The Carotid Siphon as a Pulsatility Modulator for Brain Protection: Role of Arterial Calcification Formation
Abstract
1. Introduction
2. Literature Search Methods
3. Determinants of Carotid Siphon Calcification
4. Clinical Disease Associations of Carotid Siphon Calcification
4.1. Subarachnoid Hemorrhage
4.2. Prevalent and Incident Stroke
4.3. White Matter Disease, Cortical Atrophy, Cognition, and Dementia
4.4. Siphon Calcification and Clinical Interventions
5. Therapeutic Options for Siphon Calcification
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Pu, F.; Li, S.; Xie, S.; Fan, Y.; Li, D. Geometric classification of the carotid siphon: Association between geometry and stenoses. Surg. Radiol. Anat. 2013, 35, 385–394. [Google Scholar] [CrossRef]
- Stehbens, W.E. Pathology of the Cerebral Blood Vessels; C. V. Mosby: Maryland Heights, MO, USA, 1972. [Google Scholar]
- Masuoka, T.; Hayashi, N.; Hori, E.; Kuwayama, N.; Ohtani, O.; Endo, S. Distribution of internal elastic lamina and external elastic lamina in the internal carotid artery: Possible relationship with atherosclerosis. Neurol. Med. Chir. 2010, 50, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Handa, H.; Nagasawa, S.; Okumura, A.; Moritake, K. Stiffness and elastic behavior of human intracranial and extracranial arteries. J. Biomech. 1980, 13, 175–184. [Google Scholar] [CrossRef]
- Bleys, R.L.; Cowen, T.; Groen, G.J.; Hillen, B. Perivascular nerves of the human basal cerebral arteries: II. Changes in aging and Alzheimer’s disease. J. Cereb. Blood Flow. Metab. 1996, 16, 1048–1057. [Google Scholar] [CrossRef]
- Bleys, R.L.; Janssen, L.M.; Groen, G.J. The lateral sellar nerve plexus and its connections in humans. J. Neurosurg. 2001, 95, 102–110. [Google Scholar] [CrossRef]
- de Jong, P.A.; Bos, D.; Mali, W. Calcification Formation for Development, Defense, and Repair of the Human Body? J. Clin. Med. 2024, 13, 5691. [Google Scholar] [CrossRef]
- Suzuki, N.; Hardebo, J.E. Anatomical basis for a parasympathetic and sensory innervation of the intracranial segment of the internal carotid artery in man. Possible implication for vascular headache. J. Neurol. Sci. 1991, 104, 19–31. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Segers, P.; Hughes, T.; Townsend, R. Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 1237–1263. [Google Scholar] [CrossRef]
- Vrselja, Z.; Brkic, H.; Mrdenovic, S.; Radic, R.; Curic, G. Function of circle of Willis. J. Cereb. Blood Flow. Metab. 2014, 34, 578–584. [Google Scholar] [CrossRef]
- Hunter, J. The Works of John Hunter, F.R.S. with Notes; Longman, Rees, Orme, Brown, Green, and Longman: London, UK, 1837. [Google Scholar]
- Schubert, T.; Pansini, M.; Bieri, O.; Stippich, C.; Wetzel, S.; Schaedelin, S.; von Hessling, A.; Santini, F. Attenuation of blood flow pulsatility along the Atlas slope: A physiologic property of the distal vertebral artery? AJNR Am. J. Neuroradiol. 2015, 36, 562–567. [Google Scholar] [CrossRef]
