Personalized Medicine in Ophthalmology: From Pharmacogenetic Biomarkers to Therapeutic and Dosage Optimization
Abstract
:1. Introduction
2. Pharmacogenetic Biomarkers
2.1. Age-Related Macular Degeneration
Disease | Drug | Gene | Variant | Clinical Outcome |
---|---|---|---|---|
AMD | Bevacizumab | ARMS2 | LOC387715 | No difference in visual acuity |
CFH | Y402H (TT and TC) | More than five-fold improvement in visual acuity | ||
CFH | Y402H (CC) | Worse outcome for distance and reading visual acuity | ||
Ranibizumab | ARMS2 | 69S Homozygotes | Decrease in central subfield retinal thickness; no improvement in visual acuity | |
ARMS2 | rs10490924, rs1061170 | Improved visual acuity | ||
CFH | Y402H (TC and TT) | Fewer injections needed | ||
Photodynamic therapy (PDT) | CFH | Y402H | No difference in PDT treatment | |
CRP | rs2808635, rs877538 | Increased response to PDT | ||
MTHFR | C677T | Increased response to PDT | ||
PT | G20210A | Increased response to PDT | ||
VEGF | rs699947, rs2146323 | Decreased response to PDT | ||
Glaucoma | Prednisolone acetate | GR | N363S | Steroid-induced ocular hypertension |
Triamcinolone acetonide | GR | BcII, N766N and within intron 4 | No correlation with magnitude of intraocular pressure elevation | |
Beta-adrenergic blockers (topical) | ADRB2 | rs1042714 | Increased response (Intraocular pressure reduction of 20% or more) | |
Timolol (topical) | CYP2D6 | R296C (TT and CT) | More likely to develop bradycardia | |
CYP2D6 | R296C (CC) | Less likely to develop bradycardia | ||
Latanoprost (0.005% topical) | PR | rs3753380, rs3766355 | Increased response (Intraocular pressure reduction of 15% or more) |
2.2. Glaucoma
3. Therapeutic Personalization
3.1. Age-Related Macular Degeneration
Ocular Intervention | Neovascular AMD | DME | BRVO | CRVO | ROP |
---|---|---|---|---|---|
Macular focal/grid laser photocoagulation | Recommended for extrafoveal or juxtafoveal lesions. | Recommended for DME and should be initiated 6 weeks before PRP. | Recommended for macular edema and VA ≤ 20/40 (not recommended if macular ischemia is present). | Not recommended for treatment of macular edema due to CRVO. | _ |
Scatter/pan-retinal laser photocoagulation | _ | _ | Recommended for retinal or disc neovascularizations. | Recommended for anterior-segment neovascularization. Not recommended if without neovascularization, unless follow-up every 4 weeks is not possible. | Recommended for type 1 ROP |
Photodynamic therapy with verteporfin | Indicated for subfoveal lesions prior to anti-VEGF era. Less beneficial in occult CNV. | _ | _ | _ | _ |
Recommended for PCV, either alone or as combination therapy with anti-VEGF agents. | |||||
Effective in RAP as combination therapy. | |||||
Intravitreal triamcinolone acetonide injections | Effective in RAP as combination therapy. | Recommended for DME. Contraindicated in advanced glaucoma and steroid responders. | Not superior to macular grid laser photocoagulation in improving VA and associated with a higher adverse outcome. | Improvement in VA given 1mg every 4 months compared to observation. | _ |
Intravitreal dexamethasone implants | _ | Phase 3 clinical trial underway | Improvement in VA given 0.7 mg every 6 months compared to sham implants. Contraindicated in advanced glaucoma or steroid responders. | Improvement in VA given 0.7 mg every 6 months compared to sham implants. Contraindicated in advanced glaucoma or steroid responders. | _ |
Intravitreal anti-VEGF injections | Recommended as first line of therapy for subfoveal lesions. Ex: Pegaptanib, ranibizumab, bevacizumab and aflibercept. | Current data supports the use of anti-VEGF agents for DME. | Improvement in VA with monthly 0.5 mg ranibizumab for 6 months follow by as needed basis compared to sham/ 0.5 mg ranibizumab injections after 2 years of follow-up. Treatments with 1.25 mg bevacizumab show promising outcome in small case series. | Improvement in VA with monthly 0.5 mg ranibizumab for 6 months follow by as needed basis compared to sham/0.5 mg ranibizumab injections after 2 years of follow-up. Treatment personalization (follow-up interval and dosage) is recommended in the second year of treatment. Treatments with 1.25 mg bevacizumab show promising outcome in small case series. | Intravitreal 0.625 mg bevacizumab was beneficial for zone I, but not zone II stage 3+ ROP compared to laser photocoagulation Systemic safety still under investigation. |
Less effective in PCV as monotherapy. Requires combination therapy with PDT. | |||||
Effective in RAP as combination therapy. |
3.2. Diabetic Macular Edema
3.3. Retinal-Vein Occlusion
3.4. Retinopathy of Prematurity
3.5. Glaucoma
4. Nanotechnology for Dosage Optimization
5. Conclusion
Conflict of Interest
References
- Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308, 385–389. [Google Scholar]
- Hindorff, L.A.; MacArthur, J.; Morales, J.; Junkins, H.A.; Hall, P.N.; Klemm, A.K.; Manolio, T.A. A catalog of published genome-wide association studies. Available online: http://www.genome.gov/gwastudies (accessed on 1 September 2012).
- Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta, J.P.; Collins, F.S.; Manolio, T.A. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 2009, 106, 9362–9367. [Google Scholar]
- Ong, F.S.; Das, K.; Wang, J.; Vakil, H.; Kuo, J.Z.; Blackwell, W.L.; Lim, S.W.; Goodarzi, M.O.; Bernstein, K.E.; Rotter, J.I.; et al. Personalized medicine and pharmacogenetic biomarkers: Progress in molecular oncology testing. Expert Rev. Mol. Diagn. 2012, 12, 593–602. [Google Scholar] [CrossRef]
- Ong, F.S.; Deignan, J.L.; Kuo, J.Z.; Bernstein, K.E.; Rotter, J.I.; Grody, W.W.; Das, K. Clinical utility of pharmacogenetic biomarkers in cardiovascular therapeutics: A challenge for clinical implementation. Pharmacogenomics 2012, 13, 465–475. [Google Scholar] [CrossRef]
- Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-related macular degeneration. Lancet 2012, 379, 1728–1738. [Google Scholar] [CrossRef]
- Browning, D.J.; Kaiser, P.K.; Rosenfeld, P.J.; Stewart, M.W. Aflibercept for age-related macular degeneration: A game-changer or quiet addition? Am. J. Ophthalmol. 2012, 154, 222–226. [Google Scholar] [CrossRef]
- Truong, A.; Wong, T.Y.; Khachigian, L.M. Emerging therapeutic approaches in the management of retinal angiogenesis and edema. J. Mol. Med. (Berl) 2011, 89, 343–361. [Google Scholar] [CrossRef]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef]
- Wong, T.Y.; Scott, I.U. Clinical practice. Retinal-vein occlusion. N. Engl. J. Med. 2010, 363, 2135–2144. [Google Scholar] [CrossRef]
- Baird, P.N.; Hageman, G.S.; Guymer, R.H. New era for personalized medicine: The diagnosis and management of age-related macular degeneration. Clin. Exp. Ophthalmol. 2009, 37, 814–821. [Google Scholar] [CrossRef]
- Shastry, B.S. Genetic diversity and medicinal drug response in eye care. Graefes Arch. Clin. Exp. Ophthalmol. 2010, 248, 1057–1061. [Google Scholar] [CrossRef]
- Lee, A.Y.; Raya, A.K.; Kymes, S.M.; Shiels, A.; Brantley, M.A., Jr. Pharmacogenetics of complement factor H (Y402H) and treatment of exudative age-related macular degeneration with ranibizumab. Br. J. Ophthalmol. 2009, 93, 610–613. [Google Scholar] [CrossRef]
- Seitsonen, S.; Jarvela, I.; Meri, S.; Tommila, P.; Ranta, P.; Immonen, I. Complement factor H Y402H polymorphism and characteristics of exudative age-related macular degeneration lesions. Acta Ophthalmol. 2008, 86, 390–394. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef]
- Bashshur, Z.F.; Haddad, Z.A.; Schakal, A.R.; Jaafar, R.F.; Saad, A.; Noureddin, B.N. Intravitreal bevacizumab for treatment of neovascular age-related macular degeneration: The second year of a prospective study. Am. J. Ophthalmol. 2009, 148, 59–65. [Google Scholar] [CrossRef]
- Spaide, R.F.; Laud, K.; Fine, H.F.; Klancnik, J.M., Jr.; Meyerle, C.B.; Yannuzzi, L.A.; Sorenson, J.; Slakter, J.; Fisher, Y.L.; Cooney, M.J. Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 2006, 26, 383–390. [Google Scholar] [CrossRef]
- Avery, R.L.; Pearlman, J.; Pieramici, D.J.; Rabena, M.D.; Castellarin, A.A.; Nasir, M.A.; Giust, M.J.; Wendel, R.; Patel, A. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 2006, 113, 1695–1705. [Google Scholar] [CrossRef]
- Mason, J.O., 3rd; Nixon, P.A.; White, M.F. Intravitreal injection of bevacizumab (Avastin) as adjunctive treatment of proliferative diabetic retinopathy. Am. J. Ophthalmol. 2006, 142, 685–688. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fisher, Y.L. Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina 2006, 26, 275–278. [Google Scholar] [CrossRef]
- Jonas, J.B.; Libondi, T.; von Baltz, S.; Vossmerbaeumer, U. Intravitreal bevacizumab for vitreous haemorrhage. Acta Ophthalmol. 2008, 86, 585–586. [Google Scholar] [CrossRef]
- Ruiz-Moreno, J.M.; Montero, J.A.; Lugo, F.; Amat, P.; Staicu, C. Intravitreal bevacizumab in recurrent diabetic vitreous haemorrhage after vitrectomy. Acta Ophthalmol. 2008, 86, 231–232. [Google Scholar] [CrossRef]
- Iliev, M.E.; Domig, D.; Wolf-Schnurrbursch, U.; Wolf, S.; Sarra, G.M. Intravitreal bevacizumab (Avastin) in the treatment of neovascular glaucoma. Am. J. Ophthalmol. 2006, 142, 1054–1056. [Google Scholar] [CrossRef]
- Kuo, J.Z.; Ong, F.S.; Yeung, L.; Wu, W.C.; Chen, Y.P.; Wang, N.K.; Lai, C.C. Predictive factors for visual outcome to intravitreal bevacizumab in young chinese patients with myopic choroidal neovascularization. Retina 2011, 31, 1835–1840. [Google Scholar] [CrossRef]
- Jaissle, G.B.; Leitritz, M.; Gelisken, F.; Ziemssen, F.; Bartz-Schmidt, K.U.; Szurman, P. One-Year results after intravitreal bevacizumab therapy for macular edema secondary to branch retinal vein occlusion. Graefes Arch. Clin. Exp. Ophthalmol. 2009, 247, 27–33. [Google Scholar] [CrossRef]
- Prager, F.; Michels, S.; Kriechbaum, K.; Georgopoulos, M.; Funk, M.; Geitzenauer, W.; Polak, K.; Schmidt-Erfurth, U. Intravitreal bevacizumab (Avastin) for macular oedema secondary to retinal vein occlusion: 12-Month results of a prospective clinical trial. Br. J. Ophthalmol. 2009, 93, 452–456. [Google Scholar] [CrossRef]
- Kriechbaum, K.; Michels, S.; Prager, F.; Georgopoulos, M.; Funk, M.; Geitzenauer, W.; Schmidt-Erfurth, U. Intravitreal Avastin for macular oedema secondary to retinal vein occlusion: A prospective study. Br. J. Ophthalmol. 2008, 92, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Brantley, M.A., Jr.; Fang, A.M.; King, J.M.; Tewari, A.; Kymes, S.M.; Shiels, A. Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to intravitreal bevacizumab. Ophthalmology 2007, 114, 2168–2173. [Google Scholar] [CrossRef]
- Dewan, A.; Liu, M.; Hartman, S.; Zhang, S.S.; Liu, D.T.; Zhao, C.; Tam, P.O.; Chan, W.M.; Lam, D.S.; Snyder, M.; et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 2006, 314, 989–992. [Google Scholar]
- Nischler, C.; Oberkofler, H.; Ortner, C.; Paikl, D.; Riha, W.; Lang, N.; Patsch, W.; Egger, S.F. Complement factor H Y402H gene polymorphism and response to intravitreal bevacizumab in exudative age-related macular degeneration. Acta Ophthalmol. 2011, 89, e344–e349. [Google Scholar] [CrossRef]
- Teper, S.J.; Nowinska, A.; Pilat, J.; Palucha, A.; Wylegala, E. Involvement of genetic factors in the response to a variable-dosing ranibizumab treatment regimen for age-related macular degeneration. Mol. Vis. 2010, 16, 2598–2604. [Google Scholar]
