Lost in .*VCF Translation. From Data Fragmentation to Precision Genomics: Technical, Ethical, and Interpretive Challenges in the Post-Sequencing Era
Abstract
1. Introduction
2. Genetic Uncertainty: Balancing Knowledge, Ethics, and Autonomy in the Era of VUSs and Secondary Findings
3. Genetic Roulette: Global Discrepancies in Variant Interpretation and Their Impact on Medicine and Law
a. ESHG NGS Variant Classification—Step A (Functional) | ||
Functional Class | Score | Operational Definition |
Functional VUS (fVUS) | 0 | Variant of unknown functional significance |
Normal function (NF) | 1 | High-frequency variant with no reason to suspect recessive/hypomorphic role |
Likely normal function (LNF) | 2 | Moderate-frequency variant with no reason to suspect recessive/hypomorphic role |
Hypothetical functional effect (HFE) | 3 | Rare variant that could affect gene function (bioinformatic/biological hints) |
Likely functional effect (LFE) | 4 | Recessive: hypomorphic variant causing disease only in trans with LoF Dominant: variant with likely LoF or other functional importance |
Functional effect (FE) | 5 | Proven LoF/known GoF or dominant-negative variant |
b. ESHG NGS Variant Classification—Step B (Clinical) | ||
Clinical Class | Score | Operational Definition |
Clinical VUS (cVUS) | 0 | Variant of unknown clinical significance |
Variant of interest (VOI) | 1 | Dominant candidate variant or single hypomorphic allele in recessive gene |
Risk factor | 2 | Low-penetrance dominant variant or single pathogenic allele matching phenotype |
Pathogenic variant | 3 | Clearly pathogenic variant |
Moderate-penetrance pathogenic | 4 | Dominant variant with 20–40% penetrance |
High-penetrance pathogenic | 5 | Dominant variant with >40% penetrance |
c. ESHG NGS Variant Classification—Step C (Integrated Grading) | ||
Final Class | A + B Combination | Reporting Recommendation |
0 | F0–2 | Not reported |
F | F3 + C0 | Not reported if the gene is unrelated to phenotype |
E | F3 + C1/C2 · F4 + C0/C1 · F5 + C0 | Variant of interest (optional reporting) |
D | F3 + C3 · F4 + C2/C3 · F5 + C1/C2 | Low-penetrance/good candidate—report |
C | F4 + C4 · F5 + C3 | Disease-associated—report |
B | F4 + C5 · F5 + C4 | Disease-associated, moderate penetrance—report |
A | F5 + C5 | Disease-associated, high penetrance—report |
X | Any F3–5 with C2–5 | Secondary/incidental finding |
ACMG/AMP Class | Description |
---|---|
Pathogenic (5) | Variant known to cause the disease |
Likely pathogenic (4) | Variant very likely to cause the disease, small residual uncertainty |
VUS (3) | Pathogenicity uncertain—more data required |
Likely benign (2) | Variant very unlikely to cause the disease |
Benign (1) | Variant known not to cause the disease |
4. The Dark Side of AI in Genomics: Bias, Errors, and the Black-Box Dilemma
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grether, A.; Ivanovski, I.; Russo, M.; Begemann, A.; Steindl, K.; Abela, L.; Papik, M.; Zweier, M.; Oneda, B.; Joset, P.; et al. The current benefit of genome sequencing compared to exome sequencing in patients with developmental or epileptic en-cephalopathies. Mol. Genet. Genom. Med. 2023, 11, e2148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lobo, I. Multifactorial Inheritance and Genetic Disease. Nat. Educ. 2008, 1, 5. [Google Scholar]
- Liu, Z.; Zhu, L.; Roberts, R.; Tong, W. Toward Clinical Implementation of Next-Generation Sequencing-Based Genetic Testing in Rare Diseases: Where Are We? Trends Genet. 2019, 35, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Thummala, A.; Sudhakaran, R.; Gurram, A.; Mersch, J.; Badalamenti, A.; Gottaway, G.; Park, J.Y.; Sorelle, J.A.; Makhnoon, S. Variant reclassification and recontact research: A scoping review. Genet. Med. Open 2024, 2, 101867. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Liu, S.; Mo, H.; Hua, X.; Chen, X.; Zhang, Y.; Wang, W.; Zhao, Q.; Song, J. MYH7 Mutations in Restrictive Cardiomy-opathy. JACC Adv. 2025, 4, 101693. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calvino, G.; Peconi, C.; Strafella, C.; Trastulli, G.; Megalizzi, D.; Andreucci, S.; Cascella, R.; Caltagirone, C.; Zampatti, S.; Giardina, E. Federated Learning: Breaking Down Barriers in Global Genomic Research. Genes 2024, 15, 1650. [Google Scholar] [CrossRef]
- Ho, D.; Quake, S.R.; McCabe, E.R.; Chng, W.J.; Chow, E.K.; Ding, X.; Gelb, B.D.; Ginsburg, G.S.; Hassenstab, J.; Ho, C.-M.; et al. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol. 2020, 38, 497–518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwong, A.; Ho, C.Y.S.; Shin, V.Y.; Au, C.H.; Chan, T.-L.; Ma, E.S.K. How does re-classification of variants of unknown sig-nificance (VUS) impact the management of patients at risk for hereditary breast cancer? BMC Med. Genom. 2022, 15, 122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, P.; Thornton, I.; Kopitnik, N.L.; Hipskind, J.E. Informed Consent. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430827/ (accessed on 20 March 2025).
