The Exchange Breathing Method for Seizure Intervention: A Historical and Scientific Review of Epilepsy and Its Evolving Therapeutic Paradigms
Abstract
1. Introduction
2. Epilepsy—Definition, History, and Incidence
3. Sudden Death in Epilepsy (SUDEP)
4. Treatments
5. Cannabis and Epilepsy
6. CO2 and Chemosensitivity
7. Nasal Anatomy and Pathophysiology
8. Trigeminal Nerve Anatomy and Correlates
9. Exhaled Breath
10. CO2 Diffusion, Molecular Qualities, and Physiological Characteristics
11. Exhaled Breath Rate and Inhalation Airflow Velocity and Consequences
12. Nasal Breathing, History, and Central Nervous System Consequences
13. Discussion
14. Limitations of Study
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marshall, G.F.; Gonzalez-Sulser, A.; Abbott, C.M. Modelling epilepsy in the mouse: Challenges and solutions. Dis. Model. Mech. 2021, 14, dmm047449. [Google Scholar] [CrossRef]
- Anwar, H.; Khan, Q.U.; Nadeem, N.; Pervaiz, I.; Ali, M.; Cheema, F.F. Epileptic seizures. Discoveries 2020, 8, e110. [Google Scholar] [CrossRef]
- Beghi, E. The Epidemiology of Epilepsy. Neuroepidemiology 2019, 54, 185–191. [Google Scholar] [CrossRef]
- Patel, P.; Moshé, S.L. The evolution of the concepts of seizures and epilepsy: What’s in a name? Epilepsia Open 2020, 5, 22–35. [Google Scholar] [CrossRef]
- Strzelczyk, A.; Schubert-Bast, S. A Practical Guide to the Treatment of Dravet Syndrome with Anti-Seizure Medication. CNS Drugs 2022, 36, 217–237. [Google Scholar] [CrossRef]
- Xu, Y.; Lavrencic, L.; Radford, K.; Booth, A.; Yoshimura, S.; Anstey, K.J.; Anderson, C.S.; Peters, R. Systematic review of coexistent epileptic seizures and Alzheimer’s disease: Incidence and prevalence. J. Am. Geriatr. Soc. 2021, 69, 2011–2020. [Google Scholar] [CrossRef]
- Saletti, P.G.; Mowrey, W.B.; Liu, W.; Li, Q.; McCullough, J.; Aniceto, R.; Lin, I.H.; Eklund, M.; Casillas-Espinosa, P.M.; Ali, I. Early preclinical plasma protein biomarkers of brain trauma are influenced by early seizures and levetiracetam. Epilepsia Open 2023, 8, 586–608. [Google Scholar] [CrossRef]
- Łukawski, K.; Czuczwar, S.J. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants 2023, 12, 1049. [Google Scholar] [CrossRef]
- Hattori, E.Y.; Arakawa, Y.; Mineharu, Y.; Furukawa, K.; Terada, Y.; Yamao, Y.; Tanji, M.; Kikuchi, T.; Miyamoto, S. Seizure control by adding on other anti-seizure medication on seizure during levetiracetam administration in patients with glioma-related epilepsy. BMC Cancer 2023, 23, 849. [Google Scholar] [CrossRef]
- Zelano, J.; Holtkamp, M.; Agarwal, N.; Lattanzi, S.; Trinka, E.; Brigo, F. How to diagnose and treat post-stroke seizures and epilepsy. Epileptic Disord. 2020, 22, 252–263. [Google Scholar] [CrossRef]
- Sarmast, S.T.; Abdullahi, A.M.; Jahan, N. Current classification of seizures and epilepsies: Scope, limitations and recommendations for future action. Cureus 2020, 12, e10549. [Google Scholar] [CrossRef]
- Stephen, J.; Weir, C.J.; Chin, R.F. Temporal trends in incidence of Rolandic epilepsy, prevalence of comorbidities and prescribing trends: Birth cohort study. Arch. Dis. Child. 2020, 105, 569–574. [Google Scholar] [CrossRef]
- Choy, M.; Dadgar-Kiani, E.; Cron, G.O.; Duffy, B.A.; Schmid, F.; Edelman, B.J.; Asaad, M.; Chan, R.W.; Vahdat, S.; Lee, J.H. Repeated hippocampal seizures lead to brain-wide reorganization of circuits and seizure propagation pathways. Neuron 2022, 110, 221–236.e224. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef]
- Ghosh, S.; Sinha, J.K.; Khan, T.; Devaraju, K.S.; Singh, P.; Vaibhav, K.; Gaur, P. Pharmacological and therapeutic approaches in the treatment of epilepsy. Biomedicines 2021, 9, 470. [Google Scholar] [CrossRef]
- Mukhtar, I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020, 82, 65–79. [Google Scholar] [CrossRef]
- Abramovici, S.; Bagić, A. Epidemiology of epilepsy. In Handbook of Clinical Neurology; Aminoff, M.J., Boller, F., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Shlobin, N.A.; Singh, G.; Newton, C.R.; Sander, J.W. Classifying epilepsy pragmatically: Past, present, and future. J. Neurol. Sci. 2021, 427, 117515. [Google Scholar] [CrossRef]
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Patten, S.B.; Kwon, C.-S.; Dykeman, J.; Pringsheim, T.; Lorenzetti, D.L.; Jetté, N. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef]
- Subki, A.H.; Mukhtar, A.M.; Al-Harbi, R.S.; Alotaibi, A.K.; Mosaad, F.G.; Alsallum, M.S.; Jan, M.M. The impact of pediatric epilepsy on children and families: A multicenter cross-sectional study. Clin. Pract. Epidemiol. Ment. Health CPEMH 2018, 14, 323. [Google Scholar] [CrossRef]
- Olusanya, B.O.; Wright, S.M.; Nair, M.; Boo, N.-Y.; Halpern, R.; Kuper, H.; Abubakar, A.A.; Almasri, N.A.; Arabloo, J.; Arora, N.K. Global burden of childhood epilepsy, intellectual disability, and sensory impairments. Pediatrics 2020, 146, e20192623. [Google Scholar] [CrossRef]
- Liu, S.; Yu, W.; Lü, Y. The causes of new-onset epilepsy and seizures in the elderly. Neuropsychiatr. Dis. Treat. 2016, 12, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M.S.; Sharda, S.C.; Yadav, G.; Mehta, S.; Attri, R.; Singla, N. Etiology of new-onset seizures in adult patients of different age groups presenting to the emergency department in North India and their outcomes. J. Fam. Med. Prim. Care 2022, 11, 7129–7135. [Google Scholar] [CrossRef]
- Hunter, M.B.; Yoong, M.; Sumpter, R.E.; Verity, K.; Shetty, J.; McLellan, A.; Chin, R.F. Incidence of early-onset epilepsy: A prospective population-based study. Seizure 2020, 75, 49–54. [Google Scholar] [CrossRef]
- Maloney, E.M.; Chaila, E.; O’Reilly, É.J.; Costello, D.J. Incidence of first seizures, epilepsy, and seizure mimics in a geographically defined area. Neurology 2020, 95, e576–e590. [Google Scholar] [CrossRef]
- Commission on Epidemiology and Prognosis; International League Against Epilepsy. Guidelines for epidemiologic studies on epilepsy. Epilepsia 1993, 34, 592–596. [Google Scholar] [CrossRef]
- Re, C.J.; Batterman, A.I.; Gerstner, J.R.; Buono, R.J.; Ferraro, T.N. The molecular genetic interaction between circadian rhythms and susceptibility to seizures and epilepsy. Front. Neurol. 2020, 11, 520. [Google Scholar] [CrossRef] [PubMed]
- Samia, P.; Wilmshurst, J.M. Common Childhood Epilepsy Mimics. In Clinical Child Neurology; Springer: Cham, Switzerland, 2020; pp. 743–765. [Google Scholar]
- Stainman, R.S.; Kossoff, E.H. Seizure mimics in children: An age-based approach. Curr. Probl. Pediatr. Adolesc. Health Care 2020, 50, 100894. [Google Scholar] [CrossRef] [PubMed]
- Taherian, R.; Feshangchi-Bonab, M.; Rezayi, A.; Jahandideh, M. The etiologic profile of the pediatric seizure: An epidemiological study from Iran. Int. Clin. Neurosci. J. 2017, 4, 98–102. [Google Scholar]
- Sawires, R.; Buttery, J.; Fahey, M. A review of febrile seizures: Recent advances in understanding of febrile seizure pathophysiology and commonly implicated viral triggers. Front. Pediatr. 2022, 9, 801321. [Google Scholar] [CrossRef]
- Mewasingh, L.D.; Chin, R.F.; Scott, R.C. Current understanding of febrile seizures and their long-term outcomes. Dev. Med. Child. Neurol. 2020, 62, 1245–1249. [Google Scholar] [CrossRef]
- Pujar, S.S.; Martinos, M.M.; Cortina-Borja, M.; Chong, W.K.; De Haan, M.; Gillberg, C.; Neville, B.G.; Scott, R.C.; Chin, R.F. Long-term prognosis after childhood convulsive status epilepticus: A prospective cohort study. Lancet Child. Adolesc. Health 2018, 2, 103–111. [Google Scholar] [CrossRef]
- Yoong, M.; Martinos, M.M.; Chin, R.F.; Clark, C.A.; Scott, R.C. Hippocampal volume loss following childhood convulsive status epilepticus is not limited to prolonged febrile seizures. Epilepsia 2013, 54, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Martinos, M.M.; Pujar, S.; O’Reilly, H.; de Haan, M.; Neville, B.G.; Scott, R.C.; Chin, R.F. Intelligence and memory outcomes within 10 years of childhood convulsive status epilepticus. Epilepsy Behav. 2019, 95, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Pfisterer, U.; Petukhov, V.; Demharter, S.; Meichsner, J.; Thompson, J.J.; Batiuk, M.Y.; Asenjo-Martinez, A.; Vasistha, N.A.; Thakur, A.; Mikkelsen, J. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 2020, 11, 5038. [Google Scholar] [CrossRef]
- Teran, F.A.; Bravo, E.; Richerson, G.B. Sudden unexpected death in epilepsy: Respiratory mechanisms. Handb. Clin. Neurol. 2022, 189, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Rhone, A.E.; Kovach, C.K.; Harmata, G.I.; Sullivan, A.W.; Tranel, D.; Ciliberto, M.A.; Howard, M.A.; Richerson, G.B.; Steinschneider, M.; Wemmie, J.A.; et al. A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight 2020, 5, e134852. [Google Scholar] [CrossRef]
- George, A.G.; Farrell, J.S.; Colangeli, R.; Wall, A.K.; Gom, R.C.; Kesler, M.T.; de la Hoz, C.R.; Villa, B.R.; Perera, T.; Rho, J.M. Sudden unexpected death in epilepsy is prevented by blocking postictal hypoxia. Neuropharmacology 2023, 231, 109513. [Google Scholar] [CrossRef]
- Nashef, L.; Hindocha, N.; Makoff, A. Risk factors in sudden death in epilepsy (SUDEP): The quest for mechanisms. Epilepsia 2007, 48, 859–871. [Google Scholar] [CrossRef]
- Faingold, C.L.; Feng, H.J. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023, 64, 779–796. [Google Scholar]
- Farrell, J.S.; Colangeli, R.; Dong, A.; George, A.G.; Addo-Osafo, K.; Kingsley, P.J.; Morena, M.; Wolff, M.D.; Dudok, B.; He, K.; et al. In vivo endocannabinoid dynamics at the timescale of physiological and pathological neural activity. Neuron 2021, 109, 2398–2403.e2394. [Google Scholar] [CrossRef]
