A Global Inventory of Feedback
Abstract
:1. Introduction
2. Methodology
2.1. Massive Stars
2.2. Black-Hole Driven Winds and Radiation Pressure
2.3. Black-Hole-Driven Jets
2.4. The Bottom Line
3. Implications
3.1. For Galaxies
3.2. For the Intra-Group and Intra-Cluster Media
4. Summary
- (i)
- The major sources of kinetic energy are massive stars and jets. Winds driven by supermassive black holes provide <10% of the total amount. The global ratio of the kinetic energy injected by massive stars to that injected by jets is 2.5 εstar (where εstar is the fraction of injected energy from stars that is not lost to radiative cooling).
- (ii)
- Massive stars are the dominant source of momentum injection (90% of the total). AGN winds provide 10% and radio jets are negligible.
- (iii)
- The peak in the feedback from jets occurs at z ≈ 1, considerably later than the contributions of AGN winds and massive stars (peaking at z ≈ 2).
- (iv)
- As the ratio of the mass of the supermassive black hole to the galaxy stellar mass increases steeply with mass, there will be a mass-dependence in the relative importance of feedback from the two sources.
- (v)
- For the assumptions that the total amount of kinetic energy from massive stars is proportional to the galaxy’s stellar mass, and that the total amount of kinetic energy from a supermassive black hole is proportional to its mass, we find that the populations of quenched and star-forming galaxies occur in the regimes where supermassive black hole feedback and massive star feedback dominate, respectively (for a value of εstar ≈ 0.1).
- (vi)
- By comparing the amount of kinetic energy injected as a function of the binding energy of a galaxy, we show that feedback becomes more impactful as the galaxy mass decreases for massive stars, but more impactful as the galaxy mass increases for black holes.
- (vii)
- The global amount of kinetic energy injected by radio jets and AGN winds per unit volume, combined with the supermassive black hole mass function, yields an efficiency for producing kinetic energy in jets of 0.34% c2. This is very close to the amount of energy needed to explain the X-ray luminosity–temperature relation in groups and clusters (0.5% c2).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Somerville, R.; Davé, R. Physical Models of Galaxy Formation in a Cosmological Framework. Annu. Rev. Astron. Astrophys. 2015, 53, 51–113. [Google Scholar] [CrossRef] [Green Version]
- Naab, T.; Ostriker, J.P. Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 2017, 55, 59–109. [Google Scholar] [CrossRef] [Green Version]
- Donahue, M.; Voit, G.M. Baryon cycles in the biggest galaxies. Phys. Rep. 2022, 973, 1–109. [Google Scholar] [CrossRef]
- Veilleux, S.; Maiolino, R.; Bolatto, A.D.; Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 2020, 28, 1–173. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Nulsen, P.E.J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 2007, 45, 117–175. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.A.; Heckman, T.M. Theory and Observation of Galactic Winds. Annu. Rev. Astron. Astrophys. 2023; in press. [Google Scholar]
- Madau, P.; Dickinson, M. Cosmic star formation history. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef] [Green Version]
- Chabrier, G. Galactic Stellar and Sub stellar Initial Mass Function. Publ. Astron. Soc. Pac. 2003, 115, 763. [Google Scholar] [CrossRef] [Green Version]
- Leitherer, C.; Schaerer, D.; Goldader, J.D.; Delgado, R.M.G.; Robert, C.; Kune, D.F.; Heckman, T.M. Starburst99: Synthesis models for galaxies with active star formation. Astrophys. J. Suppl. Ser. 1999, 123, 3–40. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, R.A.; Clegg, A.W. Wind from a starburst galaxy nucleus. Nature 1985, 317, 44–45. [Google Scholar] [CrossRef]