- Seitsonen, S.P.; Jarvela, I.E.; Meri, S.; Tommila, P.V.; Ranta, P.H.; Immonen, I.J. The effect of complement factor H Y402H polymorphism on the outcome of photodynamic therapy in age-related macular degeneration. Eur. J. Ophthalmol. 2007, 17, 943–949. [Google Scholar]
- Feng, X.; Xiao, J.; Longville, B.; Tan, A.X.; Wu, X.N.; Cooper, M.N.; McAllister, I.L.; Isaacs, T.; Palmer, L.J.; Constable, I.J. Complement factor H Y402H and C-reactive protein polymorphism and photodynamic therapy response in age-related macular degeneration. Ophthalmology 2009, 116, 1908–1912. [Google Scholar]
- Immonen, I.; Seitsonen, S.; Tommila, P.; Kangas-Kontio, T.; Kakko, S.; Savolainen, E.R.; Savolainen, M.J.; Liinamaa, M.J. Vascular endothelial growth factor gene variation and the response to photodynamic therapy in age-related macular degeneration. Ophthalmology 2010, 117, 103–108. [Google Scholar] [CrossRef]
- Parmeggiani, F.; Gemmati, D.; Costagliola, C.; Sebastiani, A.; Incorvaia, C. Predictive role of C677T MTHFR polymorphism in variable efficacy of photodynamic therapy for neovascular age-related macular degeneration. Pharmacogenomics 2009, 10, 81–95. [Google Scholar] [CrossRef]
- Seddon, J.M.; George, S.; Rosner, B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: The US twin study of age-related macular degeneration. Arch. Ophthalmol. 2006, 124, 995–1001. [Google Scholar] [CrossRef]
- Chakravarthy, U.; Wong, T.Y.; Fletcher, A.; Piault, E.; Evans, C.; Zlateva, G.; Buggage, R.; Pleil, A.; Mitchell, P. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol. 2010, 10, e31. [Google Scholar] [CrossRef]
- Peeters, A.; Magliano, D.J.; Stevens, J.; Duncan, B.B.; Klein, R.; Wong, T.Y. Changes in abdominal obesity and age-related macular degeneration: The atherosclerosis risk in communities study. Arch. Ophthalmol. 2008, 126, 1554–1560. [Google Scholar] [CrossRef]
- Seddon, J.M.; George, S.; Rosner, B.; Klein, M.L. CFH gene variant, Y402H, and smoking, body mass index, environmental associations with advanced age-related macular degeneration. Hum. Hered. 2006, 61, 157–165. [Google Scholar] [CrossRef]
- Micieli, J.A. Can genetic factors predict response to antivascular endothelial growth factor therapy in age-related macular degeneration? Can. J. Ophthalmol. 2011, 46, 549–551. [Google Scholar] [CrossRef]
- Quigley, H.A. Number of people with glaucoma worldwide. Br. J. Ophthalmol. 1996, 80, 389–393. [Google Scholar] [CrossRef]
- Szabo, V.; Borgulya, G.; Filkorn, T.; Majnik, J.; Banyasz, I.; Nagy, Z.Z. The variant N363S of glucocorticoid receptor in steroid-induced ocular hypertension in Hungarian patients treated with photorefractive keratectomy. Mol. Vis. 2007, 13, 659–666. [Google Scholar]
- Gerzenstein, S.M.; Pletcher, M.T.; Cervino, A.C.; Tsinoremas, N.F.; Young, B.; Puliafito, C.A.; Fini, M.E.; Schwartz, S.G. Glucocorticoid receptor polymorphisms and intraocular pressure response to intravitreal triamcinolone acetonide. Ophthalmic Genet. 2008, 29, 166–170. [Google Scholar] [CrossRef]
- McCarty, C.A.; Burmester, J.K.; Mukesh, B.N.; Patchett, R.B.; Wilke, R.A. Intraocular pressure response to topical beta-blockers associated with an ADRB2 single-nucleotide polymorphism. Arch. Ophthalmol. 2008, 126, 959–963. [Google Scholar] [CrossRef]
- Sakurai, M.; Higashide, T.; Takahashi, M.; Sugiyama, K. Association between genetic polymorphisms of the prostaglandin F2alpha receptor gene and response to latanoprost. Ophthalmology 2007, 114, 1039–1045. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, K.; Yuan, H.; Yu, M. Cytochrome oxidase 2D6 gene polymorphism in primary open-angle glaucoma with various effects to ophthalmic timolol. J. Ocul. Pharmacol. Ther. 2009, 25, 163–171. [Google Scholar] [CrossRef]
- Piltz, J.; Gross, R.; Shin, D.H.; Beiser, J.A.; Dorr, D.A.; Kass, M.A.; Gordon, M.O. Contralateral effect of topical beta-adrenergic antagonists in initial one-eyed trials in the ocular hypertension treatment study. Am. J. Ophthalmol. 2000, 130, 441–453. [Google Scholar] [CrossRef]
- Netland, P.A.; Landry, T.; Sullivan, E.K.; Andrew, R.; Silver, L.; Weiner, A.; Mallick, S.; Dickerson, J.; Bergamini, M.V.; Robertson, S.M.; et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am. J. Ophthalmol. 2001, 132, 472–484. [Google Scholar] [CrossRef]
- Small, K.M.; Wagoner, L.E.; Levin, A.M.; Kardia, S.L.; Liggett, S.B. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 2002, 347, 1135–1142. [Google Scholar] [CrossRef]
- Moroi, S.E.; Hao, Y.; Sitaramayya, A. Nitric oxide attenuates alpha(2)-adrenergic receptors by ADP-ribosylation of G(i)alpha in ciliary epithelium. Invest. Ophthalmol. Vis. Sci. 2001, 42, 2056–2062. [Google Scholar]
- Wong, T.Y.; Liew, G.; Mitchell, P. Clinical update: New treatments for age-related macular degeneration. Lancet 2007, 370, 204–206. [Google Scholar] [CrossRef]
- Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Miller, D.T.; et al. Eye Disease Case-Control Study Group. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. JAMA 1994, 272, 1413–1420. [Google Scholar]
- Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report No. 8. Arch. Ophthalmol. 2001, 119, 1417–1436. [Google Scholar] [CrossRef]
- Chew, E.Y.; Clemons, T.; Sangiovanni, J.P.; Danis, R.; Domalpally, A.; McBee, W.; Sperduto, R.; Ferris, F.L. The Age-Related Eye Disease Study 2 (AREDS2): Study design and baseline characteristics (AREDS2 report number 1). Ophthalmology 2012, 119, 2282–2289. [Google Scholar] [CrossRef]
- Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Three-year results from randomized clinical trials. Arch. Ophthalmol. 1986, 104, 694–701. [Google Scholar] [CrossRef]
- Macular Photocoagulation Study Group. Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Arch. Ophthalmol. 1991, 109, 1220–1231. [Google Scholar] [CrossRef]
- Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Five-year results from randomized clinical trials. Arch. Ophthalmol. 1991, 109, 1109–1114. [Google Scholar] [CrossRef]
- Bressler, N.M.; Bressler, S.B.; Haynes, L.A.; Hao, Y.; Kaiser, P.K.; Miller, J.W.; Naor, J.; Potter, M.J.; Pournaras, C.J.; Reaves, A.; et al. Verteporfin therapy for subfoveal choroidal neovascularization in age-related macular degeneration: Four-year results of an open-label extension of 2 randomized clinical trials: TAP report No. 7. Arch. Ophthalmol. 2005, 123, 1283–1285. [Google Scholar] [CrossRef]