- Boskey, E.R.; Johnson, J.A.; Harrison, C.; Marron, J.M.; Abecassis, L.; Scobie-Carroll, A.; Willard, J.; Diamond, D.A.; Taghinia, A.H.; Ganor, O. Ethical Issues Considered When Establishing a Pediatrics Gender Surgery Center. Pediatrics 2019, 143, e20183053. [Google Scholar] [CrossRef] [PubMed]
- Stark, Z.; Tan, T.Y.; Chong, B.; Brett, G.R.; Yap, P.; Walsh, M.; Yeung, A.; Peters, H.; Mordaunt, D.; Cowie, S.; et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Anesthesia Analg. 2016, 18, 1090–1096. [Google Scholar] [CrossRef]
- Yang, Y.; Muzny, D.M.; Reid, J.G.; Bainbridge, M.N.; Willis, A.; Ward, P.A.; Braxton, A.; Beuten, J.; Xia, F.; Niu, Z.; et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N. Engl. J. Med. 2013, 369, 1502–1511. [Google Scholar] [CrossRef]
- Sirugo, G.; Williams, S.M.; Tishkoff, S.A. The missing diversity in human genetic studies. Cell 2019, 177, 26–31. [Google Scholar] [CrossRef]
- Chetta, M.; Tarsitano, M.; Rivieccio, M.; Oro, M.; Cammarota, A.; De Marco, M.; Marzullo, L.; Rosati, A.; Bukvic, N. A Copernican revolution of multigenic analysis: A retrospective study on clinical exome sequencing in unclear genetic disorders. Comput. Struct. Biotechnol. J. 2024, 23, 2615–2622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yska, H.A.F.; Elsink, K.; Kuijpers, T.W.; Frederix, G.W.J.; van Gijn, M.E.; van Montfrans, J.M. Diagnostic Yield of Next Generation Sequencing in Genetically Undiagnosed Patients with Primary Immunodeficiencies: A Systematic Review. J. Clin. Immunol. 2019, 39, 577–591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koboldt, D.C.; Steinberg, K.M.; Larson, D.E.; Wilson, R.K.; Mardis, E.R. The next-generation sequencing revolution and its impact on genomics. Cell 2013, 155, 27–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morash, M.; Mitchell, H.; Beltran, H.; Elemento, O.; Pathak, J. The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology. J. Pers. Med. 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zitnik, M.; Li, M.M.; Wells, A.; Glass, K.; Gysi, D.M.; Krishnan, A.; Murali, T.M.; Radivojac, P.; Roy, S.; Baudot, A.; et al. Current and future directions in network biology. Bioinform. Adv. 2024, 4, vbae099. [Google Scholar] [CrossRef]
- Kullo, I.J.; Lewis, C.M.; Inouye, M.; Martin, A.R.; Ripatti, S.; Chatterjee, N. Polygenic scores in biomedical research. Nat. Rev. Genet. 2022, 23, 524–532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sabatello, M.; Juengst, E. Genomic Essentialism: Its Provenance and Trajectory as an Anticipatory Ethical Concern. Hastings Cent Rep. 2019, 49 (Suppl 1), S10–S18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kemp, S.; Orsini, J.J.; Ebberink, M.S.; Engelen, M.; Lund, T.C. VUS: Variant of uncertain significance or very unclear situation? Mol. Genet. Metab. 2023, 140, 107678. [Google Scholar] [CrossRef] [PubMed]
- Chassé, M.; Fergusson, D.A. Diagnostic Accuracy Studies. Semin. Nucl. Med. 2019, 49, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.J.; Wallgren-Pettersson, C. Ethics in genetic counselling. J. Community Genet. 2018, 10, 3–33. [Google Scholar] [CrossRef]
- Heredia-Torrejón, M.; Montañez, R.; González-Meneses, A.; Carcavilla, A.; Medina, M.A.; Lechuga-Sancho, A.M. VUS next in rare diseases? Deciphering genetic determinants of biomolecular condensation. Orphanet J. Rare Dis. 2024, 19, 327. [Google Scholar] [CrossRef]