- Sillanpää, M.; Shinnar, S. Long-term mortality in childhood-onset epilepsy. N. Engl. J. Med. 2010, 363, 2522–2529. [Google Scholar] [CrossRef]
- Dlouhy, B.J.; Gehlbach, B.K.; Richerson, G.B. Sudden unexpected death in epilepsy: Basic mechanisms and clinical implications for prevention. Psychiatry 2016, 87, 402–413. [Google Scholar] [CrossRef]
- Aiba, I.; Noebels, J.L. Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. Sci. Transl. Med. 2015, 7, 282ra246. [Google Scholar] [CrossRef]
- Auerbach, D.S.; Jones, J.; Clawson, B.C.; Offord, J.; Lenk, G.M.; Ogiwara, I.; Yamakawa, K.; Meisler, M.H.; Parent, J.M.; Isom, L.L. Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLoS ONE 2013, 8, e77843. [Google Scholar] [CrossRef]
- Jackson, H. Neurological Fragments; Oxford University Press: Oxford, UK, 1925. [Google Scholar]
- Jackson, J.H. On asphyxia in slight epileptic paroxysms. Lancet 1899, 1, 79–80. [Google Scholar] [CrossRef]
- Ryvlin, P.; Nashef, L.; Lhatoo, S.D.; Bateman, L.M.; Bird, J.; Bleasel, A.; Boon, P.; Crespel, A.; Dworetzky, B.A.; Høgenhaven, H.; et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): A retrospective study. Lancet Neurol. 2013, 12, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Vilella, L.; Lacuey, N.; Hampson, J.P.; Rani, M.S.; Sainju, R.K.; Friedman, D.; Nei, M.; Strohl, K.; Scott, C.; Gehlbach, B.K. Postconvulsive central apnea as a biomarker for sudden unexpected death in epilepsy (SUDEP). Neurology 2019, 92, e171–e182. [Google Scholar] [CrossRef] [PubMed]
- Harmata, G.I.; Rhone, A.E.; Kovach, C.K.; Kumar, S.; Mowla, M.R.; Sainju, R.K.; Nagahama, Y.; Oya, H.; Gehlbach, B.K.; Ciliberto, M.A. Failure to breathe persists without air hunger or alarm following amygdala seizures. JCI Insight 2023, 8, e172423. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, V.; Aleksandrova, N. The role of the insular cortex in the control of visceral functions. Human. Physiol. 2015, 41, 553–561. [Google Scholar] [CrossRef]
- Schön, D.; Rosenkranz, M.; Regelsberger, J.; Dahme, B.; Büchel, C.; von Leupoldt, A. Reduced perception of dyspnea and pain after right insular cortex lesions. Am. J. Respir. Crit. Care Med. 2008, 178, 1173–1179. [Google Scholar] [CrossRef]
- Salami, P.; Peled, N.; Nadalin, J.K.; Martinet, L.-E.; Kramer, M.A.; Lee, J.W.; Cash, S.S. Seizure onset location shapes dynamics of initiation. Clin. Neurophysiol. 2020, 131, 1782–1797. [Google Scholar] [CrossRef]
- Burman, R.J.; Raimondo, J.V.; Jefferys, J.G.R.; Sen, A.; Akerman, C.J. The transition to status epilepticus: How the brain meets the demands of perpetual seizure activity. Seizure 2020, 75, 137–144. [Google Scholar] [CrossRef]
- Farrell, J.S.; Colangeli, R.; Wolff, M.D.; Wall, A.K.; Phillips, T.J.; George, A.; Federico, P.; Teskey, G.C. Postictal hypoperfusion/hypoxia provides the foundation for a unified theory of seizure-induced brain abnormalities and behavioral dysfunction. Epilepsia 2017, 58, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Farrell, J.S.; Gaxiola-Valdez, I.; Wolff, M.D.; David, L.S.; Dika, H.I.; Geeraert, B.L.; Rachel Wang, X.; Singh, S.; Spanswick, S.C.; Dunn, J.F. Postictal behavioural impairments are due to a severe prolonged hypoperfusion/hypoxia event that is COX-2 dependent. eLife 2016, 5, e19352. [Google Scholar] [CrossRef] [PubMed]
- Zeicu, C.; Legouhy, A.; Scott, C.A.; Oliveira, J.F.; Winston, G.P.; Duncan, J.S.; Vos, S.B.; Thom, M.; Lhatoo, S.; Zhang, H. Altered amygdala volumes and microstructure in focal epilepsy patients with tonic–clonic seizures, ictal, and post-convulsive central apnea. Epilepsia 2023, 64, 3307–3318. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, W.; Li, Y.; Jiang, T.; Mamat, B.; Zhang, Y.; Wang, F.; Meng, H. The Role of ASIC1a in Epilepsy: A Potential Therapeutic Target. Curr. Neuropharmacol. 2021, 19, 1855–1864. [Google Scholar] [CrossRef]
- Lattanzi, S.; Trinka, E.; Zaccara, G.; Striano, P.; Russo, E.; Del Giovane, C.; Silvestrini, M.; Brigo, F. Third-Generation Antiseizure Medications for Adjunctive Treatment of Focal-Onset Seizures in Adults: A Systematic Review and Network Meta-analysis. Drugs 2022, 82, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Gil-López, F.; Boget, T.; Manzanares, I.; Donaire, A.; Conde-Blanco, E.; Baillés, E.; Pintor, L.; Setoaín, X.; Bargalló, N.; Navarro, J.; et al. External trigeminal nerve stimulation for drug resistant epilepsy: A randomized controlled trial. Brain Stimul. 2020, 13, 1245–1253. [Google Scholar] [CrossRef]
- Garg, A.; Bansal, R.A. Antiepileptic Drugs; Jaypee Brothers Medical Publishers: New Delhi, India, 2020. [Google Scholar]
- Zhao, H.; Carney, K.E.; Falgoust, L.; Pan, J.W.; Sun, D.; Zhang, Z. Emerging roles of Na+/H+ exchangers in epilepsy and developmental brain disorders. Progress. Neurobiol. 2016, 138, 19–35. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, Y.-Y.; Chen, H.-M.; Wang, Q.-H.; Yang, X.-Y.; Zou, L.-P. A rise in saliva and urine pH in children with SCN1A-related epilepsy: An exploratory prospective controlled study. Front. Neurol. 2022, 13, 982050. [Google Scholar] [CrossRef]
- Contreras-García, I.J.; Cárdenas-Rodríguez, N.; Romo-Mancillas, A.; Bandala, C.; Zamudio, S.R.; Gómez-Manzo, S.; Hernández-Ochoa, B.; Mendoza-Torreblanca, J.G.; Pichardo-Macías, L.A. Levetiracetam mechanisms of action: From molecules to systems. Pharmaceuticals 2022, 15, 475. [Google Scholar] [CrossRef]
- Verrotti, A.; Lattanzi, S.; Brigo, F.; Zaccara, G. Pharmacodynamic interactions of antiepileptic drugs: From bench to clinical practice. Epilepsy Behav. 2020, 104, 106939. [Google Scholar] [CrossRef]
- Abd-Allah, W.H.; El-Mohsen Anwar, M.A.; Mohammed, E.R.; El Moghazy, S.M. Anticonvulsant Classes and Possible Mechanism of Actions. ACS Chem. Neurosci. 2023, 14, 4076–4092. [Google Scholar] [CrossRef]
- Watanabe, K.; Kimura, S.; Hazama, Y.; Morimoto, Y.; Ueda, H. Direct nose-to-brain delivery of diazepam via trigeminal nerve contributes to rapid seizure suppression in pentylenetetrazole-induced status epilepticus model rats. J. Drug Deliv. Ther. 2023, 13, 44–56. [Google Scholar] [CrossRef]
- Maglalang, P.D.; Rautiola, D.; Siegel, R.A.; Fine, J.M.; Hanson, L.R.; Coles, L.D.; Cloyd, J.C. Rescue therapies for seizure emergencies: New modes of administration. Epilepsia 2018, 59, 207–215. [Google Scholar] [CrossRef]
- Chung, S.; Peters, J.M.; Detyniecki, K.; Tatum, W.; Rabinowicz, A.L.; Carrazana, E. The nose has it: Opportunities and challenges for intranasal drug administration for neurologic conditions including seizure clusters. Epilepsy Behav. Rep. 2023, 21, 100581. [Google Scholar] [CrossRef]
- Younis, Y.K.; Abd Alhammid, S.N. Formulation and Nose-to-Brain Uptake Study of Intranasal Diazepam Nano Emulgel on Rabbits as a Potential Approach to Control Epileptic Emergencies. Hist. Med. 2023, 9, 1187–1195. [Google Scholar]
- Kienitz, R.; Kay, L.; Beuchat, I.; Gelhard, S.; von Brauchitsch, S.; Mann, C.; Lucaciu, A.; Schäfer, J.-H.; Siebenbrodt, K.; Zöllner, J.-P. Benzodiazepines in the management of seizures and status epilepticus: A review of routes of delivery, pharmacokinetics, efficacy, and tolerability. CNS Drugs 2022, 36, 951–975. [Google Scholar] [CrossRef] [PubMed]
- Almohaish, S.; Sandler, M.; Brophy, G.M. Time is brain: Acute control of repetitive seizures and status epilepticus using alternative routes of administration of benzodiazepines. J. Clin. Med. 2021, 10, 1754. [Google Scholar] [CrossRef]
- Cloyd, J.; Haut, S.; Carrazana, E.; Rabinowicz, A.L. Overcoming the challenges of developing an intranasal diazepam rescue therapy for the treatment of seizure clusters. Epilepsia 2021, 62, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Gidal, B.; Detyniecki, K. Rescue therapies for seizure clusters: Pharmacology and target of treatments. Epilepsia 2022, 63, S34–S44. [Google Scholar] [CrossRef]
- Higdon, L.M.; Sperling, M.R. A review of a diazepam nasal spray for the treatment of acute seizure clusters and prolonged seizures. Expert. Rev. Neurother. 2021, 21, 1207–1212. [Google Scholar] [CrossRef]
- West, S.; Nevitt, S.J.; Cotton, J.; Gandhi, S.; Weston, J.; Sudan, A.; Ramirez, R.; Newton, R. Surgery for epilepsy. Cochrane Database Syst. Rev. 2019, 6, CD010541. [Google Scholar] [CrossRef]
- Helmstaedter, C.; Beeres, K.; Elger, C.E.; Kuczaty, S.; Schramm, J.; Hoppe, C. Cognitive outcome of pediatric epilepsy surgery across ages and different types of surgeries: A monocentric 1-year follow-up study in 306 patients of school age. Seizure 2020, 77, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Kossoff, E.H. Dietary therapies for epilepsy. In Handbook of Pediatric Epilepsy Case Studies, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2023; pp. 39–44. [Google Scholar]
- Choudhary, A.; Mu, C.; Barrett, K.T.; Charkhand, B.; Williams-Dyjur, C.; Marks, W.N.; Shearer, J.; Rho, J.M.; Scantlebury, M.H. The link between brain acidosis, breathing and seizures: A novel mechanism of action for the ketogenic diet in a model of infantile spasms. Brain Commun. 2021, 3, fcab189. [Google Scholar] [CrossRef]
- Zanchetti, A.; Wang, S.; Moruzzi, G. The effect of vagal afferent stimulation on the EEG pattern of the cat. Electroencephalogr. Clin. Neurophysiol. 1952, 4, 357–361. [Google Scholar] [CrossRef]
- Moruzzi, G.; Magoun, H.W. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1949, 1, 455–473. [Google Scholar] [CrossRef]
