high-energy astrophysical neutrinos. Usp. Fiz. Nauk 2021, 191, 1333–1360. [Google Scholar]
- Neronov, A.; Semikoz, D. Self-consistent model of extragalactic neutrino flux from evolving blazar population. J. Exp. Theor. Phys. 2020, 158, 295. [Google Scholar] [CrossRef]
- Capel, F.; Mortlock, D.J.; Finley, C. Bayesian constraints on the astrophysical neutrino source population from IceCube data. Phys. Rev. D 2020, 101, 123017. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, M. Progress in Multi-wavelength and Multi-Messenger Observations of Blazars and Theoretical Challenges. Galaxies 2019, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Berezinskii, V.S.; Ginzburg, V.L. On high-energy neutrino radiation of quasars and active galactic nuclei. Mon. Not. R. Astron. Soc. 1981, 194, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Eichler, D. High-energy neutrino astronomy: A probe of galactic nuclei? Astrophys. J. 1979, 232, 106–112. [Google Scholar] [CrossRef]
- Stecker, F.W.; Done, C.; Salamon, M.H.; Sommers, P. High-energy neutrinos from active galactic nuclei. Phys. Rev. Lett. 1991, 66, 2697–2700. [Google Scholar] [CrossRef]
- Neronov, A.Y.; Semikoz, D.V. Which blazars are neutrino loud? Phys. Rev. 2002, D66, 123003. [Google Scholar] [CrossRef] [Green Version]
- Stecker, F.W. PeV neutrinos observed by IceCube from cores of active galactic nuclei. Phys. Rev. 2013, D88, 047301. [Google Scholar] [CrossRef] [Green Version]
- Kalashev, O.; Semikoz, D.; Tkachev, I. Neutrinos in IceCube from active galactic nuclei. J. Exp. Theor. Phys. 2015, 120, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Boccardi, B.; Krichbaum, T.P.; Ros, E.; Zensus, J.A. Radio observations of active galactic nuclei with mm-VLBI. Astron. Astrophys. Rev. 2017, 25, 4. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The window to the extreme Universe. J. Phys. Nucl. Phys. 2021, 48, 060501. [Google Scholar] [CrossRef]
- Belolaptikov, I.; Dzhilkibaev, Z.A.M.; Allakhverdyan, V.A.; Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; Bannasch, R.; Bardacová, Z.; Belolaptikov, I.A.; Borina, I.V.; et al. Neutrino Telescope in Lake Baikal: Present and Nearest Future. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2022; p. 2. [Google Scholar]
- Aiello, S.; Akrame, S.E.; Ameli, F.; Anassontzis, E.G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aublin, J.; et al. Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astropart. Phys. 2019, 111, 100–110. [Google Scholar] [CrossRef]
- Ahlers, M.; Halzen, F. Opening a new window onto the universe with IceCube. Prog. Part. Nucl. Phys. 2018, 102, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S.K.; Aguilar, J.A.; Ahlers, M.; Alameddine, J.M.; Amin, N.M.; Andeen, K.; Anton, G.; et al. IceCat-1: The IceCube Event Catalog of Alert Tracks. arXiv 2023, arXiv:2304.01174. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Realtime Alert System. Astropart. Phys. 2017, 92, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alispach, C.; Alves Jr, A.A.; Amin, N.M.; et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538–543. [Google Scholar] [CrossRef]
- Kovalev, Y.Y.; Plavin, A.V.; Troitsky, S.V. Galactic Contribution to the High-energy Neutrino Flux Found in Track-like IceCube Events. Astrophys. J. Lett. 2022, 940, L41. [Google Scholar] [CrossRef]
- Troitsky, S.V. Constraints on models of the origin of high-energy astrophysical neutrinos. Phys. Uspekhi 2021, 64, 1261–1285. [Google Scholar] [CrossRef]
- Bykov, A.M.; Petrov, A.E.; Kalyashova, M.E.; Troitsky, S.V. PeV Photon and Neutrino Flares from Galactic Gamma-Ray Binaries. Astrophys. J. Lett. 2021, 921, L10. [Google Scholar] [CrossRef]