- Kim, C.G.; Ostriker, E.C.; Somerville, R.S.; Bryan, G.L.; Fielding, D.B.; Forbes, J.C.; Pandya, V. First Results from SMAUG: Characterization of Multiphase Galactic Outflows from a Suite of Local Star-forming Galactic Disk Simulations. Astrophys. J. 2020, 900, 61–102. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr.; Evans, N.J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 2012, 50, 531–608. [Google Scholar] [CrossRef] [Green Version]
- Schneider, E.E.; Ostriker, E.C.; Robertson, B.E.; Thompson, T.A. The physical nature of starburst-driven Galactic outflows. Astrophys. J. 2020, 895, 43–66. [Google Scholar] [CrossRef]
- Fielding, D.; Bryan, G. The Structure of Multiphase Galactic Winds. Astrophys. J. 2022, 984, 82–112. [Google Scholar] [CrossRef]
- Forster-Schreiber, N.; Wuyts, S. Star Forming Galaxies at Cosmic Noon. Annu. Rev. Astron. Astrophys 2020, 58, 661–725. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Sternberg, A. The evolution of the star-forming interstellar medium across cosmic time. Annu. Rev. Astron. Astrophys. 2020, 58, 157–203. [Google Scholar] [CrossRef]
- Fiore, F.; Feruglio, C.; Shankar, F.; Bischetti, M.; Bongiorno, A.N.G.E.L.A.; Brusa, M.; Zappacosta, L. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 2017, 601, A143–A163. [Google Scholar] [CrossRef]
- Lutz, D.; Sturm, E.; Janssen, A.; Veilleux, S.; Aalto, S.; Cicone, C.; Weiß, A. Molecular outflows in local galaxies: Method comparison and a role of intermittent AGN driving. Astron. Astrophys. 2020, 633, A134–A168. [Google Scholar] [CrossRef]
- Lamperti, I.; Pereira-Santaella, M.; Perna, M.; Colina, L.; Arribas, S.; García-Burillo, S.; van der Werf, P. Physics of ULIRGs with MUSE and ALMA: PUMA IV. No tight relation between cold molecular outflow rates and AGN luminosities. arXiv 2022, arXiv:2209.03380. [Google Scholar]
- Kakkad, D.; Sani, E.; Rojas, A.F.; Mallmann, N.D.; Veilleux, S.; Bauer, F.E.; Urry, C.M. BASS XXXI: Outflow scaling relations in low redshift X-ray AGN host galaxies with MUSE. Mon. Not. R. Astron. Soc. 2022, 511, 2105–2124. [Google Scholar] [CrossRef]
- Revalski, M.; Meena, B.; Martinez, F.; Polack, G.E.; Crenshaw, D.M.; Kraemer, S.B.; Rafelski, M. Quantifying Feedback from Narrow Line Region Outflows in Nearby Active Galaxies. III. Results for the Seyfert 2 Galaxies Markarian 3, Markarian 78, and NGC 1068. Astrophys. J. 2021, 910, 139–172. [Google Scholar] [CrossRef]
- de Oliveira, B.D.A.; Storchi-Bergmann, T.; Kraemer, S.B.; Martín, M.V.; Schnorr-Müller, A.; Schmitt, H.R.; Fischer, T.C. Gauging the effect of supermassive black holes feedback on quasar host galaxies. Mon. Not. R. Astron. Soc. 2021, 504, 3890–3908. [Google Scholar] [CrossRef]
- Trindade Falcão, A.; Kraemer, S.B.; Fischer, T.C.; Crenshaw, D.M.; Revalski, M.; Schmitt, H.R.; Ward, M.J. Hubble Space Telescope observations of [O III] emission in nearby QSO2s: Physical properties of the ionized outflows. Mon. Not. R. Astron. Soc. 2021, 500, 1491–1504. [Google Scholar] [CrossRef]
- Miller, T.R.; Arav, N.; Xu, X.; Kriss, G.A. The contribution of quasar absorption outflows to AGN feedback. Mon. Not. R. Astron. Soc. 2020, 499, 1522–1529. [Google Scholar] [CrossRef]
- Tombesi, F.; Cappi, M.; Reeves, J.N.; Palumbo, G.G.C.; Braito, V.; Dadina, M. Evidence for ultra-fast outflows in radio-quiet active galactic nuclei. II. Detailed photoionization modeling of Fe K-shell absorption lines. Astrophys. J. 2011, 742, 44–64. [Google Scholar] [CrossRef] [Green Version]
- Tombesi, F.; Cappi, M.; Reeves, J.N.; Braito, V. Evidence for ultrafast outflows in radio-quiet AGNs—III. Location and energetics. Mon. Not. R. Astron. Soc. Lett. 2012, 422, L1–L5. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Richards, G.T.; Hernquist, L. An observational determination of the bolometric quasar luminosity function. Astrophys. J. 2007, 654, 731–753. [Google Scholar] [CrossRef]
- Baade, W.; Minkowski, R. Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis, A. In Classics in Radio Astronomy; Springer: Dordrecht, The Netherlands, 1954; pp. 251–272. [Google Scholar]