- Carraro, M.; Negandhi, J.; Kuthubutheen, J.; Propst, E.J.; Kus, L.; Lin, V.Y.; Harrison, R.V. Attenuating Cardiac Pulsations within the Cochlea: Structure and Function of Tortuous Vessels Feeding Stria Vascularis. ISRN Otolaryngol. 2013, 2013, 941757. [Google Scholar] [CrossRef]
- Aghilinejad, A.; Amlani, F.; King, K.S.; Pahlevan, N.M. Dynamic Effects of Aortic Arch Stiffening on Pulsatile Energy Transmission to Cerebral Vasculature as A Determinant of Brain-Heart Coupling. Sci. Rep. 2020, 10, 8784. [Google Scholar] [CrossRef]
- Chirinos, J.A. Textbook of Arterial Stiffness and Pulsatile Hemodynamics in Health and Disease; Elsevier Science: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Schubert, T.; Santini, F.; Stalder, A.F.; Bock, J.; Meckel, S.; Bonati, L.; Markl, M.; Wetzel, S. Dampening of blood-flow pulsatility along the carotid siphon: Does form follow function? AJNR Am. J. Neuroradiol. 2011, 32, 1107–1112. [Google Scholar] [CrossRef]
- van Tuijl, R.J.; Ruigrok, Y.M.; Velthuis, B.K.; van der Schaaf, I.C.; Rinkel, G.J.E.; Zwanenburg, J.J.M. Velocity Pulsatility and Arterial Distensibility Along the Internal Carotid Artery. J. Am. Heart Assoc. 2020, 9, e016883. [Google Scholar] [CrossRef]
- van Tuijl, R.J.; Ruigrok, Y.M.; Geurts, L.J.; van der Schaaf, I.C.; Biessels, G.J.; Rinkel, G.J.E.; Velthuis, B.K.; Zwanenburg, J.J.M. Does the Internal Carotid Artery Attenuate Blood-Flow Pulsatility in Small Vessel Disease? A 7 T 4D-Flow MRI Study. J. Magn. Reson. Imaging 2022, 56, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Bartstra, J.W.; van Tuijl, R.J.; de Jong, P.A.; Mali, W.; van der Schaaf, I.C.; Ruigrok, Y.M.; Rinkel, G.J.E.; Velthuis, B.K.; Spiering, W.; Zwanenburg, J.J.M. Pulsatility Attenuation along the Carotid Siphon in Pseudoxanthoma Elasticum. AJNR Am. J. Neuroradiol. 2021, 42, 2030–2033. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, G.; de Jong, P.A.; Mali, W.P.; Attrach, M.; Visseren, F.L.; Spiering, W. Prevalence and severity of arterial calcifications in pseudoxanthoma elasticum (PXE) compared to hospital controls. Novel insights into the vascular phenotype of PXE. Atherosclerosis 2017, 256, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, I.M.; Kok, M.; Visseren, F.L.; Spiering, W.; de Jong, P.A. High prevalence of breast arterial calcification in pseudoxanthoma elasticum (PXE)—A nationwide study in the Netherlands. Vasc. Med. 2024, 29, 716–717. [Google Scholar] [CrossRef]
- Kauw, F.; Kranenburg, G.; Kappelle, L.J.; Hendrikse, J.; Koek, H.L.; Visseren, F.L.J.; Mali, W.P.T.; de Jong, P.A.; Spiering, W. Cerebral disease in a nationwide Dutch pseudoxanthoma elasticum cohort with a systematic review of the literature. J. Neurol. Sci. 2017, 373, 167–172. [Google Scholar] [CrossRef]
- Sunmonu, N.A. Multiple Cerebrovascular Insults in Pseudoxanthoma Elasticum. J. Stroke Cerebrovasc. Dis. 2021, 30, 105524. [Google Scholar] [CrossRef]
- Bartstra, J.W.; van den Beukel, T.; Kranenburg, G.; Geurts, L.J.; den Harder, A.M.; Witkamp, T.; Wolterink, J.M.; Zwanenburg, J.J.M.; van Valen, E.; Koek, H.L.; et al. Increased Intracranial Arterial Pulsatility and Microvascular Brain Damage in Pseudoxanthoma Elasticum. AJNR Am. J. Neuroradiol. 2024, 45, 386–392. [Google Scholar] [CrossRef]
