Insurance Coverage Policies for Personalized Medicine
Abstract
:1. Introduction
2. Methods
3. Results
Insurer | Total # of Policies | Tests for Disease Diagnosis/Risk/Prognosis (% of total review) | PGx Tests | ||
---|---|---|---|---|---|
# of Tests Reviewed | # of Tests Covered | # of Tests Reviewed | # of Tests Covered | ||
Aetna | 8 | 15 | 3 (20%) | 19 | 8 (42%) |
Independence Blue Cross Group | 15 | 6 | 3 (50%) | 9 | 2 (22%) |
Cigna | 8 | 8 | 2 (20%) | 8 | 3 (38%) |
Humana | 7 | 15 | 3 (20%) | 19 | 5 (26%) |
UnitedHealth | 3 | 5 | 1 (20%) | 0 | 0 (0%) |
TOTAL | 41 | 22 * | 4 * (18%) | 27 * | 8 * (30%) |
Test | Disease Indication | Insurer | Tech Assessments | Availability of FDA-approved test? | |||||
---|---|---|---|---|---|---|---|---|---|
Aetna | BCBS | Cigna | Humana | United Health | BCBS TEC | EGAPP | |||
AlloMap | Cardiac allograft rejection risk | Yes 1 | Yes 2 | No 3 | No 4 | - | No 5 | No | |
CardiaRisk (AGT gene) | Cardiovascular disease risk | No 6 | No 7 | No 4 | - | No | |||
CardioGeneScan test | Diagnostic testing for most cardiac diseases | No 4 | No | ||||||
Chromosome 9p21 polymorphism | Cardio vascular disease risk | No 6 | - | - | - | - | - | Insufficient evidence for or against 8 | No |
Coloprint | Colon cancer recurrence | No 9 | No 4 | No | |||||
CorusCAD (CardioDx) | Coronary Artery Disease | No 10 | - | No 7 | No 4 | No 11 | - | No | |
Decision Dx-GBM | Predictor of progression free survival for glioblastoma | No 4 | No | ||||||
Genome Wide Association Screening | Inherited hypertrophic cardiomyopathy | - | - | No 4 | - | No | |||
HOXB13:ILL7BR Ratio | Breast cancer recurrence risk | No 9 | - | No 12 | No 4 | - | - | No | |
Interleukin 6–174 | Cardiovascular disease risk | No 7 | No | ||||||
MammaPrint | Breast cancer recurrence risk | No 9 | No 13 | No 12 | Yes 4 | - | - | Insufficient evidence for or against 14 | Yes |
Mammostrat | Breast cancer recurrence risk | No 9 | No 12 | No 4 | No | ||||
Microsatellite Instability | FAP/Lynch syndrome | Yes 10 | Yes 15 | Yes 16 | Yes 4 | - | - | Sufficient evidence to recommend testing 17 | No |
My Prognostic Risk Signature™ (MyPRS™) | Predict outcome of newly diagnosed individuals with multiple myeloma | - | - | - | - | No 11 | - | No | |
Oncotype DX * | Breast cancer recurrence risk | Yes 9 | Yes 13 | Yes 12 | Yes 4 | Yes 11 | No 18 | Insufficient evidence for or against 14 | No |
Oncotype DX | Colon cancer recurrence risk | No 9 | No 13 | No 16 | No 4 | No 11 | - | No | |
Ovasure/Ovacheck | Ovarian cancer | No 9 | No | ||||||
Pathworks Diagnostic Tissue of Origin | Cancers of unknown primary site | No 9 | - | - | No 4 | - | Yes | ||
PathfinderTG® | Various neoplasms | No 19 | No | ||||||
PreGen-Plus | Colon cancer screening (Stool) | No 20 | No | ||||||
Rotterdam Signature 76-Gene Profile | Breast cancer recurrence risk | No 9 | - | No 12 | No 4 | - | - | No | |
Urovysion | Screening for bladder cancer, hematuria and all other indications | No 9 | Yes |