- Fanselow, E.E.; Reid, A.P.; Nicolelis, M.A. Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation. J. Neurosci. 2000, 20, 8160–8168. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Fanselow, E.E.; Schrader, L.M.; Cook, I.A. Trigeminal Nerve Stimulation: Seminal Animal and Human Studies for Epilepsy and Depression. Neurosurg. Clin. N. Am. 2011, 22, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Faught, E.; Tatum, W. Trigeminal Stimulation: A Superhighway to the Brain? AAN Enterprises: Uxbridge, UK, 2013; Volume 80, pp. 780–781. [Google Scholar]
- Haneef, Z.; Skrehot, H.C. Neurostimulation in generalized epilepsy: A systematic review and meta-analysis. Epilepsia 2023, 64, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, M.; Rigby, A.; Marson, A.G. Vagus nerve stimulation for focal seizures. Cochrane Database Syst. Rev. 2022, 7, CD002896. [Google Scholar] [CrossRef]
- Lampros, M.; Vlachos, N.; Zigouris, A.; Voulgaris, S.; Alexiou, G.A. Transcutaneous vagus nerve stimulation (t-VNS) and epilepsy: A systematic review of the literature. Seizure 2021, 91, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.J.R.; Fong, K.Y.; Zheng, Y.; Chua, C.Y.K.; Miny, S.; Lin, J.B.; Nga, V.D.W.; Ong, H.T.; Rathakrishnan, R.; Yeo, T.T. Vagus nerve stimulation for treatment of drug-resistant epilepsy: A systematic review and meta-analysis. Neurosurg. Rev. 2022, 45, 2361–2373. [Google Scholar] [CrossRef]
- Krahl, S.E. Vagus nerve stimulation for epilepsy: A review of the peripheral mechanisms. Surg. Neurol. Int. 2012, 3, S47. [Google Scholar] [CrossRef] [PubMed]
- Ben-Menachem, E.; Revesz, D.; Simon, B.J.; Silberstein, S. Surgically implanted and non-invasive vagus nerve stimulation: A review of efficacy, safety and tolerability. Eur. J. Neurol. 2015, 22, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Arya, R. Vagus nerve stimulation and seizure outcomes in pediatric refractory epilepsy: Systematic review and meta-analysis. Neurology 2021, 96, 1041–1051. [Google Scholar] [CrossRef]
- Rao, V.R.; Rolston, J.D. Unearthing the mechanisms of responsive neurostimulation for epilepsy. Commun. Med. 2023, 3, 166. [Google Scholar] [CrossRef]
- Nair, D.R.; Laxer, K.D.; Weber, P.B.; Murro, A.M.; Park, Y.D.; Barkley, G.L.; Smith, B.J.; Gwinn, R.P.; Doherty, M.J.; Noe, K.H. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 2020, 95, e1244–e1256. [Google Scholar] [CrossRef]
- Singhal, N.S.; Numis, A.L.; Lee, M.B.; Chang, E.F.; Sullivan, J.E.; Auguste, K.I.; Rao, V.R. Responsive neurostimulation for treatment of pediatric drug-resistant epilepsy. Epilepsy Behav. Case Rep. 2018, 10, 21–24. [Google Scholar] [CrossRef]
- Simpson, H.D.; Schulze-Bonhage, A.; Cascino, G.D.; Fisher, R.S.; Jobst, B.C.; Sperling, M.R.; Lundstrom, B.N. Practical considerations in epilepsy neurostimulation. Epilepsia 2022, 63, 2445–2460. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Shewmon, D.A.; Whitehurst, T. Trigeminal nerve stimulation for epilepsy. Neurology 2003, 61, 421–422. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Shewmon, A.; Murray, D.; Whitehurst, T. Pilot Study of Trigeminal Nerve Stimulation (TNS) for Epilepsy: A Proof-of-Concept Trial. Epilepsia 2006, 47, 1213–1215. [Google Scholar] [CrossRef] [PubMed]
- Fanselow, E.E. Central mechanisms of cranial nerve stimulation for epilepsy. Surg. Neurol. Int. 2012, 3, S247–S254. [Google Scholar] [CrossRef]
- Abouelleil, M.; Deshpande, N.; Ali, R. Emerging trends in neuromodulation for treatment of drug-resistant epilepsy. Front. Pain. Res. 2022, 3, 839463. [Google Scholar] [CrossRef]
- Friedman, D.; Sirven, J.I. Historical perspective on the medical use of cannabis for epilepsy: Ancient times to the 1980s. Epilepsy Behav. 2017, 70, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E. Cannabinoids in the Treatment of Epilepsy: Hard Evidence at Last? J. Epilepsy Res. 2017, 7, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, R.; Thiele, E.A. The role of cannabinoids in epilepsy treatment: A critical review of efficacy results from clinical trials. Epileptic Disord. 2020, 22, S23–S28. [Google Scholar] [CrossRef]
- O’Shaughnessy, W.B. On the preparations of the Indian hemp, or Gunjah: Cannabis indica their effects on the animal system in health, and their utility in the treatment of tetanus and other convulsive diseases. Prov. Med. J. Retrosp. Med. Sci. 1843, 5, 363. [Google Scholar]
- Gowers, W.R. Epilepsy and Other Chronic Convulsive Diseases: Their Causes, Symptoms, and Treatment; Old Hickory Bookshop: New Haven, CT, USA, 1901. [Google Scholar]
- Farrelly, A.M.; Vlachou, S.; Grintzalis, K. Efficacy of phytocannabinoids in epilepsy treatment: Novel approaches and recent advances. Int. J. Environ. Res. Public Health 2021, 18, 3993. [Google Scholar] [CrossRef]
- Soltesz, I.; Alger, B.E.; Kano, M.; Lee, S.-H.; Lovinger, D.M.; Ohno-Shosaku, T.; Watanabe, M. Weeding out bad waves: Towards selective cannabinoid circuit control in epilepsy. Nat. Rev. Neurosci. 2015, 16, 264–277. [Google Scholar] [CrossRef]
- Dong, A.; He, K.; Dudok, B.; Farrell, J.S.; Guan, W.; Liput, D.J.; Puhl, H.L.; Cai, R.; Wang, H.; Duan, J. A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nat. Biotechnol. 2022, 40, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017, 376, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Abbasova, K.; Zybina, A.; van Luijtelaar, E. Spatial-temporal characteristics of thalamo-cortical oscillations after unilateral cortical spreading depression in the recovery period in WAG/Rij rats. Epilepsia 2017, 58, S148–S149. [Google Scholar]
- Cross, J.H.; Cock, H. A perspective on cannabinoids for treating epilepsy: Do they really change the landscape? Neuropharmacology 2020, 170, 107861. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.A.; Whalley, B.J. The proposed mechanisms of action of CBD in epilepsy. Epileptic Disord. 2020, 22, S10–S15. [Google Scholar] [CrossRef]
- Morano, A.; Fanella, M.; Albini, M.; Cifelli, P.; Palma, E.; Giallonardo, A.T.; Di Bonaventura, C. Cannabinoids in the treatment of epilepsy: Current status and future prospects. Neuropsychiatr. Dis. Treat. 2020, 16, 381–396. [Google Scholar] [CrossRef]
- Amin, M.R.; Ali, D.W. Pharmacology of medical cannabis. In Recent Advances in Cannabinoid Physiology and Pathology; Springer: Cham, Switzerland, 2019; pp. 151–165. [Google Scholar]
- Espinosa-Jovel, C. Cannabinoids in epilepsy: Clinical efficacy and pharmacological considerations. Neurologia 2023, 38, 47–53. (In English) [Google Scholar] [CrossRef]
- Tolner, E.A.; Hochman, D.W.; Hassinen, P.; Otáhal, J.; Gaily, E.; Haglund, M.M.; Kubová, H.; Schuchmann, S.; Vanhatalo, S.; Kaila, K. Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia 2011, 52, 104–114. [Google Scholar] [CrossRef]
- McSharry, C. A new therapeutic strategy in epileptic seizure suppression. Nat. Rev. Neurol. 2010, 6, 644. [Google Scholar] [CrossRef]
- Lennox, W.G.; Gibbs, F.A.; Gibbs, E.L. Effect on the electro-encephalogram of drugs and conditions which influence seizures. Arch. Neurol. Psychiatry 1936, 36, 1236–1250. [Google Scholar] [CrossRef]
- Pollock, G.H.; Stein, S.; Gyarfas, K. Central inhibitory effects of carbon dioxide. III. Man. Proc. Soc. Exp. Biol. Med. 1949, 70, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Woodbury, D.M.; Rollins, L.T.; Henrie, J.R.; Jones, J.C.; Sato, T. Effects of carbon dioxide and oxygen on properties of experimental seizures in mice. Am. J. Physiol. Leg. Content 1955, 184, 202–208. [Google Scholar] [CrossRef]
- Meyer, J.S.; Gotoh, F.; Tazaki, Y. Inhibitory action of carbon dioxide and acetazoleamide in seizure activity. Electroencephalogr. Clin. Neurophysiol. 1961, 13, 762–775. [Google Scholar] [CrossRef]
- Schuchmann, S.; Schmitz, D.; Rivera, C.; Vanhatalo, S.; Salmen, B.; Mackie, K.; Sipilä, S.T.; Voipio, J.; Kaila, K. Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat. Med. 2006, 12, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, I.; Hayashi, K.; Wang, H.; Ouchida, M.; Fujita, N.; Inoue, T.; Michiue, H.; Nishiki, T.; Matsui, H. Inhalation of 10% carbon dioxide rapidly terminates Scn1a mutation-related hyperthermia-induced seizures. Epilepsy Res. 2013, 105, 220–224. [Google Scholar] [CrossRef]
- Yang, X.-F.; Shi, X.-Y.; Ju, J.; Zhang, W.-N.; Liu, Y.-J.; Li, X.-Y.; Zou, L.-P. 5% CO2 inhalation suppresses hyperventilation-induced absence seizures in children. Epilepsy Res. 2014, 108, 345–348. [Google Scholar] [CrossRef]
- Karsan, N.; Gonzales, E.B.; Dussor, G. Targeted acid-sensing ion channel therapies for migraine. Neurotherapeutics 2018, 15, 402–414. [Google Scholar] [CrossRef]
- Carattino, M.D.; Montalbetti, N. Acid-sensing ion channels in sensory signaling. Am. J. Physiol. Ren. Physiol. 2020, 318, F531–F543. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, Y.Q.; Li, C.; He, M.; Rusyniak, W.G.; Annamdevula, N.; Ochoa, J.; Leavesley, S.J.; Xu, J.; Rich, T.C.; et al. Human ASIC1a mediates stronger acid-induced responses as compared with mouse ASIC1a. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018, 32, 3832–3843. [Google Scholar] [CrossRef]
- Ziemann, A.E.; Schnizler, M.K.; Albert, G.W.; Severson, M.A.; Howard, M.A., 3rd; Welsh, M.J.; Wemmie, J.A. Seizure termination by acidosis depends on ASIC1a. Nat. Neurosci. 2008, 11, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Gourine, A.V.; Funk, G.D. On the existence of a central respiratory oxygen sensor. J. Appl. Physiol. 2017, 123, 1344–1349. [Google Scholar] [CrossRef]
- Kefauver, J.; Ward, A.; Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020, 587, 567–576. [Google Scholar] [CrossRef]