- Blinder, K.J.; Bradley, S.; Bressler, N.M.; Bressler, S.B.; Donati, G.; Hao, Y.; Ma, C.; Menchini, U.; Miller, J.; Potter, M.J.; et al. Effect of lesion size, visual acuity, and lesion composition on visual acuity change with and without verteporfin therapy for choroidal neovascularization secondary to age-related macular degeneration: TAP and VIP report No. 1. Am. J. Ophthalmol. 2003, 136, 407–418. [Google Scholar] [CrossRef]
- Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr.; Feinsod, M.; Guyer, D.R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 2004, 351, 2805–2816. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef]
- Brown, D.M.; Kaiser, P.K.; Michels, M.; Soubrane, G.; Heier, J.S.; Kim, R.Y.; Sy, J.P.; Schneider, S. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1432–1444. [Google Scholar] [CrossRef]
- Martin, D.F.; Maguire, M.G.; Ying, G.S.; Grunwald, J.E.; Fine, S.L.; Jaffe, G.J. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J. Med. 2011, 364, 1897–1908. [Google Scholar] [CrossRef]
- Heier, J.S.; Boyer, D.; Nguyen, Q.D.; Marcus, D.; Roth, D.B.; Yancopoulos, G.; Stahl, N.; Ingerman, A.; Vitti, R.; Berliner, A.J.; et al. The 1-year results of CLEAR-IT 2, a phase 2 study of vascular endothelial growth factor trap-eye dosed as-needed after 12-week fixed dosing. Ophthalmology 2011, 118, 1098–1106. [Google Scholar] [CrossRef]
- Laude, A.; Cackett, P.D.; Vithana, E.N.; Yeo, I.Y.; Wong, D.; Koh, A.H.; Wong, T.Y.; Aung, T. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: Same or different disease? Prog. Retin. Eye Res. 2010, 29, 19–29. [Google Scholar]
- Lai, T.Y.; Lee, G.K.; Luk, F.O.; Lam, D.S. Intravitreal ranibizumab with or without photodynamic therapy for the treatment of symptomatic polypoidal choroidal vasculopathy. Retina 2011, 31, 1581–1588. [Google Scholar] [CrossRef]
- Koh, A.; Lee, W.K.; Chen, L.J.; Chen, S.J.; Hashad, Y.; Kim, H.; Lai, T.Y.; Pilz, S.; Ruamviboonsuk, P.; Tokaji, E.; et al. Everest study: Efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina 2012, 32, 1453–1464. [Google Scholar] [CrossRef]
- Cheung, C.M.; Wong, T.Y. Ranibizumab and bevacizumab for AMD. N. Engl. J. Med. 2011, 365, 2237, author reply 2237.. [Google Scholar] [CrossRef]
- Gupta, B.; Jyothi, S.; Sivaprasad, S. Current treatment options for retinal angiomatous proliferans (RAP). Br. J. Ophthalmol. 2010, 94, 672–677. [Google Scholar] [CrossRef]
- Bottoni, F.; Massacesi, A.; Cigada, M.; Viola, F.; Musicco, I.; Staurenghi, G. Treatment of retinal angiomatous proliferation in age-related macular degeneration: A series of 104 cases of retinal angiomatous proliferation. Arch. Ophthalmol. 2005, 123, 1644–1650. [Google Scholar] [CrossRef]
- Saito, M.; Shiragami, C.; Shiraga, F.; Kano, M.; Iida, T. Comparison of intravitreal triamcinolone acetonide with photodynamic therapy and intravitreal bevacizumab with photodynamic therapy for retinal angiomatous proliferation. Am. J. Ophthalmol. 2010, 149, 472–481. [Google Scholar] [CrossRef]
- Davitt, B.V.; Dobson, V.; Quinn, G.E.; Hardy, R.J.; Tung, B.; Good, W.V. Astigmatism in the early treatment for retinopathy of prematurity study: Findings to 3 years of age. Ophthalmology 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Quinn, G.E.; Dobson, V.; Davitt, B.V.; Hardy, R.J.; Tung, B.; Pedroza, C.; Good, W.V. Progression of myopia and high myopia in the early treatment for retinopathy of prematurity study: Findings to 3 years of age. Ophthalmology 2008, 115, 1058–1064. [Google Scholar] [CrossRef]
- Quinn, G.E.; Dobson, V.; Hardy, R.J.; Tung, B.; Phelps, D.L.; Palmer, E.A. The CRYO- Retinopathy of Prematurity Cooperative Group. Visual fields measured with double-arc perimetry in eyes with threshold retinopathy of prematurity from the cryotherapy for retinopathy of prematurity trial. Ophthalmology 1996, 103, 1432–1437. [Google Scholar]
- Löfqvist, C.; Niklasson, A.; Engström, E.; Friberg, L.E.; Camacho-Hübner, C.; Ley, D.; Borg, J.; Smith, L.E.; Hellström, A. A pharmacokinetic and dosing study of intravenous insulin-like growth factor-I and IGF-binding protein-3 complex to preterm infants. Pediatr. Res. 2009, 65, 574–579. [Google Scholar] [CrossRef]
- Wu, W.C.; Lai, C.C.; Chen, K.J.; Chen, T.L.; Wang, N.K.; Hwang, Y.S.; Yeung, L.; Li, L.M. Long-Term tolerability and serum concentration of bevacizumab (Avastin) when injected in newborn rabbit eyes. Invest. Ophthalmol. Vis. Sci. 2010, 51, 3701–3708. [Google Scholar] [CrossRef]
- Qian, J.; Lu, Q.; Tao, Y.; Jiang, Y.R. Vitreous and plasma concentrations of apelin and vascular endothelial growth factor after intravitreal bevacizumab in eyes with proliferative diabetic retinopathy. Retina 2011, 31, 161–168. [Google Scholar]
- Sato, T.; Wada, K.; Arahori, H.; Kuno, N.; Imoto, K.; Iwahashi-Shima, C.; Kusaka, S. Serum concentrations of bevacizumab (Avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am. J. Ophthalmol. 2012, 153, 327–333. [Google Scholar]
- Early Treatment Diabetic Retinopathy Study Research Group. Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2. Ophthalmology 1987, 94, 761–774. [Google Scholar]
- Bonini-Filho, M.A.; Jorge, R.; Barbosa, J.C.; Calucci, D.; Cardillo, J.A.; Costa, R.A. Intravitreal injection versus sub-tenon’s infusion of triamcinolone acetonide for refractory diabetic macular edema: A randomized clinical trial. Invest. Ophthalmol. Vis. Sci. 2005, 46, 3845–3849. [Google Scholar] [CrossRef]
- Patelli, F.; Fasolino, G.; Radice, P.; Russo, S.; Zumbo, G.; FM, D.I.T.; Frisone, G.; Marchi, S. Time course of changes in retinal thickness and visual acuity after intravitreal triamcinolone acetonide for diffuse diabetic macular edema with and without previous macular laser treatment. Retina 2005, 25, 840–845. [Google Scholar] [CrossRef]
- Avitabile, T.; Longo, A.; Reibaldi, A. Intravitreal triamcinolone compared with macular laser grid photocoagulation for the treatment of cystoid macular edema. Am. J. Ophthalmol. 2005, 140, 695–702. [Google Scholar]
- Elman, M.J.; Raden, R.Z.; Sloan, M.D.; Butcher, T.M.; Starr, J.; Salfer-Firestone, D.; Singletary, P.V.; Coffey, T.; Gore, N.; Shabi, G.; et al. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 2008, 115, 1447–1449. [Google Scholar] [CrossRef]
