The Interstellar Medium of Dwarf Galaxies
Abstract
1. Introduction
2. Dwarf Galaxies: General Properties
2.1. Morphological Types
2.2. Physical and Chemical Boundary Conditions
- The ISM is metal poor.
- Gravity is weak.
- Interstellar pressure is low.
- As a consequence, disks tend to be thick and diffuse.
- Low gravity and pressure may lead to strong feedback effects.
- There is little shear due to rotational effects.
- There is no high-contrast spiral structure shocking and compressing the gas.
- Dust to gas mass ratios (/) are low.
- Insufficient dust shielding leads to a harsh environment for molecular species.
- Low / ratios lead to a low gas phase depletion of refractory elements onto dust grains.
3. Main Components of the Interstellar Medium
3.1. Neutral Hydrogen (Hi)
3.2. The Dust Component
3.3. The Submillimeter Excess
- A particularly cold so far missed dust component.
- A long wavelength enhancement of the opacity of silicate grains.
- A kinetic temperature dependent grain emissivity, with the emissivity index decreasing when increases.
- Spinning grains.
- Cosmic microwave background (CMB) fluctuations.
- A positive correlation with the Hi component.
- Blending with CO lines.
3.4. The Molecular Component
3.5. The Ionized Gas
4. Star Formation and Active Nuclei
4.1. Star Formation
4.2. Combining Different Interstellar Tracers
4.3. Active Galactic Nuclei and Outflows
5. Star Forming Dwarfs in the Local Universe
5.1. Are There Young Dwarfs in the Local Universe?
5.2. Some Outstanding Targets
6. Star Forming Dwarfs in the Cosmological Persepctive
6.1. Primordial Abundances
6.2. Dwarf Galaxies Near and Far
6.3. The Role of Dwarfs at Reionization
7. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | |
2 | NASA/IPAC extragalactic database, ned.ipac.caltech.edu. |
References
- Schechter, P.L. An analytic expression for the luminosity function for galaxies. Astrophys. J. 1976, 203, 297–306. [Google Scholar] [CrossRef]
- Marzke, R.O.; Da Costa, L.N. The galaxy luminosity function at z ≾0.05: Dependence on color. Astron. J. 1997, 113, 185–196. [Google Scholar] [CrossRef]
- Ellis, R.S. Faint blue galaxies. Annu. Rev. Astron. Astrophys. 1997, 35, 389–443. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Guseva, N.G.; Fricke, K.J.; Henkel, C. The bursting nature of star formation in compact star-forming galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2016, 462, 4427–4434. [Google Scholar] [CrossRef]
- Simon, J.D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 2019, 57, 375–415. [Google Scholar] [CrossRef]
- Minchin, R.F.; Disney, M.J.; Parker, Q.A.; Boyce, P.J.; de Blok, W.J.G.; Banks, G.D.; Ekers, R.D.; Freeman, K.C.; Garcia, D.A.; Gibson, B.K.; et al. The cosmological significance of low surface brightness galaxies found in a deep blind neutral hydrogen survey. Mon. Not. R. Astron. Soc. 2004, 355, 1303–1314. [Google Scholar] [CrossRef]
- Nieto, J.L.; Bender, R.; Davoust, E.; Prugniel, P. The low-mass extension of the fundamental plane of elliptical galaxies. Astron. Astrophys. 1990, 230, L17–L20. [Google Scholar]
- Aguerri, J.A.L.; González-García, A.C. On the origin of dwarf elliptical galaxies: The fundamental plane. Astron. Astrophys. 2009, 494, 891–904. [Google Scholar] [CrossRef]
- Ferguson, H.C.; Binggeli, B. Dwarf elliptical galaxies. Annu. Rev. Astron. Astrophys. 1994, 6, 67–122. [Google Scholar] [CrossRef]
- Jerjen, H.; Kalnajs, A.; Binggeli, B. IC3328: A dwarf elliptical galaxy wih spiral structure. Astron. Astrophys. 2000, 358, 845–849. [Google Scholar]
- Barazza, F.D.; Binggeli, B.; Jerjen, H. More evidence for hidden spiral and bar features in bright early-type dwarf galaxies. Astron. Astrophys. 2002, 391, 823–831. [Google Scholar] [CrossRef]
- De Rijcke, S.; Dejonghe, H.; Zeilinger, W.W.; Han, G.J.T. Embedded disks in Fornax dwarf elliptical galaxies. Astron. Astrophys. 2003, 400, 119–125. [Google Scholar] [CrossRef]
- Henkel, C.; Wiklind, T. Cool dense gas in early-type galaxies. Space Sci. Rev. 1997, 81, 1–105. [Google Scholar] [CrossRef]
- De Looze, I.; Baes, M.; Zibetti, S.; Fritz, J.; Cortese, L.; Davies, J.I.; Verstappen, J.; Bendo, G.J.; Bianchi, S.; Clemens, M.; et al. The Herschel Virgo Cluster survey: VII. Dust in cluster dwarf elliptical galaxies. Astron. Astrophys. 2010, 518, L54–L58. [Google Scholar] [CrossRef]
- Tolstoy, E.; Hill, V.; Tosi, M. Star formationn histories, abundances, and kinematics of dwarf galaxies in the Local Group. Annu. Rev. Astron. Astrophys. 2009, 47, 371–425. [Google Scholar] [CrossRef]
- Henkel, C.; Javanmardi, B.; Martínez-Delgado, D.; Kroupa, P.; Teuwen, K. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems. Astron. Astrophys. 2017, 603, A18. [Google Scholar] [CrossRef][Green Version]
- Karachentsev, I.D.; Kaisina, E.I. Dwarf galaxies in the local volume. Astrophys. Bull. 2019, 74, 111–127. [Google Scholar] [CrossRef]
- Cardamone, C.; Schawinski, K.; Sarzi, M.; Bamford, S.P.; Bennert, N.; Urry, C.M.; Lintott, C.; Keel, W.C.; Parejko, J.; Nichol, R.C.; et al. Galaxy zoo Green Peas: Discovery of a class of compact extremely star-forming galaxies. Mon. Not. R. Astron. Soc. 2009, 399, 1191–1205. [Google Scholar] [CrossRef]
- Kormendy, J. Families of ellipsoidal stellar systems and the formation of dwarf elliptical galaxies. Astrophys. J. 1985, 295, 73–79. [Google Scholar] [CrossRef]
- Jaiswal, S.; Omar, A. Hi imaging of dwarf star-forming galaxies: Masses, morphologies, and gas deficiencies. Mon. Not. R. Astron. Soc. 2020, 498, 4745–4789. [Google Scholar] [CrossRef]
- Richer, M.G.; Bullejos, A.; Borissova, J.; McCall, M.L.; Lee, H.; Kurtev, R.; Georgiev, L.; Kingsburgh, R.L.; Ross, R.; Rosado, M. IC 10: More evidence that it is a blue compact dwarf. Astron. Astrophys. 2001, 370, 34–42. [Google Scholar] [CrossRef]
- Binggeli, B.; Sandage, A.; Tammann, G.A. Studies of the Virgo cluster. II. A catalog of 2096 galaxies in the Virgo cluster area. Astron. J. 1985, 90, 1681–1758. [Google Scholar] [CrossRef]
- Guseva, N.G.; Papaderos, P.; Meyer, H.T.; Izotov, Y.I.; Fricke, K.J. An investigation of the luminosity-metallicity relation for a large sample of low-metallicity emission-line galaxies. Astron. Astrophys. 2009, 505, 63–72. [Google Scholar] [CrossRef]
- Tremonti, C.A.; Heckman, T.M.; Kauffmann, G.; Brinchmann, J.; Charlot, S.; White, S.D.; Seibert, M.; Peng, E.W.; Schlegel, D.J.; Uomoto, A.; et al. The origin of the mass-metallicity relation: Insights from 53000 star-forming galaxies in the Sloan Digital Sky Survey. Astrophys. J. 2004, 613, 898–913. [Google Scholar] [CrossRef]
- Gonçalves, T.S.; Basu-Zych, A.; Overzier, R.A.; Pérez, L.; Martin, D.C. Molecular gas properties of UV bright star-forming galaxies at low redshift. Mon. Not. R. Astron. Soc. 2014, 442, 1429–1439. [Google Scholar] [CrossRef][Green Version]