- Theparambil, S.M.; Hosford, P.S.; Ruminot, I.; Kopach, O.; Reynolds, J.R.; Sandoval, P.Y.; Rusakov, D.A.; Barros, L.F.; Gourine, A.V. Astrocytes regulate brain extracellular pH via a neuronal activity-dependent bicarbonate shuttle. Nat. Commun. 2020, 11, 5073. [Google Scholar] [CrossRef]
- Sheikhbahaei, S.; Turovsky, E.A.; Hosford, P.S.; Hadjihambi, A.; Theparambil, S.M.; Liu, B.; Marina, N.; Teschemacher, A.G.; Kasparov, S.; Smith, J.C. Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nat. Commun. 2018, 9, 370. [Google Scholar] [CrossRef]
- Vita, G.; Vianello, A.; Vita, G.L. Autonomic Control of Breathing in Health and Disease. In Autonomic Disorders in Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2023; pp. 317–334. [Google Scholar]
- Fisher, J.P.; Zera, T.; Paton, J.F. Respiratory–cardiovascular interactions. Handb. Clin. Neurol. 2022, 188, 279–308. [Google Scholar] [PubMed]
- Chou, G.M.; Bush, N.E.; Phillips, R.S.; Baertsch, N.A.; Harris, K.D. Modeling effects of variable preBotzinger Complex network topology and cellular properties on opioid-induced respiratory depression and recovery. eNeuro 2024, 11, 1–15. [Google Scholar] [CrossRef]
- Dhingra, R.R.; Dick, T.E.; Furuya, W.I.; Galán, R.F.; Dutschmann, M. Volumetric mapping of the functional neuroanatomy of the respiratory network in the perfused brainstem preparation of rats. J. Physiol. 2020, 598, 2061–2079. [Google Scholar] [CrossRef]
- Dhingra, R.R.; Furuya, W.I.; Dick, T.E.; Dutschmann, M. Response to: The post-inspiratory complex (PiCo), what is the evidence? J. Physiol. 2021, 599, 361–362. [Google Scholar] [CrossRef]
- Beltrán-Castillo, S.; Olivares, M.; Contreras, R.; Zúñiga, G.; Llona, I.; Von Bernhardi, R.; Eugenín, J. D-serine released by astrocytes in brainstem regulates breathing response to CO2 levels. Nat. Commun. 2017, 8, 838. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.F.; Feldman, J.L. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J. Comp. Neurol. 2018, 526, 1389–1402. [Google Scholar] [CrossRef] [PubMed]
- Ashhad, S.; Feldman, J.L. Emergent elements of inspiratory rhythmogenesis: Network synchronization and synchrony propagation. Neuron 2020, 106, 482–497. [Google Scholar] [CrossRef] [PubMed]
- Guyenet, P.G.; Stornetta, R.L.; Souza, G.M.; Abbott, S.B.; Shi, Y.; Bayliss, D.A. The retrotrapezoid nucleus: Central chemoreceptor and regulator of breathing automaticity. Trends Neurosci. 2019, 42, 807–824. [Google Scholar] [CrossRef]
- Lyros, E.; Ragoschke-Schumm, A.; Kostopoulos, P.; Sehr, A.; Backens, M.; Kalampokini, S.; Decker, Y.; Lesmeister, M.; Liu, Y.; Reith, W. Normal brain aging and Alzheimer’s disease are associated with lower cerebral pH: An in vivo histidine 1H-MR spectroscopy study. Neurobiol. Aging 2020, 87, 60–69. [Google Scholar] [CrossRef]
- Decker, Y.; Németh, E.; Schomburg, R.; Chemla, A.; Fülöp, L.; Menger, M.D.; Liu, Y.; Fassbender, K. Decreased pH in the aging brain and Alzheimer’s disease. Neurobiol. Aging 2021, 101, 40–49. [Google Scholar] [CrossRef]
- Sainju, R.K.; Dragon, D.N.; Winnike, H.B.; Ten Eyck, P.; Granner, M.A.; Gehlbach, B.K.; Richerson, G.B. Hypercapnic ventilatory response in epilepsy patients treated with VNS: A case-control study. Epilepsia 2021, 62, e140–e146. [Google Scholar] [CrossRef]
- Herrero, J.L.; Khuvis, S.; Yeagle, E.; Cerf, M.; Mehta, A.D. Breathing above the brain stem: Volitional control and attentional modulation in humans. J. Neurophysiol. 2018, 119, 145–159. [Google Scholar] [CrossRef]
- Girin, B.; Juventin, M.; Garcia, S.; Lefèvre, L.; Amat, C.; Fourcaud-Trocmé, N.; Buonviso, N. The deep and slow breathing characterizing rest favors brain respiratory-drive. Sci. Rep. 2021, 11, 7044. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Líbano, D.; Solar, J.W.d.; Aguilar-Rivera, M.; Montefusco-Siegmund, R.; Maldonado, P.E. Local cortical activity of distant brain areas can phase-lock to the olfactory bulb’s respiratory rhythm in the freely behaving rat. J. Neurophysiol. 2018, 120, 960–972. [Google Scholar] [CrossRef]
- Zelano, C.; Jiang, H.; Zhou, G.; Arora, N.; Schuele, S.; Rosenow, J.; Gottfried, J.A. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 2016, 36, 12448–12467. [Google Scholar] [CrossRef]
- Raimondo, J.V.; Burman, R.J.; Katz, A.A.; Akerman, C.J. Ion dynamics during seizures. Front. Cell. Neurosci. 2015, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Quade, B.N.; Parker, M.D.; Occhipinti, R. The therapeutic importance of acid-base balance. Biochem. Pharmacol. 2021, 183, 114278. [Google Scholar] [CrossRef]
- McGonigal, A.; Bartolomei, F.; Chauvel, P. On seizure semiology. Epilepsia 2021, 62, 2019–2035. [Google Scholar] [CrossRef]
- Aiello, G. Visual semiotics: Key concepts and new directions. In The SAGE Handbook of Visual Research Methods; Sage Publications: Thousand Oaks, CA, USA, 2020; pp. 367–380. [Google Scholar]
- Siregar, I. Semiotic touch in interpreting poetry. Br. Int. Linguist. Arts Educ. (BIoLAE) J. 2022, 4, 19–27. [Google Scholar] [CrossRef]
- Wu, J.; Liu, P.; Geng, C.; Liu, C.; Li, J.; Zhu, Q.; Li, A. Principal neurons in the olfactory cortex mediate bidirectional modulation of seizures. J. Physiol. 2023, 601, 3557–3584. [Google Scholar] [CrossRef] [PubMed]
- Teran, F.A.; Sainju, R.K.; Bravo, E.; Wagnon, J.; Kim, Y.; Granner, A.; Gehlbach, B.K.; Richerson, G.B. Seizures Cause Prolonged Impairment of Ventilation, CO(2) Chemoreception and Thermoregulation. J. Neurosci. 2023, 43, 4959–4971. [Google Scholar] [CrossRef] [PubMed]
- Sainju, R.K.; Dragon, D.N.; Winnike, H.B.; Nashelsky, M.B.; Granner, M.A.; Gehlbach, B.K.; Richerson, G.B. Ventilatory response to CO2 in patients with epilepsy. Epilepsia 2019, 60, 508–517. [Google Scholar] [CrossRef]
- Sainju, R.K.; Dragon, D.N.; Winnike, H.B.; Vilella, L.; Li, X.; Lhatoo, S.; Ten Eyck, P.; Wendt, L.H.; Richerson, G.B.; Gehlbach, B.K. Interictal respiratory variability predicts severity of hypoxemia after generalized convulsive seizures. Epilepsia 2023, 64, 2373–2384. [Google Scholar] [CrossRef] [PubMed]
- Çelikhisar, H.; Cingi, C.; Scadding, G. Airways: Physiology. In Airway Diseases; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–12. [Google Scholar]
- Freeman, S.C.; Karp, D.A.; Kahwaji, C.I. Physiology, Nasal; StatPearls: Treasure Island, FL, USA, 2018. [Google Scholar]
- Jankowski, R.; Márquez, S. Embryology of the nose: The evo-devo concept. World J. Otorhinolaryngol. 2016, 6, 33–40. [Google Scholar] [CrossRef]
- Jankowski, R. The evo-devo origins of the nasopharynx. Anat. Rec. 2022, 305, 1857–1870. [Google Scholar] [CrossRef]
- Neskey, D.; Eloy, J.A.; Casiano, R.R. Nasal, septal, and turbinate anatomy and embryology. Otolaryngol. Clin. N. Am. 2009, 42, 193–205. [Google Scholar] [CrossRef]
- Azgın, İ.; Kar, M.; Prokopakis, E.P. Histology and Embryology of the Nose and Paranasal Sinuses. In All Around the Nose: Basic Science, Diseases and Surgical Management; Springer International Publishing: Cham, Switzerland, 2020; pp. 33–38. [Google Scholar]
- Erdoğan, A.; Araz, Ö.; Bayar Muluk, N. Embryological and Postnatal Development of the Airways. In Airway Diseases; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–10. [Google Scholar]
- Patel, R.G. Nasal anatomy and function. Facial Plast. Surg. 2017, 33, 003–008. [Google Scholar] [CrossRef] [PubMed]
- Chamanza, R.; Wright, J. A review of the comparative anatomy, histology, physiology and pathology of the nasal cavity of rats, mice, dogs and non-human primates. Relevance to inhalation toxicology and human health risk assessment. J. Comp. Pathol. 2015, 153, 287–314. [Google Scholar] [CrossRef]
- Cappello, Z.J.; Minutello, K.; Dublin, A.B. Anatomy, Head and Neck, Nose Paranasal Sinuses; StatPearls: Treasure Island, FL, USA, 2018. [Google Scholar]
- Ito, K.; Tu, V.T.; Eiting, T.P.; Nojiri, T.; Koyabu, D. On the embryonic development of the nasal turbinals and their homology in bats. Front. Cell Dev. Biol. 2021, 9, 613545. [Google Scholar] [CrossRef]
- Frasnelli, J.; Manescu, S. The Intranasal Trigeminal System; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Crowe, T.P.; Hsu, W.H. Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics 2022, 14, 629. [Google Scholar] [CrossRef]
- Nturibi, E.; Bordoni, B. Anatomy, Head and Neck, Greater Petrosal Nerve; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Chokroverty, S.; Bhat, S. Functional neuroanatomy of the peripheral autonomic nervous system. In Autonomic Nervous System and Sleep; Springer: Cham, Switzerland, 2021; pp. 19–28. [Google Scholar]
- Wilson-Pauwels, L.; Stewart, P.A.; Akesson, E.J.; Spacey, S.D. Cranial Nerves: Function and Dysfunction; PMPH USA: Cary, NC, USA, 2010. [Google Scholar]
- Goosmann, M.M.; Dalvin, M. Anatomy, Head and Neck, Deep Petrosal Nerve; StatPearls: Treasure Island, FL, USA, 2018. [Google Scholar]
- Ogi, K.; Valentine, R.; Suzuki, M.; Fujieda, S.; Psaltis, A.J.; Wormald, P.J. The anatomy of the foramina and efferent nerve fibers from the pterygopalatine ganglion in posterolateral nasal wall. Laryngoscope Investig. Otolaryngol. 2022, 7, 679–683. [Google Scholar] [CrossRef]
- Améndola, L.; Weary, D.M. Understanding rat emotional responses to CO2. Transl. Psychiatry 2020, 10, 253. [Google Scholar] [CrossRef]
- Pendolino, A.L.; Lund, V.J.; Nardello, E.; Ottaviano, G. The nasal cycle: A comprehensive review. Rhinol. Online 2018, 1, 67–76. [Google Scholar] [CrossRef]
- Price, A.; Eccles, R. Nasal airflow and brain activity: Is there a link? J. Laryngol. Otol. 2016, 130, 794–799. [Google Scholar] [CrossRef]