- Ho, A.C.; Scott, I.U.; Kim, S.J.; Brown, G.C.; Brown, M.M.; Ip, M.S.; Recchia, F.M. Anti-vascular endothelial growth factor pharmacotherapy for diabetic macular edema: A report by the American Academy of Ophthalmology. Ophthalmology 2012, 119, 2179–2188. [Google Scholar] [CrossRef]
- Cunningham, E.T., Jr.; Adamis, A.P.; Altaweel, M.; Aiello, L.P.; Bressler, N.M.; D'Amico, D.J.; Goldbaum, M.; Guyer, D.R.; Katz, B.; Patel, M.; et al. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 2005, 112, 1747–1757. [Google Scholar]
- Nguyen, Q.D.; Shah, S.M.; Heier, J.S.; Do, D.V.; Lim, J.; Boyer, D.; Abraham, P.; Campochiaro, P.A. Primary end point (six months) results of the ranibizumab for edema of the macula in diabetes (READ-2) study. Ophthalmology 2009, 116, 2175–2181. [Google Scholar] [CrossRef]
- Mitchell, P.; Bandello, F.; Schmidt-Erfurth, U.; Lang, G.E.; Massin, P.; Schlingemann, R.O.; Sutter, F.; Simader, C.; Burian, G.; Gerstner, O.; et al. The RESTORE study: Ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011, 118, 615–625. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Brown, D.M.; Marcus, D.M.; Boyer, D.S.; Patel, S.; Feiner, L.; Gibson, A.; Sy, J.; Rundle, A.C.; Hopkins, J.J.; et al. Ranibizumab for diabetic macular edema: Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012, 119, 789–801. [Google Scholar]
- Michaelides, M.; Kaines, A.; Hamilton, R.D.; Fraser-Bell, S.; Rajendram, R.; Quhill, F.; Boos, C.J.; Xing, W.; Egan, C.; Peto, T.; et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: Report 2. Ophthalmology 2010, 117, 1078–1086. [Google Scholar]
- Rajendram, R.; Fraser-Bell, S.; Kaines, A.; Michaelides, M.; Hamilton, R.D.; Esposti, S.D.; Peto, T.; Egan, C.; Bunce, C.; Leslie, R.D.; et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: Report 3. Arch. Ophthalmol. 2012, 130, 972–979. [Google Scholar] [CrossRef]
- Rehak, M.; Wiedemann, P. Retinal vein thrombosis: Pathogenesis and management. J. Thromb. Haemost. 2010, 8, 1886–1894. [Google Scholar] [CrossRef]
- The Central Vein Occlusion Study. Baseline and early natural history report. Arch. Ophthalmol. 1993, 111, 1087–1095. [Google Scholar] [CrossRef]
- The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am. J. Ophthalmol. 1984, 98, 271–282. [Google Scholar]
- The Central Vein Occlusion Study Group M Report. Evaluation of grid pattern photocoagulation for macular edema in central vein occlusion. Ophthalmology 1995, 102, 1425–1433. [Google Scholar]
- The Branch Vein Occlusion Study Group. Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. A randomized clinical trial. Arch. Ophthalmol. 1986, 104, 34–41. [Google Scholar] [CrossRef]
- The Central Vein Occlusion Study Group N Report. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. Ophthalmology 1995, 102, 1434–1444. [Google Scholar]
- Roth, D.B.; Cukras, C.; Radhakrishnan, R.; Feuer, W.J.; Yarian, D.L.; Green, S.N.; Wheatley, H.M.; Prenner, J. Intravitreal triamcinolone acetonide injections in the treatment of retinal vein occlusions. Ophthalmic Surg. Lasers Imaging 2008, 39, 446–454. [Google Scholar] [CrossRef]
- Cekic, O.; Chang, S.; Tseng, J.J.; Barile, G.R.; Weissman, H.; Del Priore, L.V.; Schiff, W.M.; Weiss, M.; Klancnik, J.M., Jr. Intravitreal triamcinolone treatment for macular edema associated with central retinal vein occlusion and hemiretinal vein occlusion. Retina 2005, 25, 846–850. [Google Scholar] [CrossRef]
- Jonas, J.B.; Akkoyun, I.; Kamppeter, B.; Kreissig, I.; Degenring, R.F. Branch retinal vein occlusion treated by intravitreal triamcinolone acetonide. Eye (Lond) 2005, 19, 65–71. [Google Scholar] [CrossRef]
- Scott, I.U.; Ip, M.S.; VanVeldhuisen, P.C.; Oden, N.L.; Blodi, B.A.; Fisher, M.; Chan, C.K.; Gonzalez, V.H.; Singerman, L.J.; Tolentino, M. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular edema secondary to branch retinal vein occlusion: The Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch. Ophthalmol. 2009, 127, 1115–1128. [Google Scholar]
- Ip, M.S.; Scott, I.U.; VanVeldhuisen, P.C.; Oden, N.L.; Blodi, B.A.; Fisher, M.; Singerman, L.J.; Tolentino, M.; Chan, C.K.; Gonzalez, V.H. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: The Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. Arch. Ophthalmol. 2009, 127, 1101–1114. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Hafiz, G.; Shah, S.M.; Nguyen, Q.D.; Ying, H.; Do, D.V.; Quinlan, E.; Zimmer-Galler, I.; Haller, J.A.; Solomon, S.D.; et al. Ranibizumab for macular edema due to retinal vein occlusions: Implication of VEGF as a critical stimulator. Mol. Ther. 2008, 16, 791–799. [Google Scholar]
- Spaide, R.F.; Chang, L.K.; Klancnik, J.M.; Yannuzzi, L.A.; Sorenson, J.; Slakter, J.S.; Freund, K.B.; Klein, R. Prospective study of intravitreal ranibizumab as a treatment for decreased visual acuity secondary to central retinal vein occlusion. Am. J. Ophthalmol. 2009, 147, 298–306. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Heier, J.S.; Feiner, L.; Gray, S.; Saroj, N.; Rundle, A.C.; Murahashi, W.Y.; Rubio, R.G. Ranibizumab for macular edema following branch retinal vein occlusion: Six-month primary end point results of a phase III study. Ophthalmology 2010, 117, 1102–1112. [Google Scholar] [CrossRef]
- Kinge, B.; Stordahl, P.B.; Forsaa, V.; Fossen, K.; Haugstad, M.; Helgesen, O.H.; Seland, J.; Stene-Johansen, I. Efficacy of ranibizumab in patients with macular edema secondary to central retinal vein occlusion: Results from the sham-controlled ROCC study. Am. J. Ophthalmol. 2010, 150, 310–314. [Google Scholar] [CrossRef]
- Brown, D.M.; Campochiaro, P.A.; Bhisitkul, R.B.; Ho, A.C.; Gray, S.; Saroj, N.; Adamis, A.P.; Rubio, R.G.; Murahashi, W.Y. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology 2011, 118, 1594–1602. [Google Scholar]
- Brown, D.M.; Campochiaro, P.A.; Singh, R.P.; Li, Z.; Gray, S.; Saroj, N.; Rundle, A.C.; Rubio, R.G.; Murahashi, W.Y. Ranibizumab for macular edema following central retinal vein occlusion: Six-month primary end point results of a phase III study. Ophthalmology 2010, 117, 1124–1133. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Brown, D.M.; Awh, C.C.; Lee, S.Y.; Gray, S.; Saroj, N.; Murahashi, W.Y.; Rubio, R.G. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: Twelve-month outcomes of a phase III study. Ophthalmology 2011, 118, 2041–2049. [Google Scholar] [CrossRef]