Test | Drug Indication | Insurer | Tech Assessments | FDA Approvals | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Aetna | Indep-endence BCBS | Cigna | Humana | United Health | BCBS TEC | EGAPP | FDA-cleared test | Revised Drug Label with PGx Info | ||
Apo E | Lipid lowering medications | No 1 | - | No 2 | - | - | - | -- | No | Yes |
BRAF | Cetuximab, pantimumab | - | No 3 | - | - | - | - | -- | Yes | No |
Caris TargetNOW Molecular Profiling | Inform cancer therapy | No 1 | - | - | No 4 | - | - | -- | No | N/A |
CYP2C19 | Clopidogrel | Yes 1 | Yes 5 | No 6 | No 4 | - | - | -- | Yes | Yes |
CYP2C19 | Proton Pump Inhibitors | No 1 | No 7 | - | No 4 | - | -- | Yes | Yes | |
CYP2C9/ VKORC1 | Warfarin | No 1 | No 8 | No 6 | No 4 | - | - | -- | Yes | Yes |
CYP2D6 | Tamoxifen | No 1 | No 9 | No 6 | No 4 | - | No 10 | -- | Yes | Yes |
CYP2D6 | Tetrabenezine | Yes 1 | - | - | Yes 4 | - | - | -- | Yes | Yes |
CYP2D6 | Donepezil | No 1 | - | - | - | - | - | -- | Yes | No |
CYP2C9 | Proton pump inhibitors | - | - | - | No 4 | - | - | Insufficient evidence to recommend for or against use 11 | No | Yes |
CYP450 (not specified/multiple) | SSRIs | No 1 | - | No 6 | No 4 | - | - | Insufficient evidence to recommend for or against use 11 | N/A | N/A |
Dihydropyramidine Dehydrogenase (DPYD) | 5-Fluorouracil | No 1 | - | - | No 4 | - | No 12 | -- | No | Yes |
EGFR | Erlotinib | Yes 1 | No 13 | - | Yes 4 | - | Yes 14 | -- | No | No |
ERCC1 | Cisplatin, carboplatin, oxaloplatin | - | - | - | No 4 | - | - | -- | No | No |
HLA-B*1502 | Carbamazepine | Yes (in Asian patients) 1 | - | - | Yes (in Asian patients) 4 | - | - | -- | No | Yes |
HLA-B*5701 | Abacavir | Yes 1 | - | Yes 6 | Yes 4 | - | - | -- | No | Yes |
IL28B | Interferon therapy for Hepatitis C | No 1 | - | - | - | - | - | -- | No | Yes (Peg-interferon α2B, Teleprivir, Boceprivir) |
KIF6 | Statin | No 15 | -- | No | N/A | |||||
KRAS | Erlotinib | Yes 1 | No 16 | - | No 4 | - | - | -- | Yes | No |
MGMT Methylation | Temozolomide (Temodar) | - | - | - | No 4 | - | - | -- | No | No |
MTHFR | Antifolate chemotherapy | No 1 | - | - | - | - | - | Insufficient evidence for or against 11 | Yes | No |
rs3798220 | Aspirin | No 1 | - | - | - | - | - | -- | No | No |
TPMT | Mercaptopurine, azathiopurine | Yes 1 | Yes 17 | Yes 6 | Yes 4 | - | - | -- | No | Yes |
Thymidylate Synthase | 5-Fluorouracil | No 1 | - | - | - | - | No 18 | -- | No | No |
Urovysion | Follow-up treatment for bladder cancer | Yes 1 | - | - | - | -- | -- | -- | Yes | N/A |
UTG1A1 | Irinotecan | No 1 | - | No 19 | No 4 | - | - | -- | Yes | Yes |
Whole Genome/Whole Exome/Genome-wide Association study | Pharmacogenetics (not specified) | - | - | - | No 4 | - | - | -- | No | N/A |
4. Discussion
Acknowledgement
References and Notes
- Deverka, P.A. Pharmacogenomics, evidence, and the role of payers. Public Health Genomics 2009, 12, 149–157. [Google Scholar] [CrossRef]
- Deverka, P.A.; Schully, S.D.; Ishibe, N.; Carlson, J.J.; Freedman, A.; Goddard, K.A.; Khoury, M.J.; Ramsey, S.D. Stakeholder assessment of the evidence for cancer genomic tests: Insights from three case studies. Genet. Med. 2012, 14, 7. [Google Scholar]