- Kahana-Zweig, R.; Geva-Sagiv, M.; Weissbrod, A.; Secundo, L.; Soroker, N.; Sobel, N. Measuring and Characterizing the Human Nasal Cycle. PLoS ONE 2016, 11, e0162918. [Google Scholar] [CrossRef] [PubMed]
- Korzak, G.G. The Influence of Hatha Yoga on Nasal Laterality Among Yoga Practitioners; Northern Illinois University: DeKalb, IL, USA, 1988. [Google Scholar]
- Searleman, A.; Hornung, D.E.; Stein, E.; Brzuszkiewicz, L. Nostril dominance: Differences in nasal airflow and preferred handedness. Laterality Asymmetries Body Brain Cogn. 2005, 10, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Rohrmeier, C.; Schittek, S.; Ettl, T.; Herzog, M.; Kuehnel, T.S. The nasal cycle during wakefulness and sleep and its relation to body position. Laryngoscope 2014, 124, 1492–1497. [Google Scholar] [CrossRef]
- Kollndorfer, K.; Kowalczyk, K.; Frasnelli, J.; Hoche, E.; Unger, E.; Mueller, C.A.; Krajnik, J.; Trattnig, S.; Schöpf, V. Same same but different. Different trigeminal chemoreceptors share the same central pathway. PLoS ONE 2015, 10, e0121091. [Google Scholar] [CrossRef]
- Albrecht, J.; Kopietz, R.; Frasnelli, J.; Wiesmann, M.; Hummel, T.; Lundström, J.N. The neuronal correlates of intranasal trigeminal function—An ALE meta-analysis of human functional brain imaging data. Brain Res. Rev. 2010, 62, 183–196. [Google Scholar] [CrossRef]
- Hummel, T.; Frasnelli, J. The intranasal trigeminal system. Handb. Clin. Neurol. 2019, 164, 119–134. [Google Scholar] [CrossRef]
- Terrier, L.-M.; Hadjikhani, N.; Destrieux, C. The trigeminal pathways. J. Neurol. 2022, 269, 3443–3460. [Google Scholar] [CrossRef]
- Edvinsson, J.; Viganò, A.; Alekseeva, A.; Alieva, E.; Arruda, R.; De Luca, C.; D’Ettore, N.; Frattale, I.; Kurnukhina, M.; Macerola, N. The fifth cranial nerve in headaches. J. Headache Pain 2020, 21, 65. [Google Scholar] [CrossRef] [PubMed]
- Shusterman, D. Trigeminal function in sino-nasal health and disease. Biomedicines 2023, 11, 1778. [Google Scholar] [CrossRef] [PubMed]
- Silver, W.L.; Clapp, T.R.; Stone, L.M.; Kinnamon, S.C. TRPV1 receptors and nasal trigeminal chemesthesis. Chem. Senses 2006, 31, 807–812. [Google Scholar] [CrossRef]
- Finger, T.E.; Böttger, B.; Hansen, A.; Anderson, K.T.; Alimohammadi, H.; Silver, W.L. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc. Natl. Acad. Sci. USA 2003, 100, 8981–8986. [Google Scholar] [CrossRef] [PubMed]
- Finger, T.E.; Kinnamon, S.C. Taste isn’t just for taste buds anymore. F1000 Biol. Rep. 2011, 3, 20. [Google Scholar] [CrossRef]
- Deng, J.; Tan, L.H.; Kohanski, M.A.; Kennedy, D.W.; Bosso, J.V.; Adappa, N.D.; Palmer, J.N.; Shi, J.; Cohen, N.A. Solitary chemosensory cells are innervated by trigeminal nerve endings and autoregulated by cholinergic receptors. Int. Forum Allergy Rhinol. 2021, 11, 877–884. [Google Scholar] [CrossRef]
- Celebi, Ö.Ö.; Önerci, T.M. Nasal Physiology and Pathophysiology of Nasal Disorders; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Target. Ther. 2023, 8, 261. [Google Scholar] [CrossRef] [PubMed]
- Tsagareli, M.G.; Nozadze, I. An overview on transient receptor potential channels superfamily. Behav. Pharmacol. 2020, 31, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Aucoin, R.; Lewthwaite, H.; Ekström, M.; von Leupoldt, A.; Jensen, D. Impact of trigeminal and/or olfactory nerve stimulation on measures of inspiratory neural drive: Implications for breathlessness. Respir. Physiol. Neurobiol. 2023, 311, 104035. [Google Scholar] [CrossRef]
- Liu, C.; Montell, C. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochem. Biophys. Res. Commun. 2015, 460, 22–25. [Google Scholar] [CrossRef]
- van Goor, M.K.; Hoenderop, J.G.; van der Wijst, J. TRP channels in calcium homeostasis: From hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim. Et Biophys. Acta (BBA) Mol. Cell Res. 2017, 1864, 883–893. [Google Scholar] [CrossRef]
- Chen, X.; Sooch, G.; Demaree, I.S.; White, F.A.; Obukhov, A.G. Transient receptor potential canonical (TRPC) channels: Then and now. Cells 2020, 9, 1983. [Google Scholar] [CrossRef]
- Himmel, N.J.; Cox, D.N. Transient receptor potential channels: Current perspectives on evolution, structure, function and nomenclature. Proc. R. Soc. B 2020, 287, 20201309. [Google Scholar] [CrossRef] [PubMed]
- Nakhleh, M.K.; Amal, H.; Jeries, R.; Broza, Y.Y.; Aboud, M.; Gharra, A.; Ivgi, H.; Khatib, S.; Badarneh, S.; Har-Shai, L.; et al. Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules. ACS Nano 2017, 11, 112–125. [Google Scholar] [CrossRef]
- Das, S.; Pal, M. Non-invasive monitoring of human health by exhaled breath analysis: A comprehensive review. J. Electrochem. Soc. 2020, 167, 037562. [Google Scholar] [CrossRef]
- Szunerits, S.; Dӧrfler, H.; Pagneux, Q.; Daniel, J.; Wadekar, S.; Woitrain, E.; Ladage, D.; Montaigne, D.; Boukherroub, R. Exhaled breath condensate as bioanalyte: From collection considerations to biomarker sensing. Anal. Bioanal. Chem. 2023, 415, 27–34. [Google Scholar] [CrossRef]
- Tankasala, D.; Linnes, J.C. Noninvasive glucose detection in exhaled breath condensate. Transl. Res. 2019, 213, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzai, H.; Huang, S.; Hettiarachchi, R.; Lin, J.-L.; Thomas, P.S.; Zhang, Q. Exhaled breath condensate: A comprehensive update. Clin. Chem. Lab. Med. 2013, 51, 1343–1361. [Google Scholar] [CrossRef]
- Dixit, K.; Fardindoost, S.; Ravishankara, A.; Tasnim, N.; Hoorfar, M. Exhaled Breath Analysis for Diabetes Diagnosis and Monitoring: Relevance, Challenges and Possibilities. Biosensors 2021, 11, 476. [Google Scholar] [CrossRef]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F.E. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef]
- Kuo, T.C.; Tan, C.E.; Wang, S.Y.; Lin, O.A.; Su, B.H.; Hsu, M.T.; Lin, J.; Cheng, Y.Y.; Chen, C.S.; Yang, Y.C.; et al. Human Breathomics Database. Database 2020, 2020, baz139. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.; Carr, L.; Cordell, R.; Wilde, M.J.; Salman, D.; Monks, P.S.; Thomas, P.; Brightling, C.E.; Siddiqui, S.; Greening, N.J. Breathomics for the clinician: The use of volatile organic compounds in respiratory diseases. Thorax 2021, 76, 514–521. [Google Scholar] [CrossRef]
- Bruderer, T.; Gaisl, T.; Gaugg, M.T.; Nowak, N.; Streckenbach, B.; Müller, S.; Moeller, A.; Kohler, M.; Zenobi, R. On-line analysis of exhaled breath: Focus review. Chem. Rev. 2019, 119, 10803–10828. [Google Scholar] [CrossRef]
- Pham, Y.L.; Beauchamp, J. Breath Biomarkers in Diagnostic Applications. Molecules 2021, 26, 5514. [Google Scholar] [CrossRef]
- Kullmann, T.; Barta, I.; Lázár, Z.; Szili, B.; Barát, E.; Valyon, M.; Kollai, M.; Horváth, I. Exhaled breath condensate pH standardised for CO2 partial pressure. Eur. Respir. J. 2007, 29, 496. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, J.; Ngamtrakulpanit, L.; Pajewski, T.; Turner, R.; Nguyen, T.; Smith, A.; Urban, P.; Hom, S.; Gaston, B.; Hunt, J. Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur. Respir. J. 2003, 22, 889–894. [Google Scholar] [CrossRef]
- Antus, B.; Barta, I.; Kullmann, T.; Lazar, Z.; Valyon, M.; Horvath, I.; Csiszer, E. Assessment of exhaled breath condensate pH in exacerbations of asthma and chronic obstructive pulmonary disease: A longitudinal study. Am. J. Respir. Crit. Care Med. 2010, 182, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
- Rama, T.A.; Paciência, I.; Cavaleiro Rufo, J.; Silva, D.; Cunha, P.; Severo, M.; Padrão, P.; Moreira, P.; Delgado, L.; Moreira, A. Exhaled breath condensate pH determinants in school-aged children: A population-based study. Pediatr. Allergy Immunol. 2021, 32, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- Mansour, E.; Vishinkin, R.; Rihet, S.; Saliba, W.; Fish, F.; Sarfati, P.; Haick, H. Measurement of temperature and relative humidity in exhaled breath. Sens. Actuators B Chem. 2020, 304, 127371. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Foschino-Barbaro, M.P.; Crocetta, C.; Lacedonia, D.; Saliani, V.; Zoppo, L.D.; Barnes, P.J. Validation of the exhaled breath temperature measure: Reference values in healthy subjects. Chest 2017, 151, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Salati, H.; Khamooshi, M.; Vahaji, S.; Christo, F.C.; Fletcher, D.F.; Inthavong, K. N95 respirator mask breathing leads to excessive carbon dioxide inhalation and reduced heat transfer in a human nasal cavity. Phys. Fluids 2021, 33, 081913. [Google Scholar] [CrossRef]
- Mahjoub Mohammed Merghani, K.; Sagot, B.; Gehin, E.; Da, G.; Motzkus, C. A review on the applied techniques of exhaled airflow and droplets characterization. Indoor Air 2021, 31, 7–25. [Google Scholar] [CrossRef]
- Douglas, E.R. Practical Understanding of Partition Coefficients. LCGC N. Am. 2023, 41, 95–98, 111. [Google Scholar]
- Myers, M.; White, C.; Stalker, L.; Ross, A. Literature Review of Tracer Partition Coefficients; EP01061231; CSIRO: Canberra, Australia, 2012. [Google Scholar]
- Endeward, V.; Al-Samir, S.; Itel, F.; Gros, G. How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods. Front. Physiol. 2014, 4, 72383. [Google Scholar] [CrossRef]
- Endeward, V.; Arias-Hidalgo, M.; Al-Samir, S.; Gros, G. CO2 permeability of biological membranes and role of CO2 channels. Membranes 2017, 7, 61. [Google Scholar] [CrossRef]
- Kurt, Y. The Role of Aquaporins in Sinonasal Mucosa Physiopathology. Int. J. Acad. Med. Pharm. 2022, 4, 72–77. [Google Scholar]