- Miley, G. The structure of extended extragalactic radio sources. Annu. Rev. Astron. Astrophys. 1980, 18, 165–218. [Google Scholar] [CrossRef]
- Bîrzan, L.; Rafferty, D.A.; McNamara, B.R.; Wise, M.W.; Nulsen, P.E. A systematic study of radio-induced X-ray cavities in clusters, groups, and galaxies. Astrophys. J. 2004, 607, 800. [Google Scholar] [CrossRef] [Green Version]
- Bîrzan, L.; McNamara, B.R.; Nulsen, P.E.J.; Carilli, C.L.; Wise, M.W. Radiative efficiency and content of extragalactic radio sources: Toward a universal scaling relation between jet power and radio power. Astrophys. J. 2008, 686, 859–880. [Google Scholar] [CrossRef]
- Cavagnolo, K.W.; McNamara, B.R.; Nulsen, P.E.J.; Carilli, C.L.; Jones, C.; Bîrzan, L. A relationship between AGN jet power and radio power. Astrophys. J. 2010, 720, 1066–1072. [Google Scholar] [CrossRef]
- Dunn, R.J.; Fabian, A.C.; Taylor, G.B. Radio bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 2005, 364, 1343–1353. [Google Scholar] [CrossRef]
- Rafferty, D.A.; McNamara, B.R.; Nulsen, P.E.J.; Wise, M.W. The feedback-regulated growth of black holes and bulges through gas accretion and starbursts in cluster central dominant galaxies. Astrophys. J. 2006, 652, 216–231. [Google Scholar] [CrossRef]
- Churazov, E.; Böhringer, H.; Brüggen, M.; Forman, W.; Jones, C.; Kaiser, C.; Sunyaev, R. Bobble-Heated Cooling Flows, in Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology; Springer: Berlin/Heidelberg, Germany, 2002; pp. 37–43. [Google Scholar]
- Heckman, T.M.; Best, P.N. The coevolution of galaxies and supermassive black holes: Insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Wang, J.; Zhou, M.; Qin, L.; Mao, J. A Mixture Evolution Scenario of the AGN Radio Luminosity Function. II. Do Low-and High-power Radio-loud AGNs Evolve Differently? Astrophys. J. 2017, 846, 78–87. [Google Scholar] [CrossRef] [Green Version]
- McConnell, N.J.; Ma, C.P. Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 2013, 764, 184–197. [Google Scholar] [CrossRef]
- Janssen, R.M.J.; Röttgering, H.J.A.; Best, P.N.; Brinchmann, J. The triggering probability of radio-loud AGN-A comparison of high and low excitation radio galaxies in hosts of different colors. Astron. Astrophys. 2012, 541, A62–A68. [Google Scholar] [CrossRef] [Green Version]
- Kondapally, R.; Best, P.N.; Cochrane, R.K.; Sabater, J.; Duncan, K.J.; Hardcastle, M.J.; Wang, L. Cosmic evolution of low-excitation radio galaxies in the LOFAR two-metre sky survey deep fields. Mon. Not. R. Astron. Soc. 2022, 513, 3742–3767. [Google Scholar] [CrossRef]
- McGaugh, S.S.; Schombert, J.M.; Bothun, G.D.; De Blok, W.J.G. The baryonic tully-fisher relation. Astrophys. J. 2000, 533, L99–L102. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, M.; Sheth, R.K.; Annis, J.; Burles, S.; Eisenstein, D.J.; Finkbeiner, D.P.; York, D.G. Early-type galaxies in the sloan digital sky survey. II. Correlations between observables. Astron. J. 2003, 125, 1849–1865. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Sample | Log ρ | Log sKE | Log ρKE | Log sp | ρp |
Massive Stars | 8.69 | −5.11 | 57.83 | 7.87 | 49.85 |
BH Winds | 5.70 | −3.30 | 56.63 | 10.00 | 49.00 |
BH Jets | 5.70 | −2.54 | 57.43 | 7.94 | 46.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heckman, T.M.; Best, P.N. A Global Inventory of Feedback. Galaxies 2023, 11, 21. https://doi.org/10.3390/galaxies11010021
Heckman TM, Best PN. A Global Inventory of Feedback. Galaxies. 2023; 11(1):21. https://doi.org/10.3390/galaxies11010021
Chicago/Turabian StyleHeckman, Timothy M., and Philip N. Best. 2023. "A Global Inventory of Feedback" Galaxies 11, no. 1: 21. https://doi.org/10.3390/galaxies11010021
APA StyleHeckman, T. M., & Best, P. N. (2023). A Global Inventory of Feedback. Galaxies, 11(1), 21. https://doi.org/10.3390/galaxies11010021