Temperature Effects on Core g-Modes of Neutron Stars
Abstract
:1. Introduction
2. -Modes and Sound Speeds in Neutron Stars
3. Finite Temperature Model for the Neutron Star Equation of State
4. Results
4.1. Pressure and Energy
4.2. Mass-Radius Relation
4.3. The Equilibrium () and Adiabatic () Sound Speeds
4.4. g-Modes at Finite Temperature
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EOS | Equation of State |
ROP | Model for finite-temperature effects introduced by Raithel, Özel and Psaltis in [12]. |
GW | Gravitational Waves |
Appendix A
ROP Parameterization for the Temperature Dependent EOS
1 | The Cowling approximation neglects the back reaction of the gravitational potential and reduces the number of equations we have to solve. While this approximation is not strictly consistent with our fully general relativistic (GR) treatment of the equilibrium structure of the star, it does not change our conclusions qualitatively or even quantitatively that much, since this approximation is accurate for g-mode frequencies at the few % level [16,17,18]. |
2 | In beta-equilibrated charge neutral neutron star matter, the neutron chemical potential is sufficient to determine all other chemical potentials. |
3 | |
4 | |
5 | A straightforward calculation yields compressibility = − for the fitted APR EOS. |
6 | Our parameter values are within the typical range allowed by terrestrial and astrophysical data, as detailed in [37]. |
7 | Data for the ZL EOS was obtained in private communication with the author of [21]. |
References
- Wrubel, M.H.; Arp, H.C.; Burbidge, G.R.; Burbidge, E.M.; Suess, H.E.; Urey, H.C.; Aller, L.H.; Ledoux, P.; Walraven, T.; Deutsch, A.J.; et al. Astrophysik II: Sternaufbau/Astrophysics II: Stellar Structure; Springer: Berlin/Heidelberg, Germany, 1958; Volume 11, p. 51. [Google Scholar]
- Cox, J.P. Theory of Stellar Pulsations; Princeton Series in Astrophysics; Princeton University Press: Princeton, NJ, USA, 1980. [Google Scholar]
- Unno, W.; Osaki, Y.; Ando, H.; Shibahashi, H. Nonradial Oscillations of Stars, 2nd ed.; University of Tokyo Press: Tokyo, Japan, 1989. [Google Scholar]
- Gautschy, A.; Saio, H. Stellar Pulsations Across the HR Diagram: Part 1. Ann. Rev. Astron. Astrophys. 1995, 33, 75. [Google Scholar] [CrossRef]
- Kokkotas, K.D.; Apostolatos, T.A.; Andersson, N. The inverse problem for pulsating neutron stars: A ‘fingerprint analysis’ for the supranuclear equation of state. Mon. Not. R. Astron. Soc. 2001, 320, 307. [Google Scholar] [CrossRef] [Green Version]
- Kokkotas, K.D.; Schmidt, B.G. Quasi-Normal Modes of Stars and Black Holes. Living Rev. Relativ. 1999, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisenegger, A.; Goldreich, P. A New Class of g-Modes in Neutron Stars. Astrophys. J. 1992, 395, 240. [Google Scholar] [CrossRef] [Green Version]
- Jaikumar, P.; Semposki, A.; Prakash, M.; Constantinou, C. g-mode oscillations in hybrid stars: A tale of two sounds. Phys. Rev. D 2021, 103, 123009. [Google Scholar] [CrossRef]
- Tonetto, L.; Lugones, G. Discontinuity gravity modes in hybrid stars: Assessing the role of rapid and slow phase conversions. Phys. Rev. D 2020, 101, 123029. [Google Scholar] [CrossRef]
- Sotani, H.; Tominaga, K.; Maeda, K.-I. Density discontinuity of a neutron star and gravitational waves. Phys. Rev. D 2001, 65, 024010. [Google Scholar] [CrossRef] [Green Version]