- Heier, J.S.; Campochiaro, P.A.; Yau, L.; Li, Z.; Saroj, N.; Rubio, R.G.; Lai, P. Ranibizumab for macular edema due to retinal vein occlusions: Long-term follow-up in the HORIZON trial. Ophthalmology 2012, 119, 802–809. [Google Scholar] [CrossRef]
- Wu, L.; Arevalo, J.F.; Roca, J.A.; Maia, M.; Berrocal, M.H.; Rodriguez, F.J.; Evans, T.; Costa, R.A.; Cardillo, J. Comparison of two doses of intravitreal bevacizumab (Avastin) for treatment of macular edema secondary to branch retinal vein occlusion: Results from the Pan-American Collaborative Retina Study Group at 6 months of follow-up. Retina 2008, 28, 212–219. [Google Scholar] [CrossRef]
- Iturralde, D.; Spaide, R.F.; Meyerle, C.B.; Klancnik, J.M.; Yannuzzi, L.A.; Fisher, Y.L.; Sorenson, J.; Slakter, J.S.; Freund, K.B.; Cooney, M.; et al. Intravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion: A short-term study. Retina 2006, 26, 279–284. [Google Scholar]
- Rabena, M.D.; Pieramici, D.J.; Castellarin, A.A.; Nasir, M.A.; Avery, R.L. Intravitreal bevacizumab (Avastin) in the treatment of macular edema secondary to branch retinal vein occlusion. Retina 2007, 27, 419–425. [Google Scholar] [CrossRef]
- Alon, T.; Hemo, I.; Itin, A.; Pe'er, J.; Stone, J.; Keshet, E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1995, 1, 1024–1028. [Google Scholar]
- Early Treatment for Retinopathy of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity: Results of the early treatment for retinopathy of prematurity randomized trial. Arch. Ophthalmol. 2003, 121, 1684–1694. [Google Scholar] [CrossRef]
- Repka, M.X.; Tung, B.; Good, W.V.; Shapiro, M.; Capone, A., Jr.; Baker, J.D.; Barr, C.C.; Phelps, D.L.; van Heuven, W.A. Outcome of eyes developing retinal detachment during the Early Treatment for Retinopathy of Prematurity Study (ETROP). Arch. Ophthalmol. 2006, 124, 24–30. [Google Scholar] [CrossRef]
- Gilbert, W.S.; Quinn, G.E.; Dobson, V.; Reynolds, J.; Hardy, R.J.; Palmer, E.A. Multicenter Trial of Cryotherapy for Retinopathy of Prematurity Cooperative Group. Partial retinal detachment at 3 months after threshold retinopathy of prematurity: Long-term structural and functional outcome. Arch. Ophthalmol. 1996, 114, 1085–1091. [Google Scholar] [CrossRef]
- Wu, W.C.; Drenser, K.A.; Lai, M.; Capone, A.; Trese, M.T. Plasmin enzyme-assisted vitrectomy for primary and reoperated eyes with stage 5 retinopathy of prematurity. Retina 2008, 28, S75–S80. [Google Scholar] [CrossRef]
- Sato, T.; Kusaka, S.; Shimojo, H.; Fujikado, T. Vitreous levels of erythropoietin and vascular endothelial growth factor in eyes with retinopathy of prematurity. Ophthalmology 2009, 116, 1599–1603. [Google Scholar] [CrossRef]
- Sato, T.; Kusaka, S.; Shimojo, H.; Fujikado, T. Simultaneous analyses of vitreous levels of 27 cytokines in eyes with retinopathy of prematurity. Ophthalmology 2009, 116, 2165–2169. [Google Scholar] [CrossRef]
- Smith, L.E. Through the eyes of a child: Understanding retinopathy through ROP the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 2008, 49, 5177–5182. [Google Scholar] [CrossRef]
- Mintz-Hittner, H.A.; Kuffel, R.R., Jr. Intravitreal injection of bevacizumab (Avastin) for treatment of stage 3 retinopathy of prematurity in zone I or posterior zone II. Retina 2008, 28, 831–838. [Google Scholar] [CrossRef]
- Mintz-Hittner, H.A.; Kennedy, K.A.; Chuang, A.Z. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N. Engl. J. Med. 2011, 364, 603–615. [Google Scholar] [CrossRef]
- Foroozan, R.; Connolly, B.P.; Tasman, W.S. Outcomes after laser therapy for threshold retinopathy of prematurity. Ophthalmology 2001, 108, 1644–1646. [Google Scholar] [CrossRef]
- Kychenthal, A.; Dorta, P.; Katz, X. Zone I retinopathy of prematurity: Clinical characteristics and treatment outcomes. Retina 2006, 26, S11–S15. [Google Scholar] [CrossRef]
- O'Keefe, M.; Lanigan, B.; Long, V.W. Outcome of zone 1 retinopathy of prematurity. Acta Ophthalmol. Scand. 2003, 81, 614–616. [Google Scholar] [CrossRef]
- Wu, W.C.; Yeh, P.T.; Chen, S.N.; Yang, C.M.; Lai, C.C.; Kuo, H.K. Effects and complications of bevacizumab use in patients with retinopathy of prematurity: A multicenter study in Taiwan. Ophthalmology 2011, 118, 176–183. [Google Scholar]
- Lalwani, G.A.; Berrocal, A.M.; Murray, T.G.; Buch, M.; Cardone, S.; Hess, D.; Johnson, R.A.; Puliafito, C.A. Off-Label use of intravitreal bevacizumab (Avastin) for salvage treatment in progressive threshold retinopathy of prematurity. Retina 2008, 28, S13–S18. [Google Scholar] [CrossRef]
- Quiroz-Mercado, H.; Martinez-Castellanos, M.A.; Hernandez-Rojas, M.L.; Salazar-Teran, N.; Chan, R.V. Antiangiogenic therapy with intravitreal bevacizumab for retinopathy of prematurity. Retina 2008, 28, S19–S25. [Google Scholar] [CrossRef]
- Kusaka, S.; Shima, C.; Wada, K.; Arahori, H.; Shimojyo, H.; Sato, T.; Fujikado, T. Efficacy of intravitreal injection of bevacizumab for severe retinopathy of prematurity: A pilot study. Br. J. Ophthalmol. 2008, 92, 1450–1455. [Google Scholar]
- Kong, L.; Mintz-Hittner, H.A.; Penland, R.L.; Kretzer, F.L.; Chevez-Barrios, P. Intravitreous bevacizumab as anti-vascular endothelial growth factor therapy for retinopathy of prematurity: A morphologic study. Arch. Ophthalmol. 2008, 126, 1161–1163. [Google Scholar]
- Rishi, E.; Rishi, P.; Ratra, D.; Bhende, M. Off-label use of bevacizumab in retinopathy of prematurity. Retina 2009, 29, 284, author reply 284–285.. [Google Scholar]
- Travassos, A.; Teixeira, S.; Ferreira, P.; Regadas, I.; Travassos, A.S.; Esperancinha, F.E.; Prieto, I.; Pires, G.; van Velze, R.; Valido, A.; et al. Intravitreal bevacizumab in aggressive posterior retinopathy of prematurity. Ophthalmic Surg. Lasers Imaging 2007, 38, 233–237. [Google Scholar]
- Azad, R.; Chandra, P. Intravitreal bevacizumab in aggressive posterior retinopathy of prematurity. Indian J. Ophthalmol. 2007, 55, 319, author reply 320.. [Google Scholar]
- Chung, E.J.; Kim, J.H.; Ahn, H.S.; Koh, H.J. Combination of laser photocoagulation and intravitreal bevacizumab (Avastin) for aggressive zone I retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 1727–1730. [Google Scholar] [CrossRef]
- Harder, B.C.; von Baltz, S.; Jonas, J.B.; Schlichtenbrede, F.C. Intravitreal bevacizumab for retinopathy of prematurity. J. Ocul. Pharmacol. Ther. 2011, 27, 623–627. [Google Scholar] [CrossRef]