- Mersch, J.; Brown, N.; Pirzadeh-Miller, S.; Mundt, E.; Cox, H.C.; Brown, K.; Aston, M.; Esterling, L.; Manley, S.; Ross, T. Prevalence of Variant Reclassification Following Hereditary Cancer Genetic Testing. JAMA 2018, 320, 1266–1274. [Google Scholar] [CrossRef]
- Shirts, B.H.; Casadei, S.; Jacobson, A.L.; Lee, M.K.; Gulsuner, S.; Bennett, R.L.; Miller, M.; Hall, S.A.; Hampel, H.; Hisama, F.M.; et al. Improving performance of multigene panels for genomic analysis of cancer predisposition. Anesthesia Analg. 2016, 18, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, M.; Ishii, A.; Ihara, Y.; Hoshino, A.; Terashima, H.; Kubota, M.; Kikuchi, K.; Yamanaka, G.; Amemiya, K.; Hirose, S.; et al. Missense mutations in sodium channel SCN1A and SCN2A predispose children to encephalopathy with severe febrile seizures. Epilepsy Res. 2015, 117, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Botkin, J.R. Ethical issues in pediatric genetic testing and screening. Curr. Opin. Pediatr. 2016, 28, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Zhong, A.; Darren, B.; Loiseau, B.; He, L.Q.B.; Chang, T.; Hill, J.; Dimaras, H. and cultural issues related to clinical genetic testing and counseling in low- and middle-income countries: A systematic review. Anesth. Analg. 2021, 23, 2270–2280. [Google Scholar] [CrossRef] [PubMed]
- Fridman, H.; Yntema, H.G.; Mägi, R.; Andreson, R.; Metspalu, A.; Mezzavilla, M.; Tyler-Smith, C.; Xue, Y.; Carmi, S.; Levy-Lahad, E.; et al. The landscape of autosomal-recessive pathogenic variants in European populations reveals phenotype-specific effects. Am. J. Hum. Genet. 2021, 108, 608–619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burke, W.; Parens, E.; Chung, W.K.; Berger, S.M.; Appelbaum, P.S. The challenge of genetic variants of uncertain clinical significance: A narrative review. Ann. Intern. Med. 2022, 175, 994–1000. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Basel-Salmon, L.; Ruhrman-Shahar, N.; Orenstein, N.; Levy, M.; Lidzbarsky, G.A.; Batzir, N.A.; Lifshitc-Kalis, M.; Farage-Barhom, S.; Abel, G.; Petasny, M.; et al. Clinically actionable incidental and secondary parental genomic findings after proband exome se-quencing: Yield and dilemmas. Genet. Med. Open 2023, 1, 100813. [Google Scholar] [CrossRef]
- Mitchell, C.; Ploem, C.; Retèl, V.; Gevers, S.; Hennekam, R. Experts reflecting on the duty to recontact patients and research participants; why pro-fessionals should take the lead in developing guidelines. Eur. J. Med. Genet. 2020, 63, 103642. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Houge, G.; Bratland, E.; Aukrust, I.; Tveten, K.; Žukauskaitė, G.; Sansovic, I.; Brea-Fernández, A.J.; Mayer, K.; Paakkola, T.; McKenna, C.; et al. Comparison of the ABC and ACMG systems for variant classification. Eur. J. Hum. Genet. 2024, 32, 858–863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campeau, P.M. An all-encompassing variant classification system proposed. Eur. J. Hum. Genet. 2022, 30, 139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. ClinVar Database. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 20 March 2025).