- Koljonen, K.I.I.; Satalecka, K.; Lindfors, E.J.; Liodakis, I. Microquasar Cyg X-3—A unique jet-wind neutrino factory? Mon. Not. R. Astron. Soc. 2023, 524, L89–L93. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S.K.; Aguilar, J.A.; Ahlers, M.; Alameddine, J.M.; Amin, N.M.; Andeen, K.; Anton, G.; et al. Constraining High-energy Neutrino Emission from Supernovae with IceCube. Astrophys. J. Lett. 2023, 949, L12. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alves, A.A., Jr.; Amin, N.M.; Andeen, K.; et al. Observation of high-energy neutrinos from the Galactic plane. Science 2023, 380, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Lobanov, A.P.; Krichbaum, T.P.; Witzel, A.; Zensus, A.; Bremer, M.; Greve, A.; Grewing, M. A Global 86 GHz VLBI Survey of Compact Radio Sources. Astron. J. 2008, 136, 159–180. [Google Scholar] [CrossRef] [Green Version]
- Nair, D.G.; Lobanov, A.P.; Krichbaum, T.P.; Ros, E.; Zensus, J.A.; Kovalev, Y.Y.; Lee, S.S.; Mertens, F.; Hagiwara, Y.; Bremer, M.; et al. Global millimeter VLBI array survey of ultracompact extragalactic radio sources at 86 GHz. Astrophys. J. 2019, 622, A92. [Google Scholar] [CrossRef] [Green Version]
- Liodakis, I.; Hovatta, T.; Pavlidou, V.; Readhead, A.C.S.; Blandford, R.D.; Kiehlmann, S.; Lindfors, E.; Max-Moerbeck, W.; Pearson, T.J.; Petropoulou, M. The hunt for extraterrestrial high-energy neutrino counterparts. Astrophys. J. 2022, 666, A36. [Google Scholar] [CrossRef]
- Agudo, I.; Thum, C.; Wiesemeyer, H.; Krichbaum, T.P. A 3.5 mm Polarimetric Survey of Radio-loud Active Galactic Nuclei. Astrophys. J. Suppl. 2010, 189, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Weaver, Z.R.; Jorstad, S.G.; Marscher, A.P.; Morozova, D.A.; Troitsky, I.S.; Agudo, I.; Gómez, J.L.; Lähteenmäki, A.; Tammi, J.; Tornikoski, M. Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz during 10 yr of the VLBA-BU-BLAZAR Program. Astrophys. J. Suppl. 2022, 260, 12. [Google Scholar] [CrossRef]
- Homan, D.C.; Cohen, M.H.; Hovatta, T.; Kellermann, K.I.; Kovalev, Y.Y.; Lister, M.L.; Popkov, A.V.; Pushkarev, A.B.; Ros, E.; Savolainen, T. MOJAVE. XIX. Brightness Temperatures and Intrinsic Properties of Blazar Jets. Astrophys. J. 2021, 923, 67. [Google Scholar] [CrossRef]
- Homan, D.C.; Lister, M.L.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T.; Kellermann, K.I.; Richards, J.L.; Ros, E. MOJAVE. XII. Acceleration and Collimation of Blazar Jets on Parsec Scales. Astrophys. J. 2015, 798, 134. [Google Scholar] [CrossRef]
- Asada, K.; Nakamura, M. The Structure of the M87 Jet: A Transition from Parabolic to Conical Streamlines. Astrophys. J. Lett. 2012, 745, L28. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, Y.Y.; Pushkarev, A.B.; Nokhrina, E.E.; Plavin, A.V.; Beskin, V.S.; Chernoglazov, A.V.; Lister, M.L.; Savolainen, T. A transition from parabolic to conical shape as a common effect in nearby AGN jets. Mon. Not. R. Astron. Soc. 2020, 495, 3576–3591. [Google Scholar] [CrossRef]
- Lister, M.L.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Ros, E.; Savolainen, T. Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies. Astrophys. J. 2021, 923, 30. [Google Scholar] [CrossRef]
- Jorstad, S.G.; Marscher, A.P.; Morozova, D.A.; Troitsky, I.S.; Agudo, I.; Casadio, C.; Foord, A.; Gómez, J.L.; MacDonald, N.R.; Molina, S.N.; et al. Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program. Astrophys. J. 2017, 846, 98. [Google Scholar] [CrossRef]
- Kramarenko, I.G.; Pushkarev, A.B.; Kovalev, Y.Y.; Lister, M.L.; Hovatta, T.; Savolainen, T. A decade of joint MOJAVE-Fermi AGN monitoring: Localization of the gamma-ray emission region. Mon. Not. R. Astron. Soc. 2022, 510, 469–480. [Google Scholar] [CrossRef]
- Lobanov, A.P. Spectral distributions in compact radio sources. I. Imaging with VLBI data. Astron. Astrophys. Suppl. Ser. 1998, 132, 261–273. [Google Scholar] [CrossRef]