- Raizada, S.; Al Kandari, J.; Al Foudari, A. Early experience with intravitreal bevacizumab combined with laser treatment for retinopathy of prematurity. Middle East. Afr. J. Ophthalmol. 2011, 18, 196–197. [Google Scholar] [CrossRef]
- Axer-Siegel, R.; Snir, M.; Ron, Y.; Friling, R.; Sirota, L.; Weinberger, D. Intravitreal bevacizumab as supplemental treatment or monotherapy for severe retinopathy of prematurity. Retina 2011, 31, 1239–1247. [Google Scholar] [CrossRef]
- Wutthiworawong, B.; Thitiratsanont, U.; Saovaprut, C.; Subhangkasen, I.; Geyuraphun, B.; Ampornprut, A.; Phumongkutchai, J.; Tephusdinnaayuthaya, S. Combine intravitreal bevacizumab injection with laser treatment for aggressive posterior retinopathy of prematurity (AP-ROP). J. Med. Assoc. Thai 2011, 94 Suppl 3, S15–S21. [Google Scholar]
- Lim, L.S.; Mitchell, P.; Wong, T.Y. Bevacizumab for retinopathy of prematurity. N. Engl. J. Med. 2011, 364, 2360, author reply 2361-2362.. [Google Scholar]
- Hard, A.L.; Hellstrom, A. On safety, pharmacokinetics and dosage of bevacizumab in ROP treatment—A review. Acta Paediatr. 2011, 100, 1523–1527. [Google Scholar] [CrossRef]
- Micieli, J.A.; Surkont, M.; Smith, A.F. A systematic analysis of the off-label use of bevacizumab for severe retinopathy of prematurity. Am. J. Ophthalmol. 2009, 148, 536–543. [Google Scholar]
- Lim, L.S.; Cheung, C.M.; Mitchell, P.; Wong, T.Y. Emerging evidence concerning systemic safety of anti-VEGF agents—Should ophthalmologists be concerned? Am. J. Ophthalmol. 2011, 152, 329–331. [Google Scholar] [CrossRef]
- Heidary, G.; Vanderveen, D.; Smith, L.E. Retinopathy of prematurity: Current concepts in molecular pathogenesis. Semin. Ophthalmol. 2009, 24, 77–81. [Google Scholar] [CrossRef]
- Lashkari, K.; Hirose, T.; Yazdany, J.; McMeel, J.W.; Kazlauskas, A.; Rahimi, N. Vascular endothelial growth factor and hepatocyte growth factor levels are differentially elevated in patients with advanced retinopathy of prematurity. Am. J. Pathol. 2000, 156, 1337–1344. [Google Scholar] [CrossRef]
- Van der Valk, R.; Webers, C.A.; Schouten, J.S.; Zeegers, M.P.; Hendrikse, F.; Prins, M.H. Intraocular pressure-lowering effects of all commonly used glaucoma drugs: A meta-analysis of randomized clinical trials. Ophthalmology 2005, 112, 1177–1185. [Google Scholar] [CrossRef]
- Stewart, W.C.; Konstas, A.G.; Nelson, L.A.; Kruft, B. Meta-analysis of 24-hour intraocular pressure studies evaluating the efficacy of glaucoma medicines. Ophthalmology 2008, 115, 1117–1122. [Google Scholar] [CrossRef]
- Poyer, J.F.; Millar, C.; Kaufman, P.L. Prostaglandin F2 alpha effects on isolated rhesus monkey ciliary muscle. Invest. Ophthalmol. Vis. Sci. 1995, 36, 2461–2465. [Google Scholar]
- Lindsey, J.D.; Kashiwagi, K.; Kashiwagi, F.; Weinreb, R.N. Prostaglandin action on ciliary smooth muscle extracellular matrix metabolism: Implications for uveoscleral outflow. Surv. Ophthalmol. 1997, 41 Suppl 2, S53–S59. [Google Scholar] [CrossRef]
- Nilsson, S.F.; Samuelsson, M.; Bill, A.; Stjernschantz, J. Increased uveoscleral outflow as a possible mechanism of ocular hypotension caused by prostaglandin F2 alpha-1-isopropylester in the cynomolgus monkey. Exp. Eye Res. 1989, 48, 707–716. [Google Scholar] [CrossRef]
- Broadway, D.; Grierson, I.; Hitchings, R. Adverse effects of topical antiglaucomatous medications on the conjunctiva. Br. J. Ophthalmol. 1993, 77, 590–596. [Google Scholar] [CrossRef]
- Schwab, I.R.; Linberg, J.V.; Gioia, V.M.; Benson, W.H.; Chao, G.M. Foreshortening of the inferior conjunctival fornix associated with chronic glaucoma medications. Ophthalmology 1992, 99, 197–202. [Google Scholar]
- Baudouin, C.; Pisella, P.J.; Fillacier, K.; Goldschild, M.; Becquet, F.; de Saint Jean, M.; Bechetoille, A. Ocular surface inflammatory changes induced by topical antiglaucoma drugs: Human and animal studies. Ophthalmology 1999, 106, 556–563. [Google Scholar] [CrossRef]
- Nakajima, T.; Matsugi, T.; Goto, W.; Kageyama, M.; Mori, N.; Matsumura, Y.; Hara, H. New fluoroprostaglandin F(2alpha) derivatives with prostanoid FP-receptor agonistic activity as potent ocular-hypotensive agents. Biol. Pharm. Bull. 2003, 26, 1691–1695. [Google Scholar] [CrossRef]
- Takagi, Y.; Nakajima, T.; Shimazaki, A.; Kageyama, M.; Matsugi, T.; Matsumura, Y.; Gabelt, B.T.; Kaufman, P.L.; Hara, H. Pharmacological characteristics of AFP-168 (tafluprost), a new prostanoid FP receptor agonist, as an ocular hypotensive drug. Exp. Eye Res. 2004, 78, 767–776. [Google Scholar] [CrossRef]
- Uusitalo, H.; Pillunat, L.E.; Ropo, A. Efficacy and safety of tafluprost 0.0015% versus latanoprost 0.005% eye drops in open-angle glaucoma and ocular hypertension: 24-month results of a randomized, double-masked phase III study. Acta Ophthalmol. 2010, 88, 12–19. [Google Scholar] [CrossRef]
- Chabi, A.; Varma, R.; Tsai, J.C.; Lupinacci, R.; Pigeon, J.; Baranak, C.; Noble, L.; Lines, C.; Ho, T.W. Randomized clinical trial of the efficacy and safety of preservative-free tafluprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am. J. Ophthalmol. 2012, 153, 1187–1196. [Google Scholar] [CrossRef]
- Liang, H.; Baudouin, C.; Pauly, A.; Brignole-Baudouin, F. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride. Br. J. Ophthalmol. 2008, 92, 1275–1282. [Google Scholar] [CrossRef]
- Ammar, D.A.; Noecker, R.J.; Kahook, M.Y. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofzia-preserved topical glaucoma medications on human ocular epithelial cells. Adv. Ther. 2010, 27, 837–845. [Google Scholar] [CrossRef]
- Fogagnolo, P.; Rossetti, L. Medical treatment of glaucoma: Present and future. Expert Opin. Investig. Drugs 2011, 20, 947–959. [Google Scholar] [CrossRef]
- Waki, M.; Yoshida, Y.; Oka, T.; Azuma, M. Reduction of intraocular pressure by topical administration of an inhibitor of the Rho-associated protein kinase. Curr. Eye Res. 2001, 22, 470–474. [Google Scholar] [CrossRef]
- Rao, P.V.; Deng, P.F.; Kumar, J.; Epstein, D.L. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest. Ophthalmol. Vis. Sci. 2001, 42, 1029–1037. [Google Scholar]
- Kaufman, P.L. Enhancing trabecular outflow by disrupting the actin cytoskeleton, increasing uveoscleral outflow with prostaglandins, and understanding the pathophysiology of presbyopia interrogating mother nature: Asking why, asking how, recognizing the signs, following the trail. Exp. Eye Res. 2008, 86, 3–17. [Google Scholar] [CrossRef]