- Uberoi, D.; Dalpé, G.; Cheung, K.; Kondrup, E.; Palmour, N.; Arawi, T.; Arych, M.; Miguel Aviles, A.R.; Ayuso, C.; Bentzen, H.B.; et al. The Key Features of a Genetic Nondiscrimination Policy. JAMA Netw. 2024, 7, e2435355. [Google Scholar] [CrossRef]
- Guerrini, C.J.; Wagner, J.K.; Nelson, S.C.; Javitt, G.H.; McGuire, A.L. Who’s on third? Regulation of third-party genetic interpretation services. Anesthesia Analg. 2020, 22, 4–11. [Google Scholar] [CrossRef]
- Nykamp, K.; Anderson, M.; Powers, M.; Garcia, J.; Herrera, B.; Ho, Y.Y.; Kobayashi, Y.; Patil, N.; Thusberg, J.; Westbrook, M.; et al. Correction: Sherloc: A comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. 2020, 22, 240, Erratum in: Genet Med. 2017, 19, 1105’1117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Houge, G.; Laner, A.; Cirak, S.; de Leeuw, N.; Scheffer, H.; den Dunnen, J.T. Stepwise ABC system for classification of any type of genetic variant. Eur. J. Hum. Genet. 2022, 30, 150–159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Società Italiana di Genetica Umana (SIGU). Indicazioni per la Refertazione di Analisi Genetiche Eseguite Mediante Tecniche di Sequenziamento di Nuova Generazione (NGS). SIGU, 2022. Available online: https://sigu.net/wp-content/uploads/2022/08/2022_08_07_Referto_ngs-1.pdf (accessed on 20 March 2025).
- Takashima, K.; Maru, Y.; Mori, S.; Mano, H.; Noda, T.; Muto, K. Ethical concerns on sharing genomic data including patients’ family. BMC Med. Ethic. 2018, 19, 61. [Google Scholar] [CrossRef]
- Maqsood, K.; Hagras, H.; Zabet, N.R. An overview of artificial intelligence in the field of genomics. Discov. Artif. Intell. 2024, 4, 9. [Google Scholar] [CrossRef]
- Kurant, D.E. Opportunities and Challenges with Artificial Intelligence in Genomics. Clin. Lab. Med. 2022, 43, 87–97. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lei, C.; Wan, C.; Zeng, S.; Zhang, T.; Luo, F.; Li, R.; Li, X.; Zhao, A.; Xiao, D.; et al. Author Correction: A comprehensive whole genome database of ethnic minority populations. Sci. Rep. 2024, 14, 15832, Erratum in: Sci. Rep. 2024, 14, 13954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pemmasani, S.K.; Raman, R.; Mohapatra, R.; Vidyasagar, M.; Acharya, A. A Review on the Challenges in Indian Genomics Research for Variant Identification and Interpretation. Front. Genet. 2020, 11, 753. [Google Scholar] [CrossRef] [PubMed]
- Oleksyk, T.K.; Brukhin, V.; O’bRien, S.J. The Genome Russia project: Closing the largest remaining omission on the world Genome map. GigaScience 2015, 4, 53. [Google Scholar] [CrossRef]
- Sibomana, O. Genetic Diversity Landscape in African Population: A Review of Implications for Personalized and Precision Medicine. Pharmgenomics Pers. Med. 2024, 17, 487–496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. Author Correction: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2021, 590, E53, Erratum in: Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Roa, B.B.; Boyd, A.A.; Volcik, K.; Richards, C.S. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat. Genet. 1996, 14, 185–187. [Google Scholar] [CrossRef]
- Tischkowitz, M.; Xia, B.; Sabbaghian, N.; Reis-Filho, J.S.; Hamel, N.; Li, G.; van Beers, E.H.; Li, L.; Khalil, T.; Quenneville, L.A.; et al. Analysis of PALB2/FANCN-associated breast cancer families. Proc. Natl. Acad. Sci. USA 2007, 104, 6788–6793. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horton, R.; Lucassen, A. Ethical Considerations in Research with Genomic Data. New Bioeth. 2023, 29, 37–51. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, O.; McVeigh, T.P. Increasing use of artificial intelligence in genomic medicine for cancer care- the promise and potential pitfalls. BJC Rep. 2025, 3, 20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bastida-Lertxundi, N.; Martí-Carrera, I.; Laña-Ruíz, B.; Barbosa, O.M.-M.; Muguerza-Iraola, R.; Sáez-Villaverde, R.; Crettaz, J.S. Evaluating seven bioinformatics platforms for tertiary analysis of genomic data from whole exome sequencing in a pilot group of patients. Adv. Lab. Med. Av. en Med. de Lab. 2025, 6, 28–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, H. Challenges of reproducible AI in biomedical data science. BMC Med. Genom. 