- Izotov, Y.I.; Guseva, N.G.; Fricke, K.J.; Henkel, C. On the universality of luminosity-metallicity and mass-metallicity relations for compact star-forming galaxies at redshifts 0 < z < 3. Mon. Not. R. Astron. Soc. 2015, 451, 2251–2262. [Google Scholar]
- Roychowdhury, S.; Chengalur, J.N.; Karachentsev, I.D.; Kaisina, E.I. The intrinsic shape of dwarf galaxies. Mon. Not. R. Astron. Soc. 2013, 436, L104–L108. [Google Scholar] [CrossRef]
- Mateo, M.L. Dwarf galaxies of the Local Group. Annu. Rev. Astron. Astrophys. 1998, 36, 435–506. [Google Scholar] [CrossRef]
- Socas-Navarro, H. The solar oxygen abundance from an empirical three dimensional model. Astron. Astrophys. 2015, 577, A25. [Google Scholar] [CrossRef]
- Pilyugin, L.S.; Contini, T.; Vilchez, J.M. Chemical abundances in spiral and irregular galaxies. O and N abundances derived from global emission-line spectra. Astron. Astrophys. 2004, 423, 427–440. [Google Scholar] [CrossRef][Green Version]
- Pilyugin, L.S.; Vílchez, J.M.; Thuan, T.X. New improved calibration relations for the determination of electron temperatures and oxygen and nitrogen abundances in Hii Regions. Astron. Astrophys. 2010, 720, 1738–1751. [Google Scholar]
- Guseva, N.G.; Izotov, Y.I.; Stasínska, G.; Fricke, K.J.; Henkel, C.; Papaderos, P. VLT spectroscopy of low-metallicity emission-line galaxies: Abundance patterns and abundance discrepancies. Astron. Astrophys. 2011, 529, A149. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Stasińska, G.; Guseva, N.G.; Thuan, T.X. Abundance patterns in the low-metallicity emission-line galaxies from the Early Data Release of the Sloan Digital Sky Survey. Astron. Astrophys. 2004, 415, 87–94. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X. Systematic effects and a new determination of the primordial abundance of 4He and dY/dZ from observations of Blue Compact Galaxies. Astrophys. J. 2004, 602, 200–230. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X. MMT observations of new extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey. Astrophys. J. 2007, 665, 1115–1128. [Google Scholar] [CrossRef]
- Guseva, N.G.; Izotov, Y.I.; Papaderos, P.; Fricke, K.J. Balmer jump temperature determination in a large sample of low-metallicity Hii regions. Astron. Astrophys. 2007, 464, 885–893. [Google Scholar] [CrossRef]
- Begum, A.; Chengalur, J.N.; Karachentsev, I.D.; Sharina, M.E.; Kaisin, S.S. FIGGS: Faint irregular galaxies GMRT survey-overview, observations and first results. Mon. Not. R. Astron. Soc. 2008, 386, 1667–1682. [Google Scholar] [CrossRef]
- Walter, F.; Brinks, E.; de Blok, W.J.G.; Bigiel, F.; Kennicutt, R.C.; Thornley, M.D.; Leroy, A. THINGS: The Hi nearby galaxy survey. Astron. J. 2008, 136, 2563–2647. [Google Scholar]
- Cannon, J.M.; Giovanelli, R.; Haynes, M.P.; Janowiecki, S.; Parker, A.; Salzer, J.J.; Adams, E.A.K.; Engstrom, E.; Huang, S.; McQuinn, K.B.W. The survey of Hi in extremely low-mass dwarfs (SHIELD). Astrophys. J. 2011, 739, L22. [Google Scholar] [CrossRef]
- Ott, J.; Stilp, A.M.; Warren, S.R.; Skillman, E.D.; Dalcanton, J.J.; Walter, F.; de Blok, W.J.G.; Koribalski, B.; West, A.A. VLA-ANGST: A high-resolution Hi survey of nearby dwarf galaxies. Astron. J. 2012, 144, 123. [Google Scholar] [CrossRef][Green Version]
- Hunter, D.A.; Ficut-Vicas, D.; Ashley, T.; Brinks, E.; Cigan, P.; Elmegreen, B.G.; Heesen, V.; Herrmann, K.A.; Johnson, M.; Oh, S.-H.; et al. Little Things. Astron. J. 2012, 144, 134. [Google Scholar] [CrossRef]
- MacHattie, J.A.; Irwin, J.A.; Madden, S.C.; Cormier, D.; Rémy-Ruyer, A. Detection of Hi absorption in the dwarf galaxy Haro 11. Mon. Not. R. Astron. Soc. 2014, 438, L66–L70. [Google Scholar] [CrossRef][Green Version]
- Murthy, S.; Morganti, R.; Oosterloo, T.; Maccagni, F.M. The Hi absorption zoo: JVLA extension to z ∼ 0.4. Astron. Astrophys. 2021, 654, A94. [Google Scholar] [CrossRef]
- Thuan, T.X.; Goehring, K.M.; Hibbard, J.E.; Izotov, Y.I.; Hunt, L.K. The Hi content of extremely metal-deficient blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 2016, 463, 4268–4286. [Google Scholar] [CrossRef][Green Version]
- Ashley, T.; Simpson, C.E.; Elmegreen, B.G.; Johnson, M.; Pokhrel, N.R. The Hi chronicles of Little Things BCDs. III. Gas clouds in and around Mrk 178, VII Zw 403, and NGC 3738. Astron. J. 2017, 153, 132. [Google Scholar] [CrossRef]
- Kanekar, N.; Ghosh, T.; Rhoads, J.; Malhotra, S.; Harish, S.; Chengalur, J.N.; Jones, K.M. The atomic gas mass of Green Pea galaxies. Astrophys. J. 2021, 913, L15. [Google Scholar] [CrossRef]
- Galliano, F.; Galametz, M.; Jones, A.P. The interstellar dust properties of nearby galaxies. Annu. Rev. Astron. Astrophys. 2018, 56, 673–713. [Google Scholar] [CrossRef]
- Madden, S.C.; Cormier, D. Dwarf galaxies: Their low metallicity interstellar medium. Proc. Int. Astron. Union 2019, 344, 240–254. [Google Scholar] [CrossRef][Green Version]
- Feldmann, R. The equilibrium view on dust and metals in galaxies: Galactic outflows drive low dust-to-metal ratios in dwarf galaxies. Mon. Not. R. Astron. Soc. 2015, 449, 3274–3292. [Google Scholar] [CrossRef]
- Lebouteiller, V.; Heap, S.; Hubeny, I.; Kunth, D. Chemical enrichment and physical conditions in IZw 18. Astron. Astrophys. 2013, 553, A16. [Google Scholar] [CrossRef]
- Hunt, L.K.; Testi, L.; Casasola, V.; García-Burillo, S.; Combes, F.; Nikutta, R.; Caselli, P.; Henkel, C.; Maiolino, R.; Menten, K.M.; et al. ALMA observations of cool dust in a low-metallicity starburst, SBS 0335–052. Astron. Astrophys. 2014, 561, A49. [Google Scholar] [CrossRef]
- w Rémy-Ruyer, A.; Madden, S.C.; Galliano, F.; Galametz, M.; Takeuchi, T.T.; Asano, R.S.; Zhukovska, S.; Lebouteiller, V.; Cormier, D.; Jones, A.; et al. Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range. Astron. Astrophys. 2014, 563, A31. [Google Scholar] [CrossRef]
- Engelbracht, C.W.; Rieke, G.H.; Gordon, K.D.; Smith, J.-D.T.; Werner, M.W.; Moustakas, J.; Willmer, C.N.A.; Vanzi, L. Metallicity effects on dust prperties in starbursting galaxies. Astrophys. J. 2008, 678, 804–827. [Google Scholar] [CrossRef]
- Rosenberg, J.L.; Wu, Y.; Le Floc’h, E.; Charmandaris, V.; Ashby, M.L.N.; Houck, J.R.; Salzer, J.J.; Willner, S.P. Dust properties and star formation rates in star-forming dwarf galaxies. Astrophys. J. 2008, 674, 814–830. [Google Scholar] [CrossRef][Green Version]
- Madden, S.C.; Rémy-Ruyer, A.; Galametz, M.; Cormier, D.; Lebouteiller, V.; Galliano, F.; Hony, S.; Bendo, G.J.; Smith, M.W.L.; Pohlen, M.; et al. An overview of the dwarf galaxy survey. Publ. Astron. Soc. Pac. 2013, 125, 600–635. [Google Scholar] [CrossRef]
- Rémy-Ruyer, A.; Madden, S.C.; Galliano, F.; Hony, S.; Sauvage, M.; Bendo, G.J.; Roussel, H.; Pohlen, M.; Smith, M.W.L.; Galametz, M.; et al. Revealing the cold dust in low-metallicity environments. I. Photometry analysis of the Dwarf Galaxy Survey with Herschel. Astron. Astrophys. 2013, 557, A95. [Google Scholar] [CrossRef]