- Michenkova, M.; Taki, S.; Blosser, M.C.; Hwang, H.J.; Kowatz, T.; Moss, F.J.; Occhipinti, R.; Qin, X.; Sen, S.; Shinn, E. Carbon dioxide transport across membranes. Interface Focus 2021, 11, 20200090. [Google Scholar] [CrossRef]
- Boron, W.F.; Endeward, V.; Gros, G.; Musa-Aziz, R.; Pohl, P. Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels. Chemphyschem 2011, 12, 1017–1019. [Google Scholar] [CrossRef] [PubMed]
- Arias-Hidalgo, M.; Al-Samir, S.; Gros, G.; Endeward, V. Cholesterol is the main regulator of the carbon dioxide permeability of biological membranes. Am. J. Physiol. Cell Physiol. 2018, 315, C137–C140. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Rulhania, S.; Jaswal, S.; Monga, V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur. J. Med. Chem. 2021, 209, 112923. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; An, L.; Ferraris Araneta, M.; Victorino, M.; Johnson, C.S.; Shen, J. Carbonic anhydrase activity in the frontal lobe of human brain. NMR Biomed. 2021, 34, e4501. [Google Scholar] [CrossRef]
- Nocentini, A.; Supuran, C.T. (Eds.) Carbonic anhydrases: An overview. In Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target; Academic Press: Cambridge, MA, USA, 2019; Chapter 1; pp. 3–16. [Google Scholar] [CrossRef]
- Sharma, T.; Sharma, S.; Kamyab, H.; Kumar, A. Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: A review. J. Clean. Prod. 2020, 247, 119138. [Google Scholar] [CrossRef]
- Sakakibara, Y. Localization of CO2 sensor related to the inhibition of the bullfrog respiration. Jpn. J. Physiol. 1978, 28, 721–735. [Google Scholar] [CrossRef]
- Smyth, D. The central and reflex control of respiration in the frog. J. Physiol. 1939, 95, 305. [Google Scholar] [CrossRef]
- Milsom, W.K.; Abe, A.S.; Andrade, D.V.; Tattersall, G.J. Evolutionary trends in airway CO2/H+ chemoreception. Respir. Physiol. Neurobiol. 2004, 144, 191–202. [Google Scholar] [CrossRef]
- Coates, E.L. Olfactory CO2 chemoreceptors. Respir. Physiol. 2001, 129, 219–229. [Google Scholar] [CrossRef]
- Milsom, W. The phylogeny of central chemoreception. Respir. Physiol. Neurobiol. 2010, 173, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-B.; Park, J.; Jang, J.; Cho, Y.; Park, D.-S.; Kim, C.; Bae, G.-N.; Jang, A. Study on the initial velocity distribution of exhaled air from coughing and speaking. Chemosphere 2012, 87, 1260–1264. [Google Scholar] [CrossRef]
- Abkarian, M.; Mendez, S.; Xue, N.; Yang, F.; Stone, H.A. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proc. Natl. Acad. Sci. USA 2020, 117, 25237–25245. [Google Scholar] [CrossRef]
- Bourrianne, P.; Xue, N.; Nunes, J.; Abkarian, M.; Stone, H.A. Quantifying the effect of a mask on expiratory flows. Phys. Rev. Fluids 2021, 6, 110511. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, P.; Jia, W. Poor ventilation worsens short-range airborne transmission of respiratory infection. Indoor Air 2022, 32, e12946. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.K.; Lin, C.-H.; Chen, Q. Characterizing exhaled airflow from breathing and talking. Indoor Air 2010, 20, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M. Exhaled air speed measurements of respiratory air flow, generated by ten different human subjects, under uncontrolled conditions. E3S Web Conf. 2019, 111, 02074. [Google Scholar] [CrossRef]
- Chao, C.Y.H.; Wan, M.P.; Morawska, L.; Johnson, G.R.; Ristovski, Z.D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Li, Y.; Xie, X.; et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 2009, 40, 122–133. [Google Scholar] [CrossRef]
- Han, M.; Ooka, R.; Kikumoto, H.; Oh, W.; Bu, Y.; Hu, S. Experimental measurements of airflow features and velocity distribution exhaled from sneeze and speech using particle image velocimetry. Build. Environ. 2021, 205, 108293. [Google Scholar] [CrossRef]
- Giovanni, A.; Radulesco, T.; Bouchet, G.; Mattei, A.; Révis, J.; Bogdanski, E.; Michel, J. Transmission of droplet-conveyed infectious agents such as SARS-CoV-2 by speech and vocal exercises during speech therapy: Preliminary experiment concerning airflow velocity. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 1687–1692. [Google Scholar] [CrossRef]
- Berlanga, F.; Olmedo, I.; Ruiz de Adana, M. Experimental analysis of the air velocity and contaminant dispersion of human exhalation flows. Indoor Air 2017, 27, 803–815. [Google Scholar] [CrossRef]
- Inthavong, K.; Shang, Y.; Tu, J. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity. Respir. Physiol. Neurobiol. 2014, 190, 54–61. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Xu, D.; Bai, L.; Zhou, Y.-M.; Zhang, H.; Cui, Y.-L. A review of non-invasive drug delivery through respiratory routes. Pharmaceutics 2022, 14, 1974. [Google Scholar] [CrossRef]
- Shrestha, K.; Wong, E.; Salati, H.; Fletcher, D.F.; Singh, N.; Inthavong, K. Liquid volume and squeeze force effects on nasal irrigation using Volume of Fluid modelling. Exp. Comput. Multiph. Flow 2022, 4, 445–464. [Google Scholar] [CrossRef]
- Shrestha, K.; Salati, H.; Fletcher, D.; Singh, N.; Inthavong, K. Effects of head tilt on squeeze-bottle nasal irrigation–A computational fluid dynamics study. J. Biomech. 2021, 123, 110490. [Google Scholar] [CrossRef] [PubMed]
- Inthavong, K.; Shang, Y.; Wong, E.; Singh, N. Characterization of nasal irrigation flow from a squeeze bottle using computational fluid dynamics. Int. Forum Allergy Rhinol. 2020, 10, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; He, X.; Yang, Q.; Gu, Q.; Zhang, X.; Sui, X.; Zhou, R.; Feng, W. Numerical simulation of the influence of nasal cycle on nasal airflow. Sci. Rep. 2024, 14, 12161. [Google Scholar] [CrossRef]
- Abdalla, M.A. Human maxillary sinus development, pneumatization, anatomy, blood supply, innervation and functional theories: An update review. Siriraj Med. J. 2022, 74, 472–479. [Google Scholar] [CrossRef]
- Veronesi, M.C.; Alhamami, M.; Miedema, S.B.; Yun, Y.; Ruiz-Cardozo, M.; Vannier, M.W. Imaging of intranasal drug delivery to the brain. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 1. [Google Scholar]
- Keller, L.-A.; Merkel, O.; Popp, A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 2022, 12, 735–757. [Google Scholar] [CrossRef]
- Sasaki, K.; Fukakusa, S.; Torikai, Y.; Suzuki, C.; Sonohata, I.; Kawahata, T.; Magata, Y.; Kawai, K.; Haruta, S. Effective nose-to-brain drug delivery using a combination system targeting the olfactory region in monkeys. J. Control Release 2023, 359, 384–399. [Google Scholar] [CrossRef]
- Jayasuriya, K.S. Discuss evidence of the Yoga practices in the Pre-Vedic Indus-Saraswati Valley. 2021. [Google Scholar] [CrossRef]
- Feuerstein, G. The Deeper Dimension of Yoga: Theory and Practice; Shambhala Publications: Boulder, CO, USA, 2003. [Google Scholar]
- Mohan, S.M. Svara (nostril dominance) and bilateral volar GSR. Indian J. Physiol. Pharmacol. 1996, 40, 58–64. [Google Scholar] [PubMed]
- Mohan, S.M. Reflex reversal of nostril dominance by application of pressure to the axilla by a crutch. Indian. J. Physiol. Phannacol 1993, 37, 147–150. [Google Scholar]
- Whyte, A.; Boeddinghaus, R. Themaxillary sinus: Physiology, development and imaging anatomy. Dentomaxillofac. Radiol. 2019, 48, 20190205. [Google Scholar] [CrossRef]
- Malhotra, V.; Srivastava, R.; Parasuraman, P.; Javed, D.; Wakode, S.; Thakare, A.; Sampath, A.; Kumari, A. Immediate autonomic changes during right nostril breathing and left nostril breathing in regular yoga practitioners. J. Educ. Health Promot. 2022, 11, 280. [Google Scholar] [CrossRef] [PubMed]
- Vanutelli, M.E.; Grigis, C.; Lucchiari, C. Breathing Right… or Left! The Effects of Unilateral Nostril Breathing on Psychological and Cognitive Wellbeing: A Pilot Study. Brain Sci. 2024, 14, 302. [Google Scholar] [CrossRef]
- Kavya, C. Comparing the immediate effect of chandra anuloma viloma pranayama in hypertensive and normotensive individuals on cardiopulmonary functions. Int. J. Res. Anal. Rev. (IJRAR) 2023, 10, 696–721. [Google Scholar]
- Raj, J.R.; Anusha, R.; Birle, P.A. Comparative Study on Immediate Effect of Unilateral Left Nostril Breathing and Unilateral Right Nostril Breathing on Blood Pressure and Heart Rate among Healthy Volunteers. Int. J. Health Sci. Res. 2016, 6, 235–238. [Google Scholar]
- Brandani, J.Z.; Mizuno, J.; Ciolac, E.G.; Monteiro, H.L. The hypotensive effect of yoga’s breathing exercises: A systematic review. Complement. Ther. Clin. Pract. 2017, 28, 38–46. [Google Scholar] [CrossRef]
- Lavie, P. Ultradian rhythms in alertness—A pupillometric study. Biol. Psychol. 1979, 9, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.H.; Maloney, S.K.; Mark, P.J.; Blache, D. Episodic ultradian events—Ultradian rhythms. Biology 2019, 8, 15. [Google Scholar] [CrossRef]
- Elstad, M.; O’Callaghan, E.L.; Smith, A.J.; Ben-Tal, A.; Ramchandra, R. Cardiorespiratory interactions in humans and animals: Rhythms for life. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H6–H17. [Google Scholar] [CrossRef]
- van der Veen, D.R.; Gerkema, M.P. Unmasking ultradian rhythms in gene expression. FASEB J. 2017, 31, 743. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Rosin, D.F.; Morrison, A.R.; Leon-Sarmiento, F.E.; Doty, R.L. Modulation of the ultradian human nasal cycle by sleep stage and body position. Arq. De Neuro-Psiquiatr. 2017, 75, 9–14. [Google Scholar] [CrossRef]
- Kleitman, N. Sleep and Wakefulness; University of Chicago Press: Chicago, IL, USA, 1963. [Google Scholar]
- Shannahoff-Khalsa, D. The ultradian rhythm of alternating cerebral hemispheric activity. Int. J. Neurosci. 1993, 70, 285–298. [Google Scholar] [CrossRef]