2025, 18 (Suppl. 1), 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ménard, T. Good quality practices for artificial intelligence in genetics. Eur. J. Hum. Genet. 2022, 30, 993–995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fatumo, S.; Chikowore, T.; Choudhury, A.; Ayub, M.; Martin, A.R.; Kuchenbaecker, K. A roadmap to increase diversity in genomic studies. Nat. Med. 2022, 28, 243–250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fischer-Hwang, I.; Ochoa, I.; Weissman, T.; Hernaez, M. Denoising of Aligned Genomic Data. Sci. Rep. 2019, 9, 15067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Q.; Zobel, J.; Verspoor, K. Duplicates, redundancies and inconsistencies in the primary nucleotide databases: A descriptive study. Database 2017, 2017, baw163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Callaway, E. Biggest-ever AI biology model writes DNA on demand. Nature 2025, 638, 868–869. [Google Scholar] [CrossRef] [PubMed]
- Bookman, E.B.; McAllister, K.; Gillanders, E.; Wanke, K.; Balshaw, D.; Rutter, J.; Reedy, J.; Shaughnessy, D.; Agurs-Collins, T.; Paltoo, D.; et al. Gene-environment interplay in common complex diseases: Forging an integrative model—recommendations from an NIH workshop. Genet. Epidemiol. 2011, 35, 217–225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Gianfrancesco, M.A.; Tamang, S.; Yazdany, J.; Schmajuk, G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 2018, 178, 1544–1547. [Google Scholar] [CrossRef]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wadden, J.J. Defining the undefinable: The black box problem in healthcare artificial intelligence. J. Med. Ethics 2022, 48, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Coghlan, S.; Gyngell, C.; Vears, D.F. Ethics of artificial intelligence in prenatal and pediatric genomic medicine. J. Community Genet. 2024, 15, 13–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Annan, R.; Noland, J.; Perkins, K.; Yuan, X.; Roy, K.; Qingge, L. Genomic privacy and security in the era of artificial intelligence and quantum computing. Discov. Comput. 2025, 28, 108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DAlmeida, S.; Norajitra, T.; Lüth, C.T.; Wald, T.; Weru, V.; Nolden, M.; Jäger, P.F.; von Stackelberg, O.; Heußel, C.P.; Weinheimer, O.; et al. How do deep-learning models generalize across populations? Cross-ethnicity generalization of COPD detection. Insights Imaging 2024, 15, 198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Y.; Sharma, T.; Cui, Y. Addressing the Challenge of Biomedical Data Inequality: An Artificial Intelligence Perspective. Annu. Rev. Biomed. Data Sci. 2023, 6, 153–171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetta, M.; Tarsitano, M.; Bukvic, N.; Fontana, L.; Miozzo, M.R. Lost in .*VCF Translation. From Data Fragmentation to Precision Genomics: Technical, Ethical, and Interpretive Challenges in the Post-Sequencing Era. J. Pers. Med. 2025, 15, 390. https://doi.org/10.3390/jpm15080390
Chetta M, Tarsitano M, Bukvic N, Fontana L, Miozzo MR. Lost in .*VCF Translation. From Data Fragmentation to Precision Genomics: Technical, Ethical, and Interpretive Challenges in the Post-Sequencing Era. Journal of Personalized Medicine. 2025; 15(8):390. https://doi.org/10.3390/jpm15080390
Chicago/Turabian StyleChetta, Massimiliano, Marina Tarsitano, Nenad Bukvic, Laura Fontana, and Monica Rosa Miozzo. 2025. "Lost in .*VCF Translation. From Data Fragmentation to Precision Genomics: Technical, Ethical, and Interpretive Challenges in the Post-Sequencing Era" Journal of Personalized Medicine 15, no. 8: 390. https://doi.org/10.3390/jpm15080390
APA StyleChetta, M., Tarsitano, M., Bukvic, N., Fontana, L., & Miozzo, M. R. (2025). Lost in .*VCF Translation. From Data Fragmentation to Precision Genomics: Technical, Ethical, and Interpretive Challenges in the Post-Sequencing Era. Journal of Personalized Medicine, 15(8), 390. https://doi.org/10.3390/jpm15080390