- Frueh, F.W. Real-world clinical effectiveness, regulatory transparency and payer coverage: Three ingredients for translating pharmacogenomics into clinical practice. Pharmacogenomics 2010, 11, 657–660. [Google Scholar] [CrossRef]
- Schulman, K.A.; Vidal, A.V.; Ackerly, D.C. Personalized medicine and disruptive innovation: Implications for technology assessment. Genet. Med. 2009, 11, 577–581. [Google Scholar] [CrossRef]
- Scott, S.A. Personalizing medicine with clinical pharmacogenetics. Genet. Med. 2011, 13, 987–995. [Google Scholar] [CrossRef]
- Trosman, J.R.; van Bebber, S.L.; Phillips, K.A. Health technology assessment and private payers’ coverage of personalized medicine. J. Oncol. Pract. 2011, 7, S18–S24. [Google Scholar] [CrossRef]
- Meckley, L.M.; Neumann, P.J. Personalized medicine: Factors influencing reimbursement. Health Policy 2010, 94, 91–100. [Google Scholar] [CrossRef]
- Trosman, J.R.; van Bebber, S.L.; Phillips, K.A. Coverage policy development for personalized medicine: Private payer perspectives on developing policy for the 21-gene assay. J. Oncol. Pract. 2010, 6, 238–242. [Google Scholar] [CrossRef]
- Cohen, J.; Wilson, A.; Manzolillo, K. Clinical and economic challenges facing pharmacogenomics. Pharmacogenomics J. 2012. [Epub ahead of print]. [Google Scholar]
- U.S. News. The Top 25 Health Insurance Companies. 2011. Available online: http://health.usnews.com/health-plans/national-insurance-companies/ (accessed on 7 August 2012).
- Bernstein, D.; Williams, G.E.; Eisen, H.; Mital, S.; Wohlgemuth, J.G.; Klingler, T.M.; Fang, K.C.; Deng, M.C.; Kobashigawa, J. Gene expression profiling distinguishes a molecular signature for grade 1b mild acute cellular rejection in cardiac allograft recipients. J. Heart Lung Transplant. 2007, 26, 1270–1280. [Google Scholar] [CrossRef]
- Mehra, M.R.; Kobashigawa, J.A.; Deng, M.C.; Fang, K.C.; Klingler, T.M.; Lal, P.G.; Rosenberg, S.; Uber, P.A.; Starling, R.C.; Murali, S.; et al. Clinical implications and longitudinal alteration of peripheral blood transcriptional signals indicative of future cardiac allograft rejection. J. Heart Lung Transplant. 2008, 27, 297–301. [Google Scholar] [CrossRef]
- Yamani, M.H.; Taylor, D.O.; Haire, C.; Smedira, N.; Starling, R.C. Post-transplant ischemic injury is associated with up-regulated allomap gene expression. Clin. Transplant. 2007, 21, 523–525. [Google Scholar] [CrossRef]
- Yamani, M.H.; Taylor, D.O.; Rodriguez, E.R.; Cook, D.J.; Zhou, L.; Smedira, N.; Starling, R.C. Transplant vasculopathy is associated with increased allomap gene expression score. J. Heart Lung Transplant. 2007, 26, 403–406. [Google Scholar] [CrossRef]
- The National Academy of Clinical Biochemistry (NACB). Laboratory Analysis and Application of Pharmacogenetics to Clinical Practice. Available online: http://www.aacc.org/members/nacb/LMPG/OnlineGuide/PublishedGuidelines/LAACP/Documents/PGx_Guidelines.pdf (accessed on 16 August 2012).