- Rémy-Ruyer, A.; Madden, S.C.; Galliano, F.; Lebouteiller, V.; Baes, M.; Bendo, G.J.; Boselli, A.; Ciesla, L.; Cormier, D.; Cooray, A.; et al. Linking dust emission to fundamental properties in galaxies: The low-metallicity picture. Astron. Astrophys. 2015, 582, A121. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Guseva, N.G.; Fricke, K.J.; Henkel, C. Multi-wavelength study of 14000 star-forming galaxies from the Sloan Digital Sky Survey. Astron. Astrophys. 2014, 561, A33. [Google Scholar] [CrossRef]
- Thuan, T.X.; Hunt, L.K.; Izotov, Y.I. The Spitzer view of low-metallicity star formation. II. Mrk996, a blue compact galaxy with an extremely dense nucleus. Astrophys. J. 2008, 689, 897–912. [Google Scholar] [CrossRef][Green Version]
- Izotov, Y.I.; Guseva, N.G.; Fricke, K.J.; Papaderos, P. SBS 0335–052 E+W: Deep VLT/FORS+UVES spectroscopy of the pair of the lowest metallicity blue compact dwarf galaxies. Astron. Astrophys. 2009, 503, 61–72. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Guseva, N.G.; Fricke, K.J.; Henkel, C. VLT/X-shooter observations of the low-metallicity blue compact dwarf galaxy PHL 293B, including a luminous blue variable star. Astron. Astrophys. 2011, 533, A25. [Google Scholar] [CrossRef]
- Draine, B.T.; Li, A. Infrared emission from interstellar dust. IV. The silicate-graphit-PAH model in the post-Spitzer era. Astrophys. J. 2007, 657, 810–837. [Google Scholar] [CrossRef]
- Bot, C.; Ysard, N.; Paradis, D.; Bernard, J.P.; Lagache, G.; Israel, F.P.; Wall, W.F. Submillimeter to centimeter excess emission from the Magellanic Clouds. II. On the nature of the excess. Astron. Astrophys. 2010, 524, A20. [Google Scholar] [CrossRef]
- Galametz, M.; Madden, S.C.; Galliano, F.; Hony, S.; Bendo, G.J.; Sauvage, M. Probing the dust properties of galaxies up to the submillimetre wavelengths. II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies. Astron. Astrophys. 2011, 532, A56. [Google Scholar] [CrossRef]
- Galliano, F.; Hony, S.; Bernard, J.-P.; Bot, C.; Madden, S.C.; Roman-Duval, J.; Galametz, M.; Li, A.; Meixner, M.; Engelbracht, C.W.; et al. Non-standard grain properties, dark gas reservoir, and extended submillimeter excess, probed by Herschel in the Large Magellanic Cloud. Astron. Astrophys. 2011, 536, A88. [Google Scholar] [CrossRef]
- Dale, D.A.; Aniano, G.; Engelbracht, C.W.; Hinz, J.L.; Krause, O.; Montiel, E.J.; Roussel, H.; Appleton, P.N.; Armus, L.; Beirão, P.; et al. Herschel far-infrared and submillimeter photometry for the KINGFISH sample of nearby galaxies. Astrophys. J. 2012, 745, 95. [Google Scholar] [CrossRef][Green Version]
- Izotov, Y.I.; Guseva, N.G.; Fricke, K.J.; Krügel, E.; Henkel, C. Dust emission in star-forming dwarf galaxies: General properties and the nature of the submm excess. Astron. Astrophys. 2014, 570, A97. [Google Scholar] [CrossRef]
- Galliano, F.; Madden, S.C.; Jones, A.P.; Wilson, C.D.; Bernard, J.-P.; Le Peintre, F. ISM properties in low-metallicity environments. II. The dust spectral energy distribution of NGC 1569. Astron. Astrophys. 2003, 407, 159–176. [Google Scholar] [CrossRef]
- Galliano, F.; Madden, S.C.; Jones, A.P.; Wilson, C.D.; Bernard, J.-P. ISM properties in low-metallicity environments. III. The spectral energy distributions of II Zw 40, He 2–10 and NGC 1140. Astron. Astrophys. 2005, 434, 867–885. [Google Scholar] [CrossRef]
- Hirashita, H. Properties of free-free, dust and CO emissions in the starbursts of blue compact dwrf galaxies. Mon. Not. R. Astron. Soc. 2013, 429, 3390–3401. [Google Scholar] [CrossRef]
- Rubio, M.; Garay, G.; Montani, J.; Thaddeus, P. A 12CO survey of the Small Magellanic Cloud. Astron. Astrophys. 1991, 368, 173–177. [Google Scholar]
- Bolatto, A.D.; Wolfire, M.; Leroy, A.K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 2013, 51, 207–268. [Google Scholar] [CrossRef]
- Amorín, R.; Muñoz-Tuñón, C.; Aguerri, J.A.L.; Planesas, P. Molecular gas in low-metallicity starburst galaxies: Scaling relation and the CO-to-H2 conversion factor. Astron. Astrophys. 2016, 588, A23. [Google Scholar] [CrossRef]
- Hunt, L.K.; García-Burillo, S.; Casasola, V.; Caselli, P.; Combes, F.; Henkel, C.; Lundgren, A.; Maiolino, R.; Menten, K.M.; Testi, L.; et al. Molecular depletion times and the CO-to-H2 conversion factor in metal-poor galaxies. Astron. Astrophys. 2015, 583, A114. [Google Scholar] [CrossRef]
- Wolfire, M.G.; Hollenbach, D.; McKee, C.F. The dark molecular gas. Astrophys. J. 2010, 716, 1191–1207. [Google Scholar] [CrossRef]
- Rubio, M.; Lequeux, J.; Boulanger, F. Results from the ESO-SEST key programme: CO in the Magellanic Clouds. III. Molecular gas in the Small Magellanic Cloud. Astron. Astrophys. 1993, 271, 9–17. [Google Scholar]
- Schruba, A.; Leroy, A.K.; Kruijssen, J.M.D.; Bigiel, F.; Bolatto, A.D.; de Blok, W.J.G.; Tacconi, L.; van Dishoeck, E.F.; Walter, F. Physical properties of molecular clouds at 2 pc resolution in the low-metallicity dwarf galaxy NGC 6822 and the Milky Way. Astrophys. J. 2017, 835, 278. [Google Scholar] [CrossRef]
- Rich, J.; Persson, S.E.; Freedman, W.L.; Madore, B.F.; Monson, A.J.; Scowcroft, V.; Seibert, M. A new Cepheid distance measurement and method for NGC 6822. Astrophys. J. 2014, 794, 107. [Google Scholar] [CrossRef]
- Rubio, M.; Elmegreen, B.G.; Hunter, D.A.; Brinks, E.; Cortés, J.R.; Cigan, P. Dense cloud cores revealed by CO in the low metallicity galaxy WLM. Nature 2015, 525, 218–221. [Google Scholar] [CrossRef]
- Tammann, G.A.; Reindl, B.; Sandage, A. New period-luminosity and period-color relations of classical Cepheids. IV. The low-metallicity galaxies IC 1613, WLM, Pegasus, Sextans A and B, and Leo A in comparison to SMC. Astron. Astrophys. 2011, 531, A134. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, J.; Zhang, Z.-Y.; Zhang, Q.; Gao, Y.; Zhou, L.; Gu, Q.; Qiu, K.; Xia, X.-Y.; Hao, C.-N.; et al. Oversized gas clumps in an extremely metal-poor molecular cloud revealed by ALMA’s parsec-scale maps. Astrophys. J. 2020, 892, 147. [Google Scholar] [CrossRef]
- Kepley, A.A.; Leroy, A.K.; Johnson, K.E.; Sandstrom, K.; Chen, C.-H.R. The molecular clouds fueling a 1/5 solar metallicity starburst. Astrophys. J. 2016, 828, 50. [Google Scholar] [CrossRef]
- Oey, M.S.; Herrera, C.N.; Silich, S.; Reiter, M.; James, B.L.; Jaskot, A.E.; Micheva, G. Dense CO in Mrk 71-A: Superwind supressed in a young super star cluster. Astrophys. J. 2017, 849, L1. [Google Scholar] [CrossRef]
- Schneider, R.; Hunt, L.; Valiante, R. The dust content of the most metal-poor star-forming galaxies. Mon. Not. R. Astron. Soc. 2016, 457, 1842–1850. [Google Scholar] [CrossRef]