- Ranea-Sandoval, I.F.; Guilera, O.M.; Mariani, M.; Orsaria, M.G. Oscillation modes of hybrid stars within the relativistic Cowling approximation. J. Cosm. Atrophys. 2018, 2018, 31. [Google Scholar] [CrossRef] [Green Version]
- Raithel, C.A.; Özel, F.; Psaltis, D. Finite-temperature Extension for Cold Neutron Star Equations of State. Astrophys. J. 2019, 875, 12, Erratum in Astrophys. J. 2021, 915, 73. https://doi.org/10.3847/1538-4357/ac0630. [Google Scholar] [CrossRef] [Green Version]
- Akmal, A.; Pandharipande, V.R.; Ravenhall, D.G. Equation of state of nucleon matter and neutron star structure. Phys. Rev. C 1998, 58, 1804. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Lattimer, J.M. Quarkyonic matter equation of state in beta-equilibrium. Phys. Rev. D 2020, 102, 023021. [Google Scholar] [CrossRef]
- Thorne, K.S.; Campolattaro, A. Non-Radial Pulsation of General-Relativistic Stellar Models. I. Analytic Analysis for L >= 2. Astrophys. J. 1967, 149, 591. [Google Scholar] [CrossRef]
- Gregorian, P. Nonradial Neutron Star Oscillations. Master’s Thesis, Eberhard Karls Universität Tübingen, Tübingen, Germany, 2015. [Google Scholar]
- Flores, C.V.; Lugones, G. Constraining color flavor locked strange stars in the gravitational wave era. Phys. Rev. C 2017, 95, 025808. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Constantinou, C.; Jaikumar, P.; Prakash, M. Quasi-normal g-modes of neutron stars with quarks. arXiv 2022, arXiv:2202.01403. [Google Scholar]
- Kantor, E.M.; Gusakov, M.E. Composition temperature-dependent g modes in superfluid neutron stars. Mon. Not. R. Astron. Soc. 2014, 442, L90. [Google Scholar] [CrossRef] [Green Version]
- McDermott, P.N.; van Horn, H.M.; Scholl, J.F. Nonradial g-mode oscillations of warm neutron stars. Astrophys. J. 1983, 268, 837. [Google Scholar] [CrossRef]
- Constantinou, C.; Han, S.; Jaikumar, P.; Prakash, M. g modes of neutron stars with hadron-to-quark crossover transitions. Phys. Rev. D 2021, 104, 123032. [Google Scholar] [CrossRef]
- Lai, D. Resonant oscillations and tidal heating in coalescing binary neutron stars. Mon. Not. R. Astron. Soc. 1994, 270, 611. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Lattimer, J.M. Universal Relations for Neutron Star F-Mode and G-Mode Oscillations. arXiv 2022, arXiv:2204.03037. [Google Scholar]
- Lai, D. Secular instability of g-modes in rotating neutron stars. Mon. Not. R. Astron. Soc. 1999, 307, 1001. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Salinas, M.; Klähn, T.; Jaikumar, P.; Barry, M. Lifting the Veil on Quark Matter in Compact Stars with Core g-mode Oscillations. Astrophys. J. 2020, 904, 187. [Google Scholar] [CrossRef]
- Fu, W.-J.; Zhan, B.; Liu, Y.-X. Identifying the QCD Phase Transitions via the Gravitational Wave Frequency. arXiv 2017, arXiv:1701.00418. [Google Scholar]
- Lattimer, J.M.; Swesty, D.F. A generalized equation of state for hot, dense matter. Nucl. Phys. A 1991, 535, 331. [Google Scholar] [CrossRef]
- Shen, H.; Toki, H.; Oyamatsu, K.; Sumiyoshi, K. Relativistic equation of state of nuclear matter for supernova and neutron star. Nucl. Phys. A 1998, 637, 435. [Google Scholar] [CrossRef] [Green Version]
- Hempel, M.; Schaffner-Bielich, J. A statistical model for a complete supernova equation of state. Nucl. Phys. A 2010, 837, 210. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.W.; Hempel, M.; Fischer, T. Core-collapse supernova equations of state based on neutron star observations. Astrophys. J. 2013, 774, 17. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Lim, Y. Constraining the symmetry parameters of the nuclear interaction. Astrophys. J. 2013, 771, 51. [Google Scholar] [CrossRef] [Green Version]