- Mega, J.L.; Hochholzer, W.; Frelinger, A.L.; Kluk, M.J.; Angiolillo, D.J.; Kereiakes, D.J.; Isserman, S.; Rogers, W.J.; Ruff, C.T.; Contant, C.; et al. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA 2011, 306, 2221–2228. [Google Scholar] [CrossRef]
- Collet, J.P.; Hulot, J.S.; Pena, A.; Villard, E.; Esteve, J.B.; Silvain, J.; Payot, L.; Brugier, D.; Cayla, G.; Beygui, F.; et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: A cohort study. Lancet 2009, 373, 309–317. [Google Scholar]
- Gladding, P.; Webster, M.; Zeng, I.; Farrell, H.; Stewart, J.; Ruygrok, P.; Ormiston, J.; El-Jack, S.; Armstrong, G.; Kay, P.; et al. The pharmacogenetics and pharmacodynamics of clopidogrel response: An analysis from the princ (plavix response in coronary intervention) trial. JACC Cardiovasc. Interv. 2008, 1, 620–627. [Google Scholar] [CrossRef]
- Hulot, J.S.; Collet, J.P.; Silvain, J.; Pena, A.; Bellemain-Appaix, A.; Barthelemy, O.; Cayla, G.; Beygui, F.; Montalescot, G. Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: A systematic meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 134–143. [Google Scholar] [CrossRef]
- Shuldiner, A.R.; O'Connell, J.R.; Bliden, K.P.; Gandhi, A.; Ryan, K.; Horenstein, R.B.; Damcott, C.M.; Pakyz, R.; Tantry, U.S.; Gibson, Q.; et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009, 302, 849–857. [Google Scholar] [CrossRef]
- Sofi, F.; Giusti, B.; Marcucci, R.; Gori, A.M.; Abbate, R.; Gensini, G.F. Cytochrome P450 2C19*2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: A meta-analysis. Pharmacogenomics J. 2011, 11, 199–206. [Google Scholar] [CrossRef]
- Pare, G.; Mehta, S.R.; Yusuf, S.; Anand, S.S.; Connolly, S.J.; Hirsh, J.; Simonsen, K.; Bhatt, D.L.; Fox, K.A.; Eikelboom, J.W. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N. Engl. J. Med. 2010, 363, 1704–1714. [Google Scholar] [CrossRef]
- Wallentin, L.; James, S.; Storey, R.F.; Armstrong, M.; Barratt, B.J.; Horrow, J.; Husted, S.; Katus, H.; Steg, P.G.; Shah, S.H.; et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: A genetic substudy of the plato trial. Lancet 2010, 376, 1320–1328. [Google Scholar] [CrossRef]
- Holmes, D.R., Jr.; Dehmer, G.J.; Kaul, S.; Leifer, D.; O'Gara, P.T.; Stein, C.M. ACCF/AHA clopidogrel clinical alert: Approaches to the FDA “boxed warning”: A report of the american college of cardiology foundation task force on clinical expert consensus documents and the american heart association endorsed by the society for cardiovascular angiography and interventions and the society of thoracic surgeons. J. Am. Coll. Cardiol. 2010, 56, 321–341. [Google Scholar] [CrossRef]
- Sotiriou, C.; Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 2009, 360, 790–800. [Google Scholar] [CrossRef]
- Frueh, F.W.; Amur, S.; Mummaneni, P.; Epstein, R.S.; Aubert, R.E.; DeLuca, T.M.; Verbrugge, R.R.; Burckart, G.J.; Lesko, L.J. Pharmacogenomic biomarker information in drug labels approved by the united states food and drug administration: Prevalence of related drug use. Pharmacotherapy 2008, 28, 992–998. [Google Scholar] [CrossRef]
- Zineh, I.; Gerhard, T.; Aquilante, C.L.; Beitelshees, A.L.; Beasley, B.N.; Hartzema, A.G. Availability of pharmacogenomics-based prescribing information in drug package inserts for currently approved drugs. Pharmacogenomics J. 2004, 4, 354–358. [Google Scholar] [CrossRef]
- Haga, S.B.; Tindall, G.; O'Daniel, J.M. Public perspectives about pharmacogenetic testing and managing ancillary findings. Genet. Test. Mol. Biomark. 2012, 16, 193–197. [Google Scholar] [CrossRef]
- Epstein, R.S.; Frueh, F.W.; Geren, D.; Hummer, D.; McKibbin, S.; O'Connor, S.; Randhawa, G.; Zelman, B. Payer perspectives on pharmacogenomics testing and drug development. Pharmacogenomics 2009, 10, 149–151. [Google Scholar] [CrossRef]
- National Bioeconomy Blueprint; The White House: Washington, D.C., USA, April 2012.
- UnitedHealth, Center for Health Reform and Modernization. Personalized medicine: Trends and Prospects for the New Science of Genetic Testing and Molecular Diagnostics. Available online: http://www.unitedhealthgroup.com/hrm/UNH_WorkingPaper7.pdf (accessed on 20 August 2012).