- Shannahoff-Khalsa, D. Lateralized rhythms of the central and autonomic nervous systems. Int. J. Psychophysiol. 1991, 11, 225–251. [Google Scholar] [CrossRef]
- Niazi, I.K.; Navid, M.S.; Bartley, J.; Shepherd, D.; Pedersen, M.; Burns, G.; Taylor, D.; White, D.E. EEG signatures change during unilateral Yogi nasal breathing. Sci. Rep. 2022, 12, 520. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, E.M. Alteration in nasal cycle rhythm as an index of the diseased condition. In Pathophysiology Altered Physiological States; InTech: London, UK, 2018; pp. 23–34. [Google Scholar]
- Davies, A.; Eccles, R. Reciprocal changes in nasal resistance to airflow caused by pressure applied to the axilla. Acta Oto-Laryngol. 1985, 99, 154–159. [Google Scholar] [CrossRef]
- Sinha, S.; Mittal, S.; Bhat, S.; Baro, G. Effect of nasal dominance on pulmonary function test and heart rate: A pilot study. Int. J. Yoga 2021, 14, 141–145. [Google Scholar] [CrossRef]
- Werntz, D.A.; Bickford, R.; Bloom, F.; Shannahoff-Khalsa, D. Alternating cerebral hemispheric activity and the lateralization of autonomic nervous function. Human. Neurobiol. 1983, 2, 39–43. [Google Scholar]
- Shringarpure, M.; Gharat, S.; Momin, M.; Omri, A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert. Opin. Drug Deliv. 2021, 18, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.N.; Rizwan, S.B. Translational Considerations in the Development of Intranasal Treatments for Epilepsy. Pharmaceutics 2023, 15, 233. [Google Scholar] [CrossRef]
- Chee, K.; Razmara, A.; Geller, A.S.; Harris, W.B.; Restrepo, D.; Thompson, J.A.; Kramer, D.R. The role of the piriform cortex in temporal lobe epilepsy: A current literature review. Front. Neurol. 2022, 13, 1042887. [Google Scholar] [CrossRef]
- Milior, G.; Morin-Brureau, M.; Pallud, J.; Miles, R.; Huberfeld, G. Animal models and human tissue compared to better understand and treat the epilepsies. Epilepsia 2023, 64, 1175–1189. [Google Scholar] [CrossRef]
- Kapoor, M.; Cloyd, J.C.; Siegel, R.A. A review of intranasal formulations for the treatment of seizure emergencies. J. Control Release 2016, 237, 147–159. [Google Scholar] [CrossRef]
- Betjemann, J.P.; Lowenstein, D.H. Status epilepticus in adults. Lancet Neurol. 2015, 14, 615–624. [Google Scholar] [CrossRef]
- Efron, R. The effect of olfactory stimuli in arresting uncinate fits. Brain 1956, 79, 267–281. [Google Scholar] [CrossRef]
- Vaughan, D.N.; Jackson, G.D. The piriform cortex and human focal epilepsy. Front. Neurol. 2014, 5, 259. [Google Scholar] [CrossRef]
- Türk, B.G.; Metin, B.; Tekeli, H.; Sayman, Ö.A.; Kızılkılıç, O.; Uzan, M.; Özkara, Ç. Evaluation of olfactory and gustatory changes in patients with mesial temporal lobe epilepsy. Seizure 2020, 75, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, M.S.; Lin, K.; Mameniškienė, R.; Beniczky, S.; Bogacz, A.; Braga, P.; Guaranha, M.S.B.; Yacubian, E.M.T.; Samaitienė, R.; Baykan, B.; et al. Olfactory stimulation induces delayed responses in epilepsy. Epilepsy Behav. 2016, 61, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Henkel, S.; Negoias, S.; Galván, J.R.B.; Bogdanov, V.; Hopp, P.; Hallmeyer-Elgner, S.; Gerber, J.; Reuner, U.; Haehner, A. Olfactory bulb volume in patients with temporal lobe epilepsy. J. Neurol. 2013, 260, 1004–1008. [Google Scholar] [CrossRef]
- Pereira, P.M.G.; Insausti, R.; Artacho-Pérula, E.; Salmenperä, T.; Kälviäinen, R.; Pitkänen, A. MR volumetric analysis of the piriform cortex and cortical amygdala in drug-refractory temporal lobe epilepsy. Am. J. Neuroradiol. 2005, 26, 319–332. [Google Scholar]
- Carlson, K.S.; Xia, C.Z.; Wesson, D.W. Encoding and representation of intranasal CO2 in the mouse olfactory cortex. J. Neurosci. 2013, 33, 13873–13881. [Google Scholar] [CrossRef]
- Velasco, E.; Delicado-Miralles, M.; Hellings, P.W.; Gallar, J.; Van Gerven, L.; Talavera, K. Epithelial and sensory mechanisms of nasal hyperreactivity. Allergy 2022, 77, 1450–1463. [Google Scholar] [CrossRef] [PubMed]
- Barkhordarian, A.; Chiappelli, F.; Demerjian, G.G. Neuroanatomy and neurophysiology of the trigeminal network system. In Temporomandibular Joint and Airway Disorders; Springer: Cham, Switzerland, 2018; pp. 17–38. [Google Scholar]
- Brew, A.; O’Beirne, S.; Johnson, M.J.; Ramsenthaler, C.; Watson, P.J.; Rubini, P.A.; Fagan, M.J.; Swan, F.; Simpson, A. Airflow rates and breathlessness recovery from submaximal exercise in healthy adults: Prospective, randomised, cross-over study. BMJ Support. Palliat. Care 2023, 14, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Servit, Z.; Kristof, M.; Kolinova, M. Activation of epileptic electrographic phenomena in the human EEG by nasal air flow. Physiol. Bohemoslov. 1977, 26, 499–506. [Google Scholar]
- Servit, Z.; Krištof, M.; Strejčková, A. Activating effect of nasal and oral hyperventilation on epileptic electrographic phenomena: Reflex mechanisms of nasal origin. Epilepsia 1981, 22, 321–329. [Google Scholar] [CrossRef]
- Ilik, F.; Pazarli, A.C. Reflex epilepsy triggered by smell. Clin. EEG Neurosci. 2015, 46, 263–265. [Google Scholar] [CrossRef]
- Burkhard, P.R.; Burkhardt, K.; Haenggeli, C.-A.; Landis, T. Plant-induced seizures: Reappearance of an old problem. J. Neurol. 1999, 246, 667–670. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Baserdem, B.; Zhan, H.; Li, Y.; Davis, M.B.; Kebschull, J.M.; Zador, A.M.; Koulakov, A.A.; Albeanu, D.F. High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell 2022, 185, 4117–4134.e4128. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, J.V.; Wesson, D.W.; Netoff, T.I.; White, J.A.; Wachowiak, M. Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nat. Neurosci. 2007, 10, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Christie, J.M.; Westbrook, G.L. Lateral excitation within the olfactory bulb. J. Neurosci. 2006, 26, 2269–2277. [Google Scholar] [CrossRef]
- Sela, L.; Sobel, N. Human olfaction: A constant state of change-blindness. Exp. Brain Res. 2010, 205, 13–29. [Google Scholar] [CrossRef]
- Tremblay, C.; Frasnelli, J. Olfactory and trigeminal systems interact in the periphery. Chem. Senses 2018, 43, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Boyle, J.A.; Heinke, M.; Gerber, J.; Frasnelli, J.; Hummel, T. Cerebral Activation to Intranasal Chemosensory Trigeminal Stimulation. Chem. Senses 2007, 32, 343–353. [Google Scholar] [CrossRef]
- Papotto, N.; Reithofer, S.; Baumert, K.; Carr, R.; Möhrlen, F.; Frings, S. Olfactory stimulation inhibits nociceptive signal processing at the input stage of the central trigeminal system. Neuroscience 2021, 479, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Enrique Cometto-Muñiz, J.; Simons, C. Trigeminal chemesthesis. In Handbook of Olfaction and Gustation; Wiley: Hoboken, NJ, USA, 2015; pp. 1089–1112. [Google Scholar]
- Al Aïn, S.; Frasnelli, J. Intranasal trigeminal chemoreception. In Conn’s Translational Neuroscience; Elsevier: Amsterdam, The Netherlands, 2017; pp. 379–397. [Google Scholar]
- Federica, G.; Jiang, X.; Marco, T.; Johannes, R. Quantifying peripheral modulation of olfaction by trigeminal agonists. bioRxiv 2023, bioRxiv:2023.03.13.532477. [Google Scholar] [CrossRef]
- Boyle, J.; Frasnelli, J.; Gerber, J.; Heinke, M.; Hummel, T. Cross-modal integration of intranasal stimuli: A functional magnetic resonance imaging study. Neuroscience 2007, 149, 223–231. [Google Scholar] [CrossRef]
- Tremblay, C.; Frasnelli, J. Olfactory–Trigeminal Interactions in Patients with Parkinson’s Disease. Chem. Senses 2021, 46, bjab018. [Google Scholar] [CrossRef]
- Schaefer, M.L.; Böttger, B.; Silver, W.L.; Finger, T.E. Trigeminal collaterals in the nasal epithelium and olfactory bulb: A potential route for direct modulation of olfactory information by trigeminal stimuli. J. Comp. Neurol. 2002, 444, 221–226. [Google Scholar] [CrossRef]
- Lane, G.; Zhou, G.; Noto, T.; Zelano, C. Assessment of direct knowledge of the human olfactory system. Exp. Neurol. 2020, 329, 113304. [Google Scholar] [CrossRef]
- Zapiec, B.; Dieriks, B.V.; Tan, S.; Faull, R.L.; Mombaerts, P.; Curtis, M.A. A ventral glomerular deficit in Parkinson’s disease revealed by whole olfactory bulb reconstruction. Brain 2017, 140, 2722–2736. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Miao, J.H.; Yetiskul, E.; Anokhin, A.; Majmundar, S.H. Physiology, Carbon Dioxide Retention; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Cummins, E.P.; Strowitzki, M.J.; Taylor, C.T. Mechanisms and consequences of oxygen and carbon dioxide sensing in mammals. Physiol. Rev. 2020, 100, 463–488. [Google Scholar] [CrossRef]
- Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A.I.; Kempe, K.; Caruso, F. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater. 2018, 30, 1801362. [Google Scholar] [CrossRef]
- Vachhani, S.; Kleinstreuer, C. Numerical analysis of enhanced nano-drug delivery to the olfactory bulb. Aerosol Sci. Technol. 2021, 55, 1343–1358. [Google Scholar] [CrossRef]
- Bigatello, L.; Pesenti, A. Respiratory physiology for the anesthesiologist. Anesthesiology 2019, 130, 1064–1077. [Google Scholar] [CrossRef]
- Swenson, E.R. The unappreciated role of carbon dioxide in ventilation/perfusion matching. Anesthesiology 2019, 131, 226–228. [Google Scholar] [CrossRef]
- Khalsa, S.S.; Feinstein, J.S.; Li, W.; Feusner, J.D.; Adolphs, R.; Hurlemann, R. Panic anxiety in humans with bilateral amygdala lesions: Pharmacological induction via cardiorespiratory interoceptive pathways. J. Neurosci. 2016, 36, 3559–3566. [Google Scholar] [CrossRef]