- Kockelkoren, R.; De Vis, J.B.; de Jong, P.A.; Vernooij, M.W.; Mali, W.; Hendrikse, J.; Schiestl, T.; Pellikaan, K.; van der Lugt, A.; Bos, D. Intracranial Carotid Artery Calcification From Infancy to Old Age. J. Am. Coll. Cardiol. 2018, 72, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Vos, A.; Van Hecke, W.; Spliet, W.G.; Goldschmeding, R.; Isgum, I.; Kockelkoren, R.; Bleys, R.L.; Mali, W.P.; de Jong, P.A.; Vink, A. Predominance of Nonatherosclerotic Internal Elastic Lamina Calcification in the Intracranial Internal Carotid Artery. Stroke 2016, 47, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Stehbens, W.E. Experimental arterial loops and arterial atrophy. Exp. Mol. Pathol. 1986, 44, 177–189. [Google Scholar] [CrossRef]
- Fisher, C.M.; Gore, I.; Okabe, N.; White, P.D. Calcification of the carotid siphon. Circulation 1965, 32, 538–548. [Google Scholar] [CrossRef]
- Di Chiro, G.; Libow, L.S. Carotid siphon calcification and cerebral blood flow in the healthy aged male. Radiology 1971, 99, 103–107. [Google Scholar] [CrossRef]
- Lindbom, A. Arteriosclerosis and arterial thrombosis in the lower limb; a roentgenological study. Acta Radiol. Suppl. 1950, 80, 1–80. [Google Scholar]
- Woodcock, R.J., Jr.; Goldstein, J.H.; Kallmes, D.F.; Cloft, H.J.; Phillips, C.D. Angiographic correlation of CT calcification in the carotid siphon. AJNR Am. J. Neuroradiol. 1999, 20, 495–499. [Google Scholar]
- Babiarz, L.S.; Yousem, D.M.; Wasserman, B.A.; Wu, C.; Bilker, W.; Beauchamp, N.J., Jr. Cavernous carotid artery calcification and white matter ischemia. AJNR Am. J. Neuroradiol. 2003, 24, 872–877. [Google Scholar]
- Bos, D.; Ikram, M.A.; Elias-Smale, S.E.; Krestin, G.P.; Hofman, A.; Witteman, J.C.; van der Lugt, A.; Vernooij, M.W. Calcification in major vessel beds relates to vascular brain disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2331–2337. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Kockelkoren, R.; Vos, A.; Van Hecke, W.; Vink, A.; Bleys, R.L.; Verdoorn, D.; Mali, W.P.; Hendrikse, J.; Koek, H.L.; de Jong, P.A.; et al. Computed Tomographic Distinction of Intimal and Medial Calcification in the Intracranial Internal Carotid Artery. PLoS ONE 2017, 12, e0168360. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, J.D.; Vernooij, M.W.; Ikram, M.A.; Zhang, Z.Y.; Bos, D. Intracranial Carotid Arteriosclerosis Mediates the Association Between Blood Pressure and Cerebral Small Vessel Disease. Hypertension 2023, 80, 618–628. [Google Scholar] [CrossRef] [PubMed]
- van den Beukel, T.C.; Wolters, F.J.; Siebert, U.; Spiering, W.; Ikram, M.A.; Vernooij, M.W.; de Jong, P.A.; Bos, D. Intracranial arteriosclerosis and the risk of dementia: A population-based cohort study. Alzheimers Dement. 2024, 20, 869–879. [Google Scholar] [CrossRef]
- van den Beukel, T.C.; van der Toorn, J.E.; Vernooij, M.W.; Kavousi, M.; Akyildiz, A.C.; de Jong, P.A.; van der Lugt, A.; Ikram, M.K.; Bos, D. Morphological Subtypes of Intracranial Internal Carotid Artery Arteriosclerosis and the Risk of Stroke. Stroke 2022, 53, 1339–1347. [Google Scholar] [CrossRef]