- Khoury, M.J.; Berg, A.; Coates, R.; Evans, J.; Teutsch, S.M.; Bradley, L.A. The evidence dilemma in genomic medicine. Health Aff. (Millwood) 2008, 27, 1600–1611. [Google Scholar] [CrossRef]
- Tunis, S.R.; Pearson, S.D. Coverage options for promising technologies: Medicare’s ‘coverage with evidence development’. Health Aff. (Millwood) 2006, 25, 1218–1230. [Google Scholar] [CrossRef]
- Centers for Medicare & Medicaid Services. CMS Manual System: Pub 100-03 Medicare National Coverage Determinations. Available online: http://www.cms.gov/Regulations-and-Guidance/Guidance/Transmittals/downloads/R111NCD.pdf (accessed on 20 August 2012).
- Ginsburg, G.S.; Voora, D. The long and winding road to warfarin pharmacogenetic testing. J. Am. Coll. Cardiol. 2010, 55, 2813–2815. [Google Scholar] [CrossRef]
- Haga, S.B.; O'Daniel, J.M.; Tindall, G.M.; Lipkus, I.R.; Agans, R. Survey of us public attitudes toward pharmacogenetic testing. Pharmacogenomics J. 2012, 12, 197–204. [Google Scholar] [CrossRef]
- Fargher, E.A.; Tricker, K.; Newman, W.; Elliott, R.; Roberts, S.A.; Shaffer, J.L.; Bruce, I.; Payne, K. Current use of pharmacogenetic testing: A national survey of thiopurine methyltransferase testing prior to azathioprine prescription. J. Clin. Pharm. Ther. 2007, 32, 187–195. [Google Scholar] [CrossRef]
- Faruki, H.; Heine, U.; Brown, T.; Koester, R.; Lai-Goldman, M. HLA-B*5701 clinical testing: Early experience in the united states. Pharmacogenet. Genomics 2007, 17, 857–860. [Google Scholar] [CrossRef]
- Faruki, H.; Lai-Goldman, M. Application of a pharmacogenetic test adoption model to six oncology biomarkers. Pers. Med. 2010, 7, 441–450. [Google Scholar] [CrossRef]
- Higgs, J.; Gambhir, N.; Ramsden, S.C.; Poulton, K.; Newman, W.G. Pharmacogenetic testing in the United Kingdom genetics and immunogenetics laboratories. Genet. Test. Mol. Biomark. 2010, 14, 121–125. [Google Scholar] [CrossRef]
- Hoop, J.G.; Lapid, M.I.; Paulson, R.M.; Roberts, L.W. Clinical and ethical considerations in pharmacogenetic testing: Views of physicians in 3 “early adopting” departments of psychiatry. J. Clin. Psychiatry 2010, 71, 745–753. [Google Scholar] [CrossRef]
- Hopkins, M.M.; Ibarreta, D.; Gaisser, S.; Enzing, C.M.; Ryan, J.; Martin, P.A.; Lewis, G.; Detmar, S.; van den Akker-van Marle, M.E.; Hedgecoe, A.M.; et al. Putting pharmacogenetics into practice. Nat. Biotechnol. 2006, 24, 403–410. [Google Scholar]
- Lash, T.L.; Rosenberg, C.L. Evidence and practice regarding the role for CYP2D6 inhibition in decisions about tamoxifen therapy. J. Clin. Oncol. 2010, 28, 1273–1275. [Google Scholar] [CrossRef]
- Chen, D.T.; Wynia, M.K.; Moloney, R.M.; Alexander, G.C. U.S. physician knowledge of the FDA-approved indications and evidence base for commonly prescribed drugs: Results of a national survey. Pharmacoepidemiol. Drug Saf. 2009, 18, 1094–1100. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hresko, A.; Haga, S.B. Insurance Coverage Policies for Personalized Medicine. J. Pers. Med. 2012, 2, 201-216. https://doi.org/10.3390/jpm2040201
Hresko A, Haga SB. Insurance Coverage Policies for Personalized Medicine. Journal of Personalized Medicine. 2012; 2(4):201-216. https://doi.org/10.3390/jpm2040201
Chicago/Turabian StyleHresko, Andrew, and Susanne B. Haga. 2012. "Insurance Coverage Policies for Personalized Medicine" Journal of Personalized Medicine 2, no. 4: 201-216. https://doi.org/10.3390/jpm2040201