- Ethier, C.R.; Read, A.T.; Chan, D.W. Effects of latrunculin-B on outflow facility and trabecular meshwork structure in human eyes. Invest. Ophthalmol. Vis. Sci. 2006, 47, 1991–1998. [Google Scholar] [CrossRef]
- Thomasy, S.M.; Wood, J.A.; Kass, P.H.; Murphy, C.J.; Russell, P. Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 2012, 53, 952–958. [Google Scholar]
- Shah, S.S.; Denham, L.V.; Elison, J.R.; Bhattacharjee, P.S.; Clement, C.; Huq, T.; Hill, J.M. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev. Ophthalmol. 2010, 5, 75–93. [Google Scholar] [CrossRef]
- Cvetkovic, R.S.; Wellington, K. Valganciclovir: A review of its use in the management of CMV infection and disease in immunocompromised patients. Drugs 2005, 65, 859–878. [Google Scholar] [CrossRef]
- Janoria, K.G.; Gunda, S.; Boddu, S.H.; Mitra, A.K. Novel approaches to retinal drug delivery. Expert Opin. Drug Deliv. 2007, 4, 371–388. [Google Scholar] [CrossRef]
- Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J. 2010, 12, 348–360. [Google Scholar] [CrossRef]
- Rao, V.R.; Prescott, E.; Shelke, N.B.; Trivedi, R.; Thomas, P.; Struble, C.; Gadek, T.; O'Neill, C.A.; Kompella, U.B. Delivery of SAR 1118 to the retina via ophthalmic drops and its effectiveness in a rat streptozotocin (STZ) model of diabetic retinopathy (DR). Invest. Ophthalmol. Vis. Sci. 2010, 51, 5198–5204. [Google Scholar] [CrossRef]
- Ghate, D.; Edelhauser, H.F. Ocular drug delivery. Expert Opin. Drug Deliv. 2006, 3, 275–287. [Google Scholar]
- Lin, C.W.; Gonzalez, P.; Yuan, F. Cellular pharmacokinetic and pharmacodynamic analyses of ethacrynic acid: Implications in topical drug delivery in the eye. Mol. Vis. 2011, 17, 2507–2515. [Google Scholar]
- Haller, J.A.; Bandello, F.; Belfort, R., Jr.; Blumenkranz, M.S.; Gillies, M.; Heier, J.; Loewenstein, A.; Yoon, Y.H.; Jacques, M.L.; Jiao, J. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 2010, 117, 1134–1146. [Google Scholar] [CrossRef]
- Hsu, J. Drug delivery methods for posterior segment disease. Curr. Opin. Ophthalmol. 2007, 18, 235–239. [Google Scholar] [CrossRef]
- Pinto Reis, C.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine 2006, 2, 53–65. [Google Scholar]
- Lallemand, F.; Daull, P.; Benita, S.; Buggage, R.; Garrigue, J.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J. Drug Deliv. 2012, 2012. [Google Scholar] [CrossRef]
- Mathiowitz, E.; Jacob, J.S.; Jong, Y.S.; Carino, G.P.; Chickering, D.E.; Chaturvedi, P.; Santos, C.A.; Vijayaraghavan, K.; Montgomery, S.; Bassett, M.; et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 1997, 386, 410–414. [Google Scholar]
- Hong, G.B.; Zhou, J.X.; Yuan, R.X. Folate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: Combined small size and high MRI sensitivity. Int. J. Nanomed. 2012, 7, 2863–2872. [Google Scholar]
- Harada, M.; Iwata, C.; Saito, H.; Ishii, K.; Hayashi, T.; Yashiro, M.; Hirakawa, K.; Miyazono, K.; Kato, Y.; Kano, M.R. NC-6301, a polymeric micelle rationally optimized for effective release of docetaxel, is potent but is less toxic than native docetaxel in vivo. Int. J. Nanomed. 2012, 7, 2713–2727. [Google Scholar]
- Kranz, H.; Ubrich, N.; Maincent, P.; Bodmeier, R. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. J. Pharm. Sci. 2000, 89, 1558–1566. [Google Scholar] [CrossRef]
- Barak, Y.; Heroman, W.J.; Tezel, T.H. The past, present, and future of exudative age-related macular degeneration treatment. Middle East. Afr. J. Ophthalmol. 2012, 19, 43–51. [Google Scholar] [CrossRef]
- Carrasquillo, K.G.; Ricker, J.A.; Rigas, I.K.; Miller, J.W.; Gragoudas, E.S.; Adamis, A.P. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest. Ophthalmol. Vis. Sci. 2003, 44, 290–299. [Google Scholar]
- Li, F.; Hurley, B.; Liu, Y.; Leonard, B.; Griffith, M. Controlled release of bevacizumab through nanospheres for extended treatment of age-related macular degeneration. Open Ophthalmol. J. 2012, 6, 54–58. [Google Scholar] [CrossRef]
- Iriyama, A.; Oba, M.; Ishii, T.; Nishiyama, N.; Kataoka, K.; Tamaki, Y.; Yanagi, Y. Gene transfer using micellar nanovectors inhibits choroidal neovascularization in vivo. PLoS One 2011, 6, e28560. [Google Scholar]
- Natarajan, J.V.; Ang, M.; Darwitan, A.; Chattopadhyay, S.; Wong, T.T.; Venkatraman, S.S. Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye. Int. J. Nanomed. 2012, 7, 123–131. [Google Scholar]
- Bhagav, P.; Upadhyay, H.; Chandran, S. Brimonidine tartrate-eudragit long-acting nanoparticles: Formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech 2011, 12, 1087–1101. [Google Scholar] [CrossRef]
- De Campos, A.M.; Sanchez, A.; Gref, R.; Calvo, P.; Alonso, M.J. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur. J. Pharm. Sci. 2003, 20, 73–81. [Google Scholar]
- Holden, C.A.; Tyagi, P.; Thakur, A.; Kadam, R.; Jadhav, G.; Kompella, U.B.; Yang, H. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine 2012, 8, 776–783. [Google Scholar] [CrossRef]
- Checa-Casalengua, P.; Jiang, C.; Bravo-Osuna, I.; Tucker, B.A.; Molina-Martinez, I.T.; Young, M.J.; Herrero-Vanrell, R. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J. Control. Release 2011, 156, 92–100. [Google Scholar] [CrossRef]
- Ong, F.S.; Grody, W.W.; Deignan, J.L. Privacy and data management in the era of massively parallel next-generation sequencing. Expert Rev. Mol. Diagn. 2011, 11, 457–459. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ong, F.S.; Kuo, J.Z.; Wu, W.-C.; Cheng, C.-Y.; Blackwell, W.-L.B.; Taylor, B.L.; Grody, W.W.; Rotter, J.I.; Lai, C.-C.; Wong, T.Y. Personalized Medicine in Ophthalmology: From Pharmacogenetic Biomarkers to Therapeutic and Dosage Optimization. J. Pers. Med. 2013, 3, 40-69. https://doi.org/10.3390/jpm3010040
Ong FS, Kuo JZ, Wu W-C, Cheng C-Y, Blackwell W-LB, Taylor BL, Grody WW, Rotter JI, Lai C-C, Wong TY. Personalized Medicine in Ophthalmology: From Pharmacogenetic Biomarkers to Therapeutic and Dosage Optimization. Journal of Personalized Medicine. 2013; 3(1):40-69. https://doi.org/10.3390/jpm3010040
Chicago/Turabian StyleOng, Frank S., Jane Z. Kuo, Wei-Chi Wu, Ching-Yu Cheng, Wendell-Lamar B. Blackwell, Brian L. Taylor, Wayne W. Grody, Jerome I. Rotter, Chi-Chun Lai, and Tien Y. Wong. 2013. "Personalized Medicine in Ophthalmology: From Pharmacogenetic Biomarkers to Therapeutic and Dosage Optimization" Journal of Personalized Medicine 3, no. 1: 40-69. https://doi.org/10.3390/jpm3010040