- Kinkead, R.; Gagnon, M.; Carrier, M.-C.; Fournier, S.; Ambrozio-Marques, D. Amygdala-driven apnea: A breath of fresh air in respiratory neurobiology. Biol. Psychol. 2022, 170, 108307. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.R.; Karan, S. The physiology and maintenance of respiration: A narrative review. Pain. Ther. 2020, 9, 467–486. [Google Scholar] [CrossRef]
- Phelan, D.; Mota, C.; Lai, C.; Kierans, S.; Cummins, E. Carbon dioxide-dependent signal transduction in mammalian systems. Interface Focus 2021, 11, 20200033. [Google Scholar] [CrossRef]
- McMurray, K.M.; Gray, A.; Horn, P.; Sah, R. High behavioral sensitivity to carbon dioxide associates with enhanced fear memory and altered forebrain neuronal activation. Neuroscience 2020, 429, 92–105. [Google Scholar] [CrossRef]
- Ziemann, A.E.; Allen, J.E.; Dahdaleh, N.S.; Drebot, I.I.; Coryell, M.W.; Wunsch, A.M.; Lynch, C.M.; Faraci, F.M.; Howard, M.A.; Welsh, M.J. The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 2009, 139, 1012–1021. [Google Scholar] [CrossRef]
- Alijevic, O.; Peng, Z.; Kellenberger, S. Changes in H+, K+, and Ca2+ concentrations, as observed in seizures, induce action potential signaling in cortical neurons by a mechanism that depends partially on acid-sensing ion channels. Front. Cell. Neurosci. 2021, 15, 732869. [Google Scholar] [CrossRef]
- Gentiletti, D.; de Curtis, M.; Gnatkovsky, V.; Suffczynski, P. Focal seizures are organized by feedback between neural activity and ion concentration changes. eLife 2022, 11, e68541. [Google Scholar] [CrossRef]
- Kentish, S.E.; Scholes, C.A.; Stevens, G.W. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat. Chem. Eng. 2008, 1, 52–66. [Google Scholar] [CrossRef]
- Kollarik, M.; Undem, B.J. Mechanisms of acid-induced activation of airway afferent nerve fibres in guinea-pig. J. Physiol. 2002, 543, 591–600. [Google Scholar] [CrossRef]
- Sozansky, J.; Houser, S.M. The physiological mechanism for sensing nasal airflow: A literature review. Int. Forum Allergy Rhinol. 2014, 4, 834–838. [Google Scholar] [CrossRef]
- Rombaux, P.; Huart, C.; Landis, B.; Hummel, T. Intranasal trigeminal perception. In Nasal Physiology and Pathophysiology of Nasal Disorders; Springer: Berlin/Heidelberg, Germany, 2013; pp. 225–236. [Google Scholar]
- Frasnelli, J.; Heilmann, S.; Hummel, T. Responsiveness of human nasal mucosa to trigeminal stimuli depends on the site of stimulation. Neurosci. Lett. 2004, 362, 65–69. [Google Scholar] [CrossRef]
- Burgess, K.; Whitelaw, W. Effects of nasal cold receptors on pattern of breathing. J. Appl. Physiol. 1988, 64, 371–376. [Google Scholar] [CrossRef]
- Godek, D.; Freeman, A.M. Physiology, Diving Reflex; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Davies, A.; Moores, C. The Respiratory System: Basic Science and clinical Conditions; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Alheid, G.F.; McCrimmon, D.R. The chemical neuroanatomy of breathing. Respir. Physiol. Neurobiol. 2008, 164, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Livermore, A. Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int. Arch. Occup. Environ. Health 2002, 75, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Oehme, L.; van den Hoff, J.; Gerber, J.; Heinke, M.; Boyle, J.A.; Beuthien-Baumann, B. PET-based investigation of cerebral activation following intranasal trigeminal stimulation. Human. Brain Mapp. 2009, 30, 1100–1104. [Google Scholar] [CrossRef]
- Mulana, F.; Munawar, E.; Heldiana, H.; Rahmi, M. The effect of carbon dioxide gas pressure on solubility, density and pH of carbon dioxide—Water mixtures. Mater. Today Proc. 2022, 63, S46–S49. [Google Scholar] [CrossRef]
- Vullo, S.; Kellenberger, S. A molecular view of the function and pharmacology of acid-sensing ion channels. Pharmacol. Res. 2020, 154, 104166. [Google Scholar] [CrossRef]
- Talavera, K.; Startek, J.B.; Alvarez-Collazo, J.; Boonen, B.; Alpizar, Y.A.; Sanchez, A.; Naert, R.; Nilius, B. Mammalian transient receptor potential TRPA1 channels: From structure to disease. Physiol. Rev. 2020, 100, 725–803. [Google Scholar] [CrossRef]
- Fakih, D.; Migeon, T.; Moreau, N.; Baudouin, C.; Réaux-Le Goazigo, A.; Mélik Parsadaniantz, S. Transient receptor potential channels: Important players in ocular pain and dry eye disease. Pharmaceutics 2022, 14, 1859. [Google Scholar] [CrossRef]
- Viana, F. TRPA1 channels: Molecular sentinels of cellular stress and tissue damage. J. Physiol. 2016, 594, 4151–4169. [Google Scholar] [CrossRef]
- de Mello Rosa, G.H.; Ullah, F.; de Paiva, Y.B.; da Silva, J.A.; Branco, L.G.S.; Corrado, A.P.; Medeiros, P.; Coimbra, N.C.; Franceschi Biagioni, A. Ventrolateral periaqueductal gray matter integrative system of defense and antinociception. Pflügers Arch. Eur. J. Physiol. 2022, 474, 469–480. [Google Scholar] [CrossRef]
- Moore, J.L.; Carvalho, D.Z.; St Louis, E.K.; Bazil, C. Sleep and Epilepsy: A Focused Review of Pathophysiology, Clinical Syndromes, Co-morbidities, and Therapy. Neurotherapeutics 2021, 18, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Boron, W.F. Regulation of intracellular pH. Adv. Physiol. Educ. 2004, 28, 160–179. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, I.; Shioda, S. Reciprocal functional interactions between the respiration/circulation center, the upper spinal cord, and the trigeminal system. Transl. Neurosci. 2015, 6, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Pernía-Andrade, A.J.; Wenger, N.; Esposito, M.S.; Tovote, P. Circuits for state-dependent modulation of locomotion. Front. Hum. Neurosci. 2021, 15, 745689. [Google Scholar] [CrossRef] [PubMed]
- González-García, M.; Carrillo-Franco, L.; Morales-Luque, C.; Dawid-Milner, M.S.; López-González, M.V. Central Autonomic Mechanisms Involved in the Control of Laryngeal Activity and Vocalization. Biology 2024, 13, 118. [Google Scholar] [CrossRef]
- Song, S.-Y.; Li, Y.; Zhai, X.-M.; Li, Y.-H.; Bao, C.-Y.; Shan, C.-J.; Hong, J.; Cao, J.-L.; Zhang, L.-C. Connection input mapping and 3D reconstruction of the brainstem and spinal cord projections to the CSF-contacting nucleus. Front. Neural Circuits 2020, 14, 11. [Google Scholar] [CrossRef]
Treatment Method | Mechanism of Action | Advantages | Limitations |
---|---|---|---|
Antiseizure Medications (ASMs) | Target neuronal excitability, ion channels, neurotransmitter modulation | Readily available, widely studied, non-invasive | 1/3 of PWEs are non-responsive; side effects |
Surgical Resection (e.g., for TLE) | Removal of epileptogenic tissue | Effective for drug-resistant focal epilepsy | 40% seizure recurrence at two years; invasive |
Intranasal Drug Delivery | Direct delivery of drugs via nasal cavity to brain (e.g., benzodiazepines) | Bypasses blood–brain barrier; rapid effect | Requires formulation; not suitable for all drugs |
Olfactory/Trigeminal Stimulation | Stimulation of nasal chemosensory/trigeminal pathways to inhibit seizures | Non-pharmacological, may abort seizures rapidly | Limited empirical validation; variability in stimuli |
Exchange Breathing Method (EBM) | Airflow and CO2-triggered stimulation of TRP and ASIC channels | Safe, non-invasive, fast acting, targets multiple mechanisms | Requires partner assistance; early research stage |
Characteristic | ASIC (Acid-Sensing Ion Channels) | TRP (Transient Receptor Potential) Channels |
---|---|---|
Location | CNS and PNS (esp. amygdala, trigeminal endings) | Widely distributed in PNS (esp. nasal epithelium) |
Stimuli | Low pH (acidic environments) | Chemical, mechanical, thermal (e.g., CO2, cold, pressure) |
Ion Selectivity | Na+ selective | Non-selective cation channels |
Response Time | 4–10 s ramp = high firing; >10 s = low firing | 1–2 ms (fast response) |
Role in Seizures | Activated during extracellular acidosis to inhibit hyperexcitability | Initiates protective reflexes (e.g., reduced respiration) |
Effectiveness of Stimuli | Highly sensitive to rapid pH drops (e.g., CO2 inhalation) | Activated by CO2, airflow, cold, and pain |
Dual Functionality | pH sensors and mechanosensors | Polymodal sensors with mechanotransduction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrick, F.R.; Daniels, P.; Pelletier, S.; Prysmakova, S.; Hankir, A.; Abdulrahman, M.; Al-Rumaihi, N. The Exchange Breathing Method for Seizure Intervention: A Historical and Scientific Review of Epilepsy and Its Evolving Therapeutic Paradigms. J. Pers. Med. 2025, 15, 385. https://doi.org/10.3390/jpm15080385
Carrick FR, Daniels P, Pelletier S, Prysmakova S, Hankir A, Abdulrahman M, Al-Rumaihi N. The Exchange Breathing Method for Seizure Intervention: A Historical and Scientific Review of Epilepsy and Its Evolving Therapeutic Paradigms. Journal of Personalized Medicine. 2025; 15(8):385. https://doi.org/10.3390/jpm15080385
Chicago/Turabian StyleCarrick, Frederick Robert, Pamela Daniels, Stephen Pelletier, Sofia Prysmakova, Ahmed Hankir, Mahera Abdulrahman, and Nouf Al-Rumaihi. 2025. "The Exchange Breathing Method for Seizure Intervention: A Historical and Scientific Review of Epilepsy and Its Evolving Therapeutic Paradigms" Journal of Personalized Medicine 15, no. 8: 385. https://doi.org/10.3390/jpm15080385
APA StyleCarrick, F. R., Daniels, P., Pelletier, S., Prysmakova, S., Hankir, A., Abdulrahman, M., & Al-Rumaihi, N. (2025). The Exchange Breathing Method for Seizure Intervention: A Historical and Scientific Review of Epilepsy and Its Evolving Therapeutic Paradigms. Journal of Personalized Medicine, 15(8), 385. https://doi.org/10.3390/jpm15080385