- Bos, D.; van der Rijk, M.J.; Geeraedts, T.E.; Hofman, A.; Krestin, G.P.; Witteman, J.C.; van der Lugt, A.; Ikram, M.A.; Vernooij, M.W. Intracranial carotid artery atherosclerosis: Prevalence and risk factors in the general population. Stroke 2012, 43, 1878–1884. [Google Scholar] [CrossRef]
- Peeters, M.T.J.; Houben, R.; Postma, A.A.; van Oostenbrugge, R.J.; Schurgers, L.J.; Staals, J. Vitamin K Antagonist Use and Risk for Intracranial Carotid Artery Calcification in Patients With Intracerebral Hemorrhage. Front. Neurol. 2019, 10, 1278. [Google Scholar] [CrossRef]
- Lucci, C.; Rissanen, I.; van den Beukel, T.C.; Takx, R.; de Jong, P.A.; Hendrikse, J.; Geerlings, M.I. Risk Factors for Medial and Intimal Intracranial Internal Carotid Artery Calcification in Men and Women with Cardiovascular Disease: The UCC-SMART Study. Cerebrovasc. Dis. 2024, 53, 734–742. [Google Scholar] [CrossRef]
- Gozdalski, J.; Nowicki, T.K.; Kwarciany, M.; Kowalczyk, K.; Narkiewicz, K.; Gasecki, D. Aortic Stiffness Is Independently Associated with Intracranial Carotid Artery Calcification in Patients with Ischemic Stroke. Cerebrovasc. Dis. 2024, 53, 216–223. [Google Scholar] [CrossRef]
- Oge, D.D.; Topcuoglu, M.A.; Gultekin Zaim, O.B.; Gumeler, E.; Arsava, E.M. The relationship between bone health and type of intracranial internal carotid calcifications in patients with ischemic stroke. Clin. Neurol. Neurosurg. 2024, 243, 108360. [Google Scholar] [CrossRef]
- Singh, S.S.; van der Toorn, J.E.; Sijbrands, E.J.G.; de Rijke, Y.B.; Kavousi, M.; Bos, D. Lipoprotein(a) is associated with a larger systemic burden of arterial calcification. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Del Brutto, O.H.; Del Brutto, V.J.; Mera, R.M.; Pérez, P.; Recalde, B.Y.; Costa, A.F.; Romano, J.G.; Sedler, M.J. Prevalence and Correlates of Intracranial Atherosclerotic Disease Among Community-Dwelling Older Adults of Amerindian Ancestry. The Three Villages Study. J. Stroke Cerebrovasc. Dis. 2020, 29, 105135. [Google Scholar] [CrossRef] [PubMed]
- Del Brutto, O.H.; Mera, R.M.; Costa, A.F.; Peñaherrera, E.; Peñaherrera, R.; Zambrano, M. Arterial Stiffness is Independently Associated with Severity of Carotid Siphon Calcifications in Community-Dwelling Older Adults: The Atahualpa Project. J. Stroke Cerebrovasc. Dis. 2018, 27, 2494–2499. [Google Scholar] [CrossRef]
- Voigt, S.; van Os, H.; van Walderveen, M.; van der Schaaf, I.C.; Kappelle, L.J.; Broersen, A.; Velthuis, B.K.; de Jong, P.A.; Kockelkoren, R.; Kruyt, N.D.; et al. Sex differences in intracranial and extracranial atherosclerosis in patients with acute ischemic stroke. Int. J. Stroke 2021, 16, 385–391. [Google Scholar] [CrossRef]
- de Weert, T.T.; Cakir, H.; Rozie, S.; Cretier, S.; Meijering, E.; Dippel, D.W.; van der Lugt, A. Intracranial internal carotid artery calcifications: Association with vascular risk factors and ischemic cerebrovascular disease. AJNR Am. J. Neuroradiol. 2009, 30, 177–184. [Google Scholar] [CrossRef]