- Kravchenko, E.V.; Kovalev, Y.Y.; Sokolovsky, K.V. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets. Mon. Not. R. Astron. Soc. 2017, 467, 83–101. [Google Scholar] [CrossRef] [Green Version]
- Martí-Vidal, I.; Muller, S.; Vlemmings, W.; Horellou, C.; Aalto, S. A strong magnetic field in the jet base of a supermassive black hole. Science 2015, 348, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Murase, K. Active Galactic Nuclei as High-Energy Neutrino Sources. In Neutrino Astronomy: Current Status, Future Prospects; Gaisser, T., Karle, A., Eds.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2017; pp. 15–31. ISBN 9789814759410. [Google Scholar] [CrossRef] [Green Version]
- Kalashev, O.E.; Kivokurtseva, P.; Troitsky, S. Neutrino production in blazar radio cores. arXiv 2022, arXiv:2212.03151. [Google Scholar] [CrossRef]
- Paragi, Z.; Godfrey, L.; Reynolds, C.; Rioja, M.J.; Deller, A.; Zhang, B.; Gurvits, L.; Bietenholz, M.; Szomoru, A.; Bignall, H.E.; et al. Very Long Baseline Interferometry with the SKA. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 9–13 June 2014; p. 143. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Bolatto, A.; Chatterjee, S.; Casey, C.M.; Chomiuk, L.; Dale, D.; de Pater, I.; Dickinson, M.; Francesco, J.D.; Hallinan, G.; et al. The ngVLA Science Case and Associated Science Requirements. In Science with a Next Generation Very Large Array; Murphy, E., Ed.; Astronomical Society of the Pacific Conference Series; ASP: San Francisco, CA, USA, 2018; Volume 517, p. 3. [Google Scholar] [CrossRef]
- Selina, R.J.; Murphy, E.J.; McKinnon, M.; Beasley, A.; Butler, B.; Carilli, C.; Clark, B.; Durand, S.; Erickson, A.; Grammer, W.; et al. The ngVLA Reference Design. In Science with a Next Generation Very Large Array; Murphy, E., Ed.; Astronomical Society of the Pacific Conference Series; ASP: San Francisco, CA, USA, 2018; Volume 517, p. 15. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Lipunov, V.M.; Kornilov, V.G.; Zhirkov, K.; Gorbovskoy, E.; Budnev, N.M.; Buckley, D.A.H.; Rebolo, R.; Serra-Ricart, M.; Podesta, R.; Tyurina, N.; et al. Optical Observations Reveal Strong Evidence for High-energy Neutrino Progenitor. Astrophys. J. Lett. 2020, 896, L19. [Google Scholar] [CrossRef]
- Plavin, A.V.; Burenin, R.A.; Kovalev, Y.Y.; Lutovinov, A.A.; Starobinsky, A.A.; Troitsky, S.V.; Zakharov, E.I. Hard X-ray emission from blazars associated with high-energy neutrinos. arXiv 2023, arXiv:2306.00960. [Google Scholar] [CrossRef]
- Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L.A.; et al. Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 2011, 32, 193–316. [Google Scholar] [CrossRef] [Green Version]
- Cherenkov Telescope Array Consortium; Acharya, B.S.; Agudo, I.; Al Samarai, I.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; et al. Science with the Cherenkov Telescope Array; World Scientific: Singapore, 2019. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.S.; Asada, K.; Krichbaum, T.P.; Park, J.; Tazaki, F.; Pu, H.Y.; Nakamura, M.; Lobanov, A.; Hada, K.; Akiyama, K.; et al. A ring-like accretion structure in M87 connecting its black hole and jet. Nature 2023, 616, 686–690. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalev, Y.Y.; Plavin, A.V.; Pushkarev, A.B.; Troitsky, S.V. Probing Neutrino Production in Blazars by Millimeter VLBI. Galaxies 2023, 11, 84. https://doi.org/10.3390/galaxies11040084
Kovalev YY, Plavin AV, Pushkarev AB, Troitsky SV. Probing Neutrino Production in Blazars by Millimeter VLBI. Galaxies. 2023; 11(4):84. https://doi.org/10.3390/galaxies11040084
Chicago/Turabian StyleKovalev, Yuri Y., Alexander V. Plavin, Alexander B. Pushkarev, and Sergey V. Troitsky. 2023. "Probing Neutrino Production in Blazars by Millimeter VLBI" Galaxies 11, no. 4: 84. https://doi.org/10.3390/galaxies11040084