- Klein, U.; Lisenfeld, U.; Verley, S. Radio synchrotron spectra of star-forming galaxies. Astron. Astrophys. 2018, 611, A55. [Google Scholar] [CrossRef]
- Green, D.A. A catalogue of 294 galactic supernova remnants. Bull. Astron. Soc. India 2014, 42, 47–58. [Google Scholar] [CrossRef]
- Thuan, T.X.; Izotov, Y.I. High-ionization emission in metal-deficient blue compact dwarf galaxies. Astrophys. J. Suppl. Ser. 2005, 161, 240–270. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X.; Privon, G. The detection of [NeV] emission in five blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 2012, 427, 1229–1237. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X.; Guseva, N.G. Large Binocular Telescope observations of new six compact star-forming galaxies with [NeV]λ3426 emission. Mon. Not. R. Astron. Soc. 2021, 508, 2556–2574. [Google Scholar] [CrossRef]
- Kerp, J.; Walter, F.; Brinks, E. ROSAT X-ray observations of the dwarf galaxy Holmberg II. Astrophys. J. 2002, 571, 809–817. [Google Scholar] [CrossRef]
- Snaith, O.; Haywood, M.; DiMatteo, P.; Lehnert, M.D.; Combes, F.; Katz, D.; Gómez, A. Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances. Astron. Astrophys. 2015, 578, A87. [Google Scholar] [CrossRef]
- Fantin, N.J.; Côté, P.; McConnachie, A.W.; Bergeron, P.; Cuillandre, J.-C.; Dufour, P.; Gwyn, S.D.J.; Ibata, R.A.; Thomas, G.F. The mass and age distribution of halo dwarfs in the Canada-France imaging survey. Astrophys. J. 2021, 913, 30. [Google Scholar] [CrossRef]
- McQuinn, K.B.W.; Skillman, E.D.; Dalcanton, J.J.; Dolphin, A.E.; Cannon, J.M.; Holtzman, J.; Weisz, D.R.; Williams, B.F. Observational constraints on the molecular gas content in nearby starburst dwarf galaxies. Astrophys. J. 2012, 751, 127. [Google Scholar] [CrossRef][Green Version]
- Weisz, D.R.; Dalcanton, J.J.; Williams, B.F.; Gilbert, K.M.; Skillman, E.D.; Seth, A.C.; Dolphin, A.E.; McQuinn, K.B.W.; Gogarten, S.M.; Holtzman, J.; et al. The ACS nearby galaxy survey treasury. VIII. The global star formation histories of 60 dwarf galaxies in the local volume. Astrophys. J. 2011, 739, 5. [Google Scholar] [CrossRef]
- Shen, S.; Madau, P.; Conroy, C.; Governato, F.; Mayer, L. The baryon cycle of dwarf galaxies: Dark, bursty gas-rich polluters. Astrophys. J. 2014, 792, 99. [Google Scholar] [CrossRef]
- Emami, N.; Siana, B.; Weisz, D.R.; Johnson, B.D.; Ma, X.; El-Badry, K. A closer look at bursty star formation with L(Hα) and L(UV) distributions. Astrophys. J. 2019, 881, 71. [Google Scholar] [CrossRef]
- Cignoni, M.; Sacchi, E.; Tosi, M.; Aloisi, A.; Cook, D.O.; Calzetti, D.; Lee, J.C.; Sabbi, E.; Thilker, D.A.; Adamo, A.; et al. Star formation histories of the LEGUS Dwarf Galaxies. III. The nonbursty nature of 23 star-forming dwarf galaxies. Astrophys. J. 2019, 887, 112. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Chengalur, J.N.; Chiboucas, K.; Karachentsev, I.D.; Tully, R.B.; Kaisin, S.S. Atomic hydrogen, star formation and feedback in the lowest mass blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 2012, 426, 665–672. [Google Scholar] [CrossRef]
- Hirashita, H.; Hunt, L.K. The role of dust in ‘active’ and ‘passive’ low-metallicity star formation. Astron. Astrophys. 2004, 421, 555–570. [Google Scholar]
- Hunt, L.K.; Thuan, T.X.; Izotov, Y.I.; Sauvage, M. The Spitzer view of low-metallicity star formation. III. Fine-structure lines, aromatic features, and molecules. Astrophys. J. 2010, 712, 164–187. [Google Scholar] [CrossRef]
- Puche, D.; Westphal, D.; Brinks, E.; Roy, J.-R. Holmberg II: A laboratory for studying the violent interstellar medium. Astron. J. 1992, 103, 1841–1858. [Google Scholar] [CrossRef]
- Martin, M.C. Catalogue of Hi maps of galaxies I. Astron. Astrophys. Suppl. Ser. 1998, 131, 73–75. [Google Scholar] [CrossRef][Green Version]
- Walter, F.; Brinks, E. Holes and shells in the interstellar medium of the nearby dwarf galaxy IC 2574. Astron. J. 1999, 118, 273–301. [Google Scholar] [CrossRef]
- Weisz, D.R.; Skillman, E.D.; Cannon, J.M.; Dolphin, A.E.; Kennicutt, R.C.; Lee, J.; Walter, F. Does stellar feedback create Hi holes? A Hubble Space Telescope/Very Large Array study of Holmberg II. Astrophys. J. 2009, 704, 1538–1569. [Google Scholar] [CrossRef]
- Mac Low, M.-M.; Ferrara, A. Starburst-driven mass loss from dwarf galaxies: Efficiency and metal ejection. Astrophys. J. 1999, 513, 142–155. [Google Scholar] [CrossRef]
- Ott, J.; Walter, F.; Brinks, E. A Chandra X-ray survey of nearby dwarf starburst galaxies-II. Starburst properties and outflows. Mon. Not. R. Astron. Soc. 2005, 358, 1453–1471. [Google Scholar] [CrossRef]
- Lopez, L.A.; Krumholz, M.R.; Bolatto, A.D.; Prochaska, X.; Ramirez-Ruiz, E. What drives the expansion of giant Hii regions?: A study of stellar feedback in 30 Doradus. Astrophys. J. 2011, 791, 91. [Google Scholar] [CrossRef]
- Lopez, L.A.; Krumholz, M.R.; Bolatto, A.D.; Prochaska, J.X.; Ramirez-Ruiz, E.; Castro, D. The role of stellar feedback in the dynamics of Hii regions. Astrophys. J. 2014, 795, 121. [Google Scholar] [CrossRef]
- Hunt, L.K.; Weiß, A.; Henkel, C.; Combes, F.; García-Burillo, S.; Casasola, V.; Caselli, P.; Lundgren, A.; Maiolino, R.; Menten, K.M.; et al. Physical conditions of the molecular gas in metal-poor galaxies. Astron. Astrophys. 2017, 606, A99. [Google Scholar] [CrossRef]
- Fahrion, K.; Cormier, D.; Bigiel, F.; Hony, S.; Abel, N.P.; Cigan, P.; Csengeri, T.; Graf, U.U.; Lebouteiller, V.; Madden, S.C.; et al. Disentangling the ISM phases of the dwarf galaxy NGC 4214 using [Cii] SOFIA/GREAT observations. Astron. Astrophys. 2017, 599, A9. [Google Scholar] [CrossRef][Green Version]
- Lebouteiller, V.; Péquignot, D.; Cormier, D.; Madden, S.; Pakull, M.W.; Kunth, D.; Galliano, F.; Chevance, M.; Heap, S.R.; Lee, M.-Y.; et al. Neutral gas heating by X-rays in primitive galaxies: Infrared observations of the blue compact dwarf IZw 18 with Herschel. Astron. Astrophys. 2017, 602, A45. [Google Scholar] [CrossRef]
- Accurso, G.; Saintonge, A.; Catinella, B.; Cortese, L.; Davé, R.; Dunsheath, S.H.; Genzel, R.; Gracia-Carpio, J.; Heckman, T.M.; Kramer, C.; et al. Deriving a multivariate α(CO) conversion function using the [Cii]/CO (1-0) ratio and its application to molecular gas scaling relations. Mon. Not. R. Astron. Soc. 2017, 470, 4750–4766. [Google Scholar] [CrossRef]
- Madden, S.C.; Cormier, D.; Hony, S. Tracing the total molecular gas in galaxies: [Cii] and the CO-dark gas. Astron. Astrophys. 2020, 643, A141. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Chengalur, J.N.; Shi, Y. Extended Schmidt law holds for faint dwarf irregular galaxies. Astron. Astrophys. 2017, 608, A24. [Google Scholar] [CrossRef]
- Guseva, N.G.; Izotov, Y.I.; Fricke, K.J.; Henkel, C. The Mgii λ2797, λ2803 emission in low-metallicity star-forming galaxies from the SDSS. Astron. Astrophys. 2013, 555, A90. [Google Scholar] [CrossRef]
- Guseva, N.G.; Izotov, Y.I.; Fricke, K.J.; Henkel, C. Mgii λ2797, λ2803 emission in a large sample of low-metallicity star-forming galaxies from SDSS DR14. Astron. Astrophys. 2019, 624, A21. [Google Scholar] [CrossRef]
- Barth, A.J.; Greene, J.E.; Ho, L.C. Dwarf Seyfert 1 nuclei and the low-mass end of the M(BH)-σ relation. Astrophys. J. 2005, 619, L151–L154. [Google Scholar] [CrossRef]
- Barth, A.J.; Greene, J.E.; Ho, L.C. Low-mass Seyfert 2 galaxies in the Sloan Digital Sky Survey. Astron. J. 2008, 136, 1179–1200. [Google Scholar] [CrossRef]
- Xiao, T.; Barth, A.J.; Greene, J.E.; Ho, L.C.; Bentz, M.C.; Ludwig, R.R.; Jiang, Y. Exploring the low-mass end of the M(BH)-σ* relation with active galaxies. Astrophys. J. 2011, 739, 28. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X. Active Galactic Nuclei in four metal-poor dwarf emission-line galaxies. Astrophys. J. 2008, 687, 133–140. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Guseva, N.G.; Fricke, K.J.; Stasińska, G.; Henkel, C.; Papaderos, P. Tol 2240-384—A new low-metallicity AGN candidate. Astron. Astrophys. 2010, 517, A90. [Google Scholar] [CrossRef]
- Baldassare, V.F.; Reines, A.E.; Gallo, E.; Greene, J.E. A ≈50,000 M⊙ solar mass black hole in the nucleus of RGG 118. Astrophys. J. 2015, 809, L14. [Google Scholar] [CrossRef]
- Ahn, C.P.; Seth, A.C.; den Brok, M.; Strader, J.; Baumgardt, H.; van den Bosch, R.; Chilingarian, I.; Frank, M.; Hilker, M.; McDermid, R.; et al. Detection of supermassive black holes in two Virgo ultracompact dwarf Galaxies. Astrophys. J. 2017, 839, 72. [Google Scholar]
- Kobulnicky, H.A.; Martin, C.L. The diffuse and compact X-ray components of the starburst galaxy Henize 2–10. Astrophys. J. 2010, 718, 724–738. [Google Scholar] [CrossRef][Green Version]
- Reines, A.E.; Sivakoff, G.R.; Johnson, K.E.; Brogan, C.L. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2–10. Nature 2011, 470, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Reines, A.E.; Reynolds, M.T.; Miller, J.M. Deep Chandra observations of the compact starburst galaxy Henize 2–10: X-Rays from the massive black hole. Astrophys. J. 2016, 830, L35. [Google Scholar] [CrossRef]
- Kaaret, P.; Corbel, S.; Prestwich, A.H.; Zezas, A. Radio emission from an ultraluminous X-ray source. Science 2003, 299, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, C.; Bauer, F.E.; Thuan, T.X.; Izotov, Y.I.; Stern, D.; Harrison, F.A. Do some AGN lack X-ray emission? Astron. Astrophys. 2016, 596, A64. [Google Scholar] [CrossRef]
- Baldwin, J.A.; Phillips, M.M.; Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 1981, 93, 5–19. [Google Scholar] [CrossRef]
- Reines, A.E.; Greene, J.E.; Geha, M. Dwarf galaxies with optical signatures of active massive black holes. Astrophys. J. 2013, 775, 116. [Google Scholar] [CrossRef]
- Molina, M.; Reines, A.E.; Latimer, C.J.; Baldassare, V.; Salehirad, S. A sample of massive black holes in dwarf galaxies detected via [Fex] coronal line emission: Active galactic nuclei and/or tidal disruption events. arXiv 2021, arXiv:2108.09307. [Google Scholar]
- Melioli, C.; Brighenti, F.; D’Ercole, A. Galactic fountains and outflows in star-forming dwarf galaxies: Interstellar medium expulsion and chemical enrichment. Mon. Not. R. Astron. Soc. 2015, 446, 299–316. [Google Scholar] [CrossRef]
- McQuinn, K.B.W.; Skillman, E.D.; Heilman, T.N.; Mitchell, N.P.; Kelley, T. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS. Mon. Not. R. Astron. Soc. 2018, 477, 3164–3177. [Google Scholar] [CrossRef]
- Emerick, A.; Bryan, G.L.; Mac Low, M.-M. Stellar radiation is critical for regulating star formation and driving outflows in low-mass dwarf galaxies. Astrophys. J. 2018, 865, L22. [Google Scholar] [CrossRef]
- Christensen, C.R.; Davé, R.; Brooks, A.; Quinn, T.; Shen, S. Tracing outflowing metals in simulations of dwarf and spiral galaxies. Astrophys. J. 2018, 867, 142. [Google Scholar] [CrossRef]
- Koudmani, S.; Sijacki, D.; Bourne, M.A.; Smith, M.C. Fast and energetic AGN-driven outflows in simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 2019, 484, 2047–2066. [Google Scholar] [CrossRef]
- Manzano-King, C.M.; Canalizo, G.; Sales, L.V. AGN-driven outflows in dwarf galaxies. Astrophys. J. 2019, 884, 54. [Google Scholar] [CrossRef]
- Hogarth, L.; Amorín, R.; Vílchez, J.M.; Hägele, G.F.; Cardaci, M.; Pérez-Montero, E.; Firpo, V.; Jaskot, A.; Chávez, R. Chemodynamics of green pea galaxies—I. Outflows and turbulence driving the escape of ionizing photons and chemical enrichment. Mon. Not. R. Astron. Soc. 2020, 494, 3541–3561. [Google Scholar] [CrossRef]
- Bohn, T.; Canalizo, G.; Veilleux, S.; Liu, W. Near-infrared coronal line observations of dwarf galaxies hosting AGN-driven outflows. Astrophys. J. 2021, 911, 70. [Google Scholar] [CrossRef]
- Lanfranchi, G.A.; Hazenfratz, R.; Caproni, A.; Silk, J. Parametrizing the outflow from a central black hole in dwarf spheroidal galaxies: A 3D Hydrodynamic Simulation. Astrophys. J. 2021, 914, 32. [Google Scholar] [CrossRef]
- Mamon, G.A.; Trevisan, M.; Thuan, T.X.; Gallazzim, A.; Davé, R. The frequency of very young galaxies in the local Universe-II. The view from SDSS spectra. Mon. Not. R. Astron. Soc. 2020, 492, 1791–1811. [Google Scholar] [CrossRef]
- Trevisan, M.; Mamon, G.A.; Thuan, T.X.; Ferrari, F.; Pilyugin, L.S.; Ranjan, A. The properties and environment of very young galaxies in the local Universe. Mon. Not. R. Astron. Soc. 2021, 502, 4815–4841. [Google Scholar] [CrossRef]
- Tweed, D.P.; Mamon, G.A.; Thuan, T.X.; Cattaneo, A.; Dekel, A.; Menci, N.; Calura, F.; Silk, J. The frequency of very young galaxies in the local Universe: I. A test for galaxy formation and cosmological models. Mon. Not. R. Astron. Soc. 2018, 477, 1427–1450. [Google Scholar] [CrossRef]
- Guseva, N.G.; Izotov, Y.I.; Fricke, K.J.; Henkel, C. New candidates for extremely metal-poor emission-line galaxies in the SDSS/BOSS DR10. Astron. Astrophys. 2015, 579, A11. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X.; Guseva, N.G.; Liss, S.E. J0811+4730: The most metal-poor star-forming dwarf galaxy known. Mon. Not. R. Astron. Soc. 2018, 473, 1956–1966. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X.; Guseva, N.G. J1234+3901: An extremely metal-deficient compact star-forming dwarf galaxy at redshift 0.133. Mon. Not. R. Astron. Soc. 2019, 483, 5491–5498. [Google Scholar] [CrossRef]
- Kojima, T.; Ouchi, M.; Rauch, M.; Ono, Y.; Nakajima, K.; Isobe, Y.; Fujimoto, S.; Harikane, Y.; Hashimoto, T.; Hayashi, M. Extremely metal-poor representatives explored by the Subaru Survey (EMPRESS). I. A successful machine-learning selection of metal-poor galaxies and the discovery of a Galaxy with M* < 106 M⊙ and 0.016 Z⊙. Astrophys. J. 2020, 898, 142. [Google Scholar]
- Fukui, Y.; Kawamura, A. Molecular clouds in nearby galaxies. Annu. Rev. Astron. Astrophys. 2010, 48, 547–580. [Google Scholar] [CrossRef]
- Huchtmeier, W.K. The giant Hi-envelope of the irregular galaxy IC 10. Astron. Astrophys. 1979, 75, 170–175. [Google Scholar]
- Cohen, R.J. The unusual kinematics of the galaxy IC 10. Mon. Not. R. Astron. Soc. 1979, 187, 839–845. [Google Scholar] [CrossRef][Green Version]
- Shostak, G.S.; Skillman, E.D. Neutral hydrogen observations of the irregular galaxy IC 10. Astron. Astrophys. 1989, 214, 33–42. [Google Scholar]
- Ashley, T.; Elmegreen, B.G.; Johnson, M.; Nidever, D.L.; Simpson, C.E.; Pokhrel, N.R. The Hi chronicles of LITTLE THINGS BCDs II: The Origin of IC 10’s Hi structure. Astron. J. 2014, 148, 130. [Google Scholar] [CrossRef]
- Namumba, B.; Carignan, C.; Foster, T.; Deg, N. Hi observations of IC 10 with the DRAO synthesis telescope. Mon. Not. R. Astron. Soc. 2019, 490, 3365–3377. [Google Scholar] [CrossRef]
- Wilcots, E.M.; Miller, B.W. The kinematics and distribution of Hi in IC 10. Astron. J. 1998, 116, 2363–2394. [Google Scholar] [CrossRef]
- Polles, F.L.; Madden, S.C.; Lebouteiller, V.; Cormier, D.; Abel, N.; Galliano, F.; Hony, S.; Karczewski, O.Ł.; Lee, M.-Y.; Chevance, M.; et al. Modeling ionized gas in low-metallicity environments: The Local Group dwarf galaxy IC 10. Astron. Astrophys. 2019, 622, A119. [Google Scholar] [CrossRef]
- Klein, U.; Gräve, R.; Wielebinski, R. A survey of the distribution of λ = 2.8 cm radio continuum in nearby galaxies. III. A small sample of irregular and blue compact galaxies. Astron. Astrophys. 1983, 117, 332–342. [Google Scholar]
- Henkel, C.; Wouterloot, J.G.A.; Bally, J. H2O and OH maser emission from bright IRAS galaxies. Astron. Astrophys. 1986, 155, 193–199. [Google Scholar]
- Becker, R.; Henkel, C.; Wilson, T.L.; Wouterloot, J.G.A. H2O masers in nearby irregular galaxies. Astron. Astrophys. 1993, 268, 483–490. [Google Scholar]
- Leroy, A.; Bolatto, A.; Walter, F.; Blitz, L. Molecular gas in the low-metallicity star-forming dwarf IC 10. Astrophys. J. 2006, 643, 825–843. [Google Scholar] [CrossRef][Green Version]
- Kepley, A.A.; Bittle, L.; Leroy, A.K.; Jiménez-Donaire, M.J.; Schruba, A.; Bigiel, F.; Gallagher, M.; Johnson, K.; Usero, A. Dense molecular gas in the nearby low-metallicity dwarf starburst galaxy IC 10. Astrophys. J. 2018, 862, 120. [Google Scholar] [CrossRef]
- Marleau, F.R.; Noriega-Crespo, A.; Misselt, K.A.; Gordon, K.D.; Engelbracht, C.W.; Rieke, G.H.; Barmby, P.; Willner, S.P.; Mould, J.; Gehrz, R.D.; et al. Mapping and mass measurement of the cold dust in NGC 205 with Spitzer. Astrophys. J. 2006, 646, 929–938. [Google Scholar] [CrossRef]
- Young, L.M.; Lo, K.Y. Molecular clouds in the dwarf elliptical galaxy NGC 205. Astrophys. J. 1996, 464, L59–L62. [Google Scholar] [CrossRef]
- Young, L.M. Properties of molecular clouds in NGC 205. Astron. J. 2000, 120, 2460–2470. [Google Scholar] [CrossRef]
- Valluri, M.; Ferrarese, L.; Merritt, D.; Joseph, C.L. The low end of the supermassive black hole mass function: Constraining the mass of a nuclear black hole in NGC 205 via stellar kinematics. Astrophys. J. 2005, 628, 137–152. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Seth, A.C.; Neumayer, N.; Iguchi, S.; Cappellari, M.; Strader, J.; Chomiuk, L.; Tremou, E.; Pacucci, F.; Nakanishi, K.; et al. Improved dynamical constraints on the masses of the central black holes in nearby low-mass early-type galactic nuclei and the first black hole determination for NGC 205. Astrophys. J. 2019, 872, 104. [Google Scholar] [CrossRef]
- Pustilnik, S.A.; Brinks, E.; Thuan, T.X.; Lipovetsky, V.A.; Izotov, Y.I. VLA Hi line observations of the extremely metal-poor Blue Compact Dwarf galaxy SBS 0335–052. Astron. J. 2001, 121, 1413–1424. [Google Scholar] [CrossRef][Green Version]
- Thuan, T.X.; Lecavelier des Etangs, A.; Izotov, Y.I. Abundances in the Hi envelope of the extremely low metallicity Blue Compact Dwarf galaxy SBS 0335-052 from Far Ultraviolet Spectroscopic Explorer observations. Astrophys. J. 2005, 621, 269–277. [Google Scholar] [CrossRef]
- Thompson, R.I.; Sauvage, M.; Kennicutt, R.C.; Engelbracht, C.; Vanzi, L.; Schneider, G. Super star clusters in SBS 0335–052. Astrophys. J. 2009, 691, 1068–1078. [Google Scholar] [CrossRef]
- Cormier, D.; Bendo, G.J.; Hony, S.; Lebouteiller, V.; Madden, S.C.; Galliano, F.; Glover, S.C.O.; Klessen, R.S.; Abel, N.P.; Bigiel, F.; et al. New ALMA constraints on the star-forming interstellar medium at low metallicity: A 50 pc view of the blue compact dwarf galaxy SBS 0335–052. Mon. Not. R. Astron. Soc. 2017, 468, L87–L91. [Google Scholar] [CrossRef]
- Reines, A.E.; Johnson, K.E.; Hunt, L.K. A new view of the super star clusters in the low metallicity galaxy SBS 0335–052. Astron. J. 2008, 136, 1415–1426. [Google Scholar] [CrossRef]
- Leroy, A.; Cannon, J.; Walter, F.; Bolatto, A.; Weiß, A. The low CO content of the extremely metal-poor galaxy IZw 18. Astrophys. J. 2007, 663, 990–994. [Google Scholar] [CrossRef][Green Version]
- Östlin, G.; Mouhcine, M. A new infrared view of evolved stars in IZw 18. Astron. Astrophys. 2005, 433, 797–806. [Google Scholar] [CrossRef][Green Version]
- Aloisi, A.; Clementini, G.; Tosi, M.; Annibali, F.; Contreras, R.; Fiorentino, G.; Mack, J.; Marconi, M.; Musella, I.; Saha, A.; et al. IZw 18 Revisited with HST ACS and Cepheids: New Distance and Age. Astrophys. J. 2007, 667, L151–L154. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Chaffee, F.H.; Foltz, C.B.; Green, R.F.; Guseva, N.G.; Thuan, T.X. Helium abundance in the most metal-deficient blue compact galaxies: IZw 18 and SBS 0335–052. Astrophys. J. 1999, 527, 757–777. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, Y.; Zhang, Z.-Y.; Wang, J. Extremely weak CO emission in IZw 18. Astron. Astrophys. 2021, 653, L10. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X. Deep Hubble Space Telescope ACS Observations of IZw 18: A Young Galaxy in Formation. Astrophys. J. 2004, 616, 768–782. [Google Scholar] [CrossRef][Green Version]
- Aloisi, A.; Savaglio, S.; Heckman, T.M.; Hoopes, C.G.; Leitherer, C.; Sembach, K.R. Abundances in the neutral interstellar medium of IZw 18 from Far Ultraviolet Spectroscopic Explorer observations. Astrophys. J. 2003, 595, 760–778. [Google Scholar] [CrossRef]
- Hunt, L.K.; Dyer, K.K.; Thuan, T.X.; Ulvestad, J.S. The radio continuum of the metal-deficient blue compact dwarf galaxy SBS 0335–052. Astrophys. J. 2004, 606, 853–861. [Google Scholar] [CrossRef]
- Cannon, J.M.; Walter, F.; Skillman, E.D.; van Zee, L. The nature of radio continuum emission at very low metallicity: Very Large Array observations of IZw 18. Astrophys. J. 2005, 621, L21–L24. [Google Scholar] [CrossRef]
- Johnson, K.E.; Hunt, L.K.; Reines, A.E. Probing star formation at low metallicity: The radio emission of super star clusters in SBS 0335–052. Astron. J. 2009, 137, 3788–3799. [Google Scholar] [CrossRef]
- Hunt, L.K.; Dyer, K.K.; Thuan, T.X. The radio continuum of the extremely metal poor blue compact dwarf galaxy IZw 18. Astrophys. J. 2005, 436, 837–844. [Google Scholar]
- Westmoquette, M.S.; Gallagher, J.S.; de Poitiers, L. Ionized gas in the starburst core and halo of NGC 1140. Mon. Not. R. Astron. Soc. 2010, 403, 1719–1728. [Google Scholar] [CrossRef][Green Version]
- Hunter, D.A.; O’Connell, R.W.; Gallagher, J.S. Hubble Space Telescope images of the central star-forming region in NGC 1140. Astron. J. 1994, 108, 84–89. [Google Scholar] [CrossRef]
- de Grijs, R.; Smith, L.J.; Bunker, A.; Sharp, R.G.; Gallagher, J.S.; Anders, P.; Lançon, A.; O’Connell, R.W.; Parry, I.R. CIRPASS near-infrared integral-field spectroscopy of massive star clusters in the starburst galaxy NGC 1140. Mon. Not. R. Astron. Soc. 2004, 352, 263–276. [Google Scholar] [CrossRef][Green Version]
- Moll, S.L.; Mengel, S.; de Grijs, R.; Smith, L.J.; Crowther, P.A. Cluster and nebular properties of the central star-forming region of NGC 1140. Mon. Not. R. Astron. Soc. 2007, 382, 1877–1888. [Google Scholar] [CrossRef]
- Ott, J.; Henkel, C.; Staveley-Smith, L.; Weiß, A. First detection of ammonia in the Large Magellanic Cloud: The kinetic temperature of dense molecular cores in N159 W. Astrophys. J. 2010, 710, 105–111. [Google Scholar] [CrossRef][Green Version]
- Tang, X.D.; Henkel, C.; Chen, C.-H.R.; Menten, K.M.; Indebetouw, R.; Zheng, X.W.; Esimbek, J.; Zhou, J.J.; Yuan, Y.; Li, D.L.; et al. Kinetic temperature of massive star-forming molecular clumps measured with formaldehyde. II. The Large Magellanic Cloud. Astron. Astrophys. 2017, 600, A16. [Google Scholar] [CrossRef]
- Tang, X.D.; Henkel, C.; Menten, K.M.; Gong, Y.; Chen, C.-H.R.; Li, D.L.; Lee, M.-Y.; Mangum, J.G.; Ao, Y.P.; Mühle, S.; et al. Kinetic temperature of massive star-forming molecular clumps measured with formaldehyde IV. The ALMA view of N113 and N159 W in the LMC. Astron. Astrophys. 2021, 655, A12. [Google Scholar] [CrossRef]
- Humire, P.; Thiel, V.; Henkel, C.; Belloche, A.; Loison, J.-C.; Pillai, T.; Riquelme, D.; Wakelam, V.; Langer, N.; Hernández-Gómez, A.; et al. Sulphur and carbon isotopes towards Galactic centre clouds. Astron. Astrophys. 2020, 642, A222. [Google Scholar] [CrossRef]
- Szücs, L.; Glover, S.G.O.; Klessen, R.S. The 12CO/13CO ratio in turbulent molecular clouds. Mon. Not. R. Astron. Soc. 2014, 445, 4055–4072. [Google Scholar] [CrossRef]
- Monreal-Ibero, A.; Walsh, J.R.; Vílchez, J.M. The ionized gas in the central region of NGC 5253. 2D mapping of the physical and chemical properties. Astron. Astrophys. 2012, 544, A60. [Google Scholar] [CrossRef]
- Miura, R.E.; Espada, D.; Hirota, A.; Nakanishi, K.; Bendo, G.J.; Sugai, H. ALMA observations toward the starburst dwarf galaxy NGC 5253. I. Molecular cloud properties and scaling relations. Astrophys. J. 2018, 864, 120. [Google Scholar] [CrossRef]
- Turner, J.L.; Consiglio, S.M.; Beck, S.C.; Goss, W.M.; Ho, P.T.P.; Meier, D.S.; Silich, S.; Zhao, J.-H. ALMA detects CO(3-2) within a Super Star Cluster in NGC 5253. Astrophys. J. 2017, 846, 73. [Google Scholar] [CrossRef]
- Beck, S.C.; Lacy, J.; Turner, J.L.; Liu, H.B.; Greathouse, T.; Consiglio, S.M.; Ho, P.T.P. Ionized gas in the NGC 5253 supernebula: High spatial and spectral resolution observations with the JVLA and TEXES. Mon. Not. R. Astron. Soc. 2020, 497, 1675–1683. [Google Scholar] [CrossRef]
- Calzetti, D.; Johnson, K.E.; Adamo, A.; Gallagher, J.S.; Andrews, J.E.; Smith, L.J.; Clayton, G.C.; Lee, J.C.; Sabbi, E.; Ubeda, L.; et al. The brightest young star clusters in NGC 5253. Astrophys. J. 2015, 811, 75. [Google Scholar] [CrossRef]
- Silich, S.; Tenorio-Tagle, G. Gas expulsion versus gas retention in young stellar clusters-II. Effects of cooling and mass segregation. Mon. Not. R. Astron. Soc. 2018, 478, 5112–5122. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X.; Guseva, N.G. A new determination of the primordial He abundance using the Hei λ10830Å emission line: Cosmological implications. Mon. Not. R. Astron. Soc. 2014, 445, 778–793. [Google Scholar] [CrossRef]
- Aver, E.; Olive, K.A.; Skillman, E.D. The effects of Heiλ10830 on helium abundance determinations. J. Cosmol. Astropart. Phys. 2015, 2015, 11. [Google Scholar] [CrossRef]
- Peimbert, A.; Peimbert, M.; Luridiana, V. The primordial helium abundance and the number of neutrino families. Rev. Mex. Astron. Astroph. 2016, 52, 419–424. [Google Scholar]
- Fernández, V.; Terlevich, E.; Díaz, A.I.; Terlevich, R. A Bayesian direct method implementation to fit emission line spectra: Application to the primordial He abundance determination. Mon. Not. R. Astron. Soc. 2019, 487, 3221–3238. [Google Scholar] [CrossRef]
- Valerdi, M.; Peimbert, A.; Peimbert, M.; Sixtos, A. Determination of the primordial helium abundance based on NGC 346, an Hii region of the Small Magellanic Cloud. Astrophys. J. 2019, 876, 98. [Google Scholar] [CrossRef]
- Hsyu, T.; Cooke, R.J.; Prochaska, J.X.; Bolte, M. The PHLEK survey: A new determination of the primordial helium abundance. Astrophys. J. 2020, 896, 77. [Google Scholar] [CrossRef]
- Kurichin, O.A.; Kislitsyn, P.A.; Klimenko, V.V.; Balashev, S.A.; Ivanchik, A.V. A new determination of the primordial helium abundance using the analyses of Hii region spectra from SDSS. Mon. Not. R. Astron. Soc. 2021, 502, 3045–3056. [Google Scholar] [CrossRef]
- Valerdi, M.; Peimbert, A.; Peimbert, M. Chemical abundances in seven metal-poor Hii regions and a determination of the primordial helium abundance. Mon. Not. R. Astron. Soc. 2021, 505, 3624–3634. [Google Scholar] [CrossRef]
- Guseva, N.G.; Izotov, Y.I.; Thuan, T.X. A spectroscopic study of a large sample of Wolf-Rayet galaxies. Astrophys. J. 2000, 531, 776–803. [Google Scholar] [CrossRef]
- Lee, J.C.; Kennicutt, R.C.; Funes, S.J.J.G.; Sakai, S.; Akiyama, S. Dwarf galaxy starburst statistics in the local volume. Astrophys. J. 2009, 692, 1305–1320. [Google Scholar] [CrossRef]
- Huang, S.; Haynes, M.P.; Giovanelli, R.; Brinchmann, J.; Stierwalt, S.; Neff, S.G. Gas, stars, and star formation in ALFALFA dwarf galaxies. Astron. J. 2012, 143, 133. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Guseva, N.G.; Fricke, K.J.; Henkel, C.; Schaerer, D.; Thuan, T.X. Low-redshift compact star-forming galaxies as analogues of high-redshift star-forming galaxies. Astron. Astrophys. 2021, 646, A138. [Google Scholar] [CrossRef]
- Troncoso, P.; Maiolino, R.; Sommariva, V.; Cresci, G.; Mannucci, F.; Marconi, A.; Meneghetti, M.; Grazian, A.; Cimatti, A.; Fontana, A.; et al. Metallicity evolution, metallicity gradients, and gas fractions at z ≈ 3.4. Astron. Astrophys. 2014, 563, A58. [Google Scholar] [CrossRef]
- Du, X.; Shapley, A.E.; Tang, M.; Stark, D.P.; Martin, C.L.; Mobasher, B.; Topping, M.W.; Chevallard, J. Searching for z > 6.5 analogs near the peak of cosmic star formation. Astrophys. J. 2020, 890, 65. [Google Scholar] [CrossRef]
- Endsley, R.; Behroozi, P.; Stark, D.P.; Williams, C.C.; Robertson, B.E.; Rieke, M.; Gottlöber, S.; Yepes, G. Clustering with JWST: Constraining galaxy host halo masses, satellite quenching efficiencies, and merger rates at z = 4–10. Mon. Not. R. Astron. Soc. 2020, 493, 1178–1196. [Google Scholar] [CrossRef]
- Tang, M.; Stark, D.P.; Chevallard, J.; Charlot, S.; Endsley, R.; Congiu, E. Rest-frame UV spectroscopy of extreme [Oiii] emitters at 1.3 < z < 3.7: Toward a high-redshift UV reference sample for JWST. Mon. Not. R. Astron. Soc. 2021, 501, 3238–3257. [Google Scholar]
- Patej, A.; Loeb, A. Detectability of Local Group dwarf galaxy analogues at high redshifts. Astrophys. J. 2015, 815, L28. [Google Scholar] [CrossRef]
- Alexandroff, R.M.; Heckman, T.M.; Borthakur, S.; Overzier, R.; Leitherer, C. Indirect evidence for escaping ionizing photons in local Lyman Break Galaxy analogs. Astrophys. J. 2015, 810, 104. [Google Scholar] [CrossRef]
- Robertson, B.E.; Ellis, R.S.; Furlanetto, S.R.; Dunlop, J.S. Cosmic reionization and early star-forming galaxies: A joint analysis of new constraints from Planck and the Hubble Space Telescope. Astrophys. J. 2015, 802, L19. [Google Scholar] [CrossRef]
- Schaerer, D.; Izotov, Y.I.; Verhamme, A.; Orlitová, I.; Thuan, T.X.; Worseck, G.; Guseva, N.G. The ionizing photon production efficiency of compact z ≈ 0.3 Lyman continuum leakers and comparison with high-redshift galaxies. Astron. Astrophys. 2016, 591, L8. [Google Scholar] [CrossRef]
- Chisholm, J.; Orlitová, I.; Schaerer, D.; Verhamme, A.; Worseck, G.; Izotov, Y.I.; Thuan, T.X.; Guseva, N.G. Do galaxies that leak ionizing photons have extreme outflows? Astron. Astrophys. 2017, 605, A67. [Google Scholar] [CrossRef]
- Verhamme, A.; Orlitová, I.; Schaerer, D.; Izotov, Y.I.; Worseck, G.; Thuan, T.X.; Guseva, N.G. Lyman-α spectral properties of five newly discovered Lyman continuum emitters. Astron. Astrophys. 2017, 597, A13. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Worseck, G.; Schaerer, D.; Guseva, N.G.; Thuan, T.X.; Fricke, K.J.; Verhamme, A.; Orlitová, I. Low-redshift Lyman continuum leaking galaxies with high [Oiii]/[Oii] ratios. Mon. Not. R. Astron. Soc. 2018, 478, 4851–4855. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Worseck, G.; Schaerer, D.; Guseva, N.G.; Chisholm, J.; Thuan, T.X.; Fricke, K.J.; Verhamme, A. Lyman continuum leakage from low-mass galaxies with M* < 108 M⊙. Mon. Not. R. Astron. Soc. 2021, 503, 1734–1752. [Google Scholar]
- Ramambason, L.; Schaerer, D.; Stasińska, G.; Guseva, N.G.; Vílchez, J.M.; Amorín, R.; Morisset, C. Reconciling escape fractions and observed line emission in Lyman-continuum-leaking galaxies. Astron. Astrophys. 2020, 644, A21. [Google Scholar] [CrossRef]
- Wang, B.; Heckman, T.M.; Amorín, R.; Borthakur, S.; Chisholm, J.; Ferguson, H.; Flury, S.; Giavalisco, M.; Grazian, A.; Hayes, M.; et al. The low-redshift Lyman-continuum Survey: [Sii] deficiency and the leakage of ionizing radiation. Astrophys. J. 2021, 916, 3. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X.; Guseva, N.G. J2229+2725: An extremely low metallicity dwarf compact star-forming galaxy with an exceptionally high [Oiii]λ5007/[Oii]λ3727 flux ratio of 53. Mon. Not. R. Astron. Soc. 2021, 504, 3996–4004. [Google Scholar] [CrossRef]
- Schaerer, D.; Izotov, Y.I.; Nakajima, K.; Worseck, G.; Chisholm, J.; Verhamme, A.; Thuan, T.X.; de Barros, S. Intense [Ciii]λλ1907,1909 emission from a strong Lyman continuum emitting galaxy. Astron. Astrophys. 2018, 616, L14. [Google Scholar] [CrossRef]
- Guseva, N.G.; Izotov, Y.I.; Schaerer, D.; Vílchez, J.M.; Amorín, R.; Pérez-Montero, E.; Iglesias-Páramo, J.; Verhamme, A.; Kehrig, C.; Ramambason, L. Properties of five z ≈ 0.3–0.4 confirmed LyC leakers: VLT/XShooter observations. Mon. Not. R. Astron. Soc. 2020, 497, 4293–4310. [Google Scholar] [CrossRef]
- Chisholm, J.; Gazagnes, S.; Schaerer, D.; Verhamme, A.; Rigby, J.R.; Bayliss, M.; Sharon, K.; Gladders, M.; Dahle, H. Accurately predicting the escape fraction of ionizing photons using rest-frame ultraviolet absorption lines. Astron. Astrophys. 2018, 616, A30. [Google Scholar] [CrossRef]
- Chisholm, J.; Prochaska, J.X.; Schaerer, D.; Gazagnes, S.; Henry, A. Optically thin spatially resolved Mgii emission maps the escape of ionizing photons. Mon. Not. R. Astron. Soc. 2020, 498, 2554–2574. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Schaerer, D.; Worseck, G.; Verhamme, A.; Guseva, N.G.; Thuan, T.X.; Orlitová, I.; Fricke, K.J. Diverse properties of Lyα emission in low-redshift compact star-forming galaxies with extremely high [Oiii]/[Oii] ratios. Mon. Not. R. Astron. Soc. 2020, 491, 468–482. [Google Scholar] [CrossRef]
- Choi, Y.; Dalcanton, J.J.; Williams, B.F.; Skillman, E.D.; Fouesneau, M.; Gordon, K.D.; Sandstrom, K.M.; Weisz, D.R.; Gilbert, K.M. Mapping the escape fraction of ionizing photons using resolved stars: A much higher escape fraction for NGC 4214. Astrophys. J. 2020, 902, 54. [Google Scholar] [CrossRef]
- Gazagnes, S.; Chisholm, J.; Schaerer, D.; Verhamme, A.; Izotov, Y. The origin of the escape of Lyman α and ionizing photons in Lyman continuum emitters. Astron. Astrophys. 2020, 639, A85. [Google Scholar] [CrossRef]
- Gronke, M.; Bull, P.; Dijkstra, M. A systematic study of Lyman-α transfer through outflowing shells: Model parameter estimation. Astrophys. J. 2015, 812, 123. [Google Scholar] [CrossRef]
- Matthee, J.; Sobral, D.; Gronke, M.; Paulino-Afonso, A.; Stefanon, M.; Röttgering, H. Confirmation of double peaked Lyα emission at z = 6.593. Witnessing a galaxy directly contributing to the reionisation of the Universe. Astron. Astrophys. 2018, 619, A136. [Google Scholar] [CrossRef]
- Weisz, D.R.; Boylan-Kolchin, M. Local Group ultra-faint dwarf galaxies in the reionization era. Mon. Not. R. Astron. Soc. Lett. 2017, 469, L83–L88. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henkel, C.; Hunt, L.K.; Izotov, Y.I. The Interstellar Medium of Dwarf Galaxies. Galaxies 2022, 10, 11. https://doi.org/10.3390/galaxies10010011
Henkel C, Hunt LK, Izotov YI. The Interstellar Medium of Dwarf Galaxies. Galaxies. 2022; 10(1):11. https://doi.org/10.3390/galaxies10010011
Chicago/Turabian StyleHenkel, Christian, Leslie K. Hunt, and Yuri I. Izotov. 2022. "The Interstellar Medium of Dwarf Galaxies" Galaxies 10, no. 1: 11. https://doi.org/10.3390/galaxies10010011
APA StyleHenkel, C., Hunt, L. K., & Izotov, Y. I. (2022). The Interstellar Medium of Dwarf Galaxies. Galaxies, 10(1), 11. https://doi.org/10.3390/galaxies10010011