- Golüke, N.M.S.; de Brouwer, E.J.M.; de Jonghe, A.; Claus, J.J.; Staekenborg, S.S.; Emmelot-Vonk, M.H.; de Jong, P.A.; Koek, H.L. Intracranial artery calcifications: Risk factors and association with cardiovascular disease and cognitive function. J. Neuroradiol. 2022, 49, 281–287. [Google Scholar] [CrossRef]
- Vos, A.; Kockelkoren, R.; de Vis, J.B.; van der Schouw, Y.T.; van der Schaaf, I.C.; Velthuis, B.K.; Mali, W.; de Jong, P.A. Risk factors for atherosclerotic and medial arterial calcification of the intracranial internal carotid artery. Atherosclerosis 2018, 276, 44–49. [Google Scholar] [CrossRef]
- Olatunji, R.B.; Adekanmi, A.J.; Ogunseyinde, A.O. Intracranial Arterial Calcification in Black Africans with Acute Ischaemic Stroke. Cerebrovasc. Dis. Extra 2018, 8, 26–38. [Google Scholar] [CrossRef]
- Del Brutto, O.H.; Mera, R.M. The Role of Brachial Pulse Pressure as an Indicator of Intracranial Atherosclerosis: The Atahualpa Project. High. Blood Press. Cardiovasc. Prev. 2017, 24, 419–424. [Google Scholar] [CrossRef]
- Sedaghat, S.; Hoorn, E.J.; Ikram, M.A.; Koop-Nieuwelink, C.; Kavousi, M.; Franco, O.H.; van der Lugt, A.; Vernooij, M.W.; Bos, D. Kidney Function and Arterial Calcification in Major Vascular Beds. J. Am. Heart Assoc. 2019, 8, e010930. [Google Scholar] [CrossRef]
- Yilmaz, A.; Akpinar, E.; Topcuoglu, M.A.; Arsava, E.M. Clinical and imaging features associated with intracranial internal carotid artery calcifications in patients with ischemic stroke. Neuroradiology 2015, 57, 501–506. [Google Scholar] [CrossRef]
- Iwasa, Y.; Otsubo, S.; Nomoto, K.; Yashiro, N.; Yajima, A.; Kimata, N.; Akiba, T.; Nitta, K. Prevalence of intracranial artery calcification in hemodialysis patients--a case-control study. Int. Urol. Nephrol. 2012, 44, 1223–1228. [Google Scholar] [CrossRef]
- Mak, H.K.; Wong, C.W.; Yau, K.K.; Wong, W.M.; Gu, J.; Khong, P.L.; Chan, B.P. Computed tomography evaluation of intracranial atherosclerosis in Chinese patients with transient ischemic attack or minor ischemic stroke--its distribution and association with vascular risk factors. J. Stroke Cerebrovasc. Dis. 2009, 18, 158–163. [Google Scholar] [CrossRef]
- Adams, H.H.; Ikram, M.A.; Vernooij, M.W.; van Dijk, A.C.; Hofman, A.; Uitterlinden, A.G.; van Duijn, C.M.; Koudstaal, P.J.; Franco, O.H.; van der Lugt, A.; et al. Heritability and Genome-Wide Association Analyses of Intracranial Carotid Artery Calcification: The Rotterdam Study. Stroke 2016, 47, 912–917. [Google Scholar] [CrossRef]
- de Onofre, N.M.L.; Vizzotto, M.B.; Wanzeler, A.M.V.; Tiecher, P.; Arús, N.A.; Arriola Guillén, L.E.; da Silveira, H.L.D. Association between internal carotid artery calcifications detected as incidental findings and clinical characteristics associated with atherosclerosis: A dental volumetric tomography study. Eur. J. Radiol. 2021, 145, 110045. [Google Scholar] [CrossRef] [PubMed]