- Krüger, T.; Tews, I.; Hebeler, K.; Schwenk, A. Neutron matter from chiral effective field theory interactions. Phys. Rev. C 2013, 88, 025802. [Google Scholar] [CrossRef]
- Drischler, C.; Han, S.; Lattimer, J.M.; Prakash, M.; Reddy, S.; Zhao, T. Limiting masses and radii of neutron stars and their implications. Phys. Rev. C 2021, 103, 045808. [Google Scholar] [CrossRef]
- Constantinou, C.; Muccioli, B.; Prakash, M.; Lattimer, J.M. Thermal properties of hot and dense matter with finite range interactions. Phys. Rev. C 2015, 92, 025801. [Google Scholar] [CrossRef] [Green Version]
- Constantinou, C.; Muccioli, B.; Prakash, M.; Lattimer, J.M. Degenerate limit thermodynamics beyond leading order for models of dense matter. Ann. Phys. 2015, 363, 533. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.K.; Chatterjee, D. Effect of hyperons on f-mode oscillations in neutron stars. Phys. Rev. C 2021, 103, 035810. [Google Scholar] [CrossRef]
- Li, B.-A.; Guo, W.-J.; Shi, Z. Effects of the kinetic symmetry energy reduced by short-range correlations in heavy-ion collisions at intermediate energies. Phys. Rev. C 2015, 91, 044601. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, E.; Cromartie, H.T.; Pennucci, T.T.; Ray, P.S.; Kirichenko, A.Y.; Ransom, S.M.; Demorest, P.B.; Stairs, I.H.; Arzoumanian, Z.; Guillemot, L.; et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620. Astrophys. J. Lett. 2021, 915, L12. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, S.; Finstad, D.; Lattimer, J.M.; Brown, D.A.; Berger, E.; Biwer, C.M. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. Phys. Rev. Lett. 2018, 121, 091102. [Google Scholar] [CrossRef] [Green Version]
- Raithel, C.A.; Paschalidis, V.; Özel, F. Realistic finite-temperature effects in neutron star merger simulations. Phys. Rev. D 2021, 104, 063016. [Google Scholar] [CrossRef]
- Finn, S.L. Nonradial pulsations of neutron stars with a crust. Mon. Not. R. Astron. Soc. 1990, 245, 82. [Google Scholar] [CrossRef]
- Albright, M.; Kapusta, J.I. Quasiparticle theory of transport coefficients for hadronic matter at finite temperature and baryon density. Phys. Rev. C 2016, 93, 014903. [Google Scholar] [CrossRef]
- Pratten, G.; Schmidt, P.; Hinderer, T. Gravitational-wave asteroseismology with fundamental modes from compact binary inspirals. Nat. Commun. 2020, 11, 2553. [Google Scholar] [CrossRef]
EOS | (MeV) | L (MeV) | ||
---|---|---|---|---|
APR | 254 | 32 | 57.6 | 0.6 |
ZL | 250 | 31.6 | 60.1 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, N.; Tran, V.; Jaikumar, P. Temperature Effects on Core g-Modes of Neutron Stars. Galaxies 2022, 10, 79. https://doi.org/10.3390/galaxies10040079
Lozano N, Tran V, Jaikumar P. Temperature Effects on Core g-Modes of Neutron Stars. Galaxies. 2022; 10(4):79. https://doi.org/10.3390/galaxies10040079
Chicago/Turabian StyleLozano, Nicholas, Vinh Tran, and Prashanth Jaikumar. 2022. "Temperature Effects on Core g-Modes of Neutron Stars" Galaxies 10, no. 4: 79. https://doi.org/10.3390/galaxies10040079
APA StyleLozano, N., Tran, V., & Jaikumar, P. (2022). Temperature Effects on Core g-Modes of Neutron Stars. Galaxies, 10(4), 79. https://doi.org/10.3390/galaxies10040079