- AlSakr, A.; Blanchard, S.; Wong, P.; Thyvalikakath, T.; Hamada, Y. Association between intracranial carotid artery calcifications and periodontitis: A cone-beam computed tomography study. J. Periodontol. 2021, 92, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, N.; Chen, L.; Zhang, P.; Shen, L.; Huang, S.; Zhang, C.; Deng, B. Serum Aldosterone Is Associated with Cerebral Artery Atherosclerosis and Calcification. J. Stroke Cerebrovasc. Dis. 2019, 28, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Vojinovic, D.; van der Lee, S.J.; van Duijn, C.M.; Vernooij, M.W.; Kavousi, M.; Amin, N.; Demirkan, A.; Ikram, M.A.; van der Lugt, A.; Bos, D. Metabolic profiling of intra- and extracranial carotid artery atherosclerosis. Atherosclerosis 2018, 272, 60–65. [Google Scholar] [CrossRef]
- Kim, J.M.; Park, K.Y.; Shin, D.W.; Park, M.S.; Kwon, O.S. Relation of serum homocysteine levels to cerebral artery calcification and atherosclerosis. Atherosclerosis 2016, 254, 200–204. [Google Scholar] [CrossRef]
- Chen, X.Y.; Lam, W.W.; Ng, H.K.; Fan, Y.H.; Wong, K.S. The frequency and determinants of calcification in intracranial arteries in Chinese patients who underwent computed tomography examinations. Cerebrovasc. Dis. 2006, 21, 91–97. [Google Scholar] [CrossRef]
- van der Toorn, J.E.; Rueda-Ochoa, O.L.; van der Schaft, N.; Vernooij, M.W.; Ikram, M.A.; Bos, D.; Kavousi, M. Arterial calcification at multiple sites: Sex-specific cardiovascular risk profiles and mortality risk-the Rotterdam Study. BMC Med. 2020, 18, 263. [Google Scholar] [CrossRef] [PubMed]
- Mazzacane, F.; Del Bello, B.; Ferrari, F.; Persico, A.; Rognone, E.; Pichiecchio, A.; Padovani, A.; Cavallini, A.; Morotti, A.; Arba, F. Intracranial carotid artery calcification morphology differs in patients with lacunar and nonlacunar acute ischemic strokes. Eur. J. Neurol. 2023, 30, 963–969. [Google Scholar] [CrossRef] [PubMed]
- He, X.W.; Zhao, R.; Li, G.F.; Zheng, B.; Wu, Y.L.; Shi, Y.H.; Liu, Y.S.; Zhuang, M.T.; Yin, J.W.; Cui, G.H.; et al. Lack of Correlation Between Intracranial Carotid Artery Modified Woodcock Calcification Score and Prognosis of Patients With Acute Ischemic Stroke After Intravenous Thrombolysis. Front. Neurol. 2019, 10, 696. [Google Scholar] [CrossRef]
- Engel, A.; Song, L.; Rauschenbach, L.; Gümüs, M.; Santos, A.N.; Dinger, T.F.; Darkwah Oppong, M.; Li, Y.; Gembruch, O.; Ahmadipour, Y.; et al. Impact of Carotid Siphon Calcification on the Course and Outcome of Patients With Aneurysmal Subarachnoid Hemorrhage. Stroke 2024, 55, 2305–2314. [Google Scholar] [CrossRef] [PubMed]
- Kamphuis, M.J.; van der Kamp, L.T.; Lette, E.; Rinkel, G.J.E.; Vergouwen, M.D.I.; van der Schaaf, I.C.; de Jong, P.A.; Ruigrok, Y.M. Intracranial arterial calcification in patients with unruptured and ruptured intracranial aneurysms. Eur. Radiol. 2024, 34, 7517–7525. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Q.; Zhuang, Y.; Wei, R.; Sun, Y.; Wang, H.; Song, B. Intracranial Carotid Artery Calcification Subtype in Patients with Anterior Circulation Acute Ischemic Stroke Undergoing Intravenous Thrombolysis. Neurol. India 2023, 71, 1205–1210. [Google Scholar] [CrossRef]
- Shimoyama, T.; Gaj, S.; Nakamura, K.; Kovi, S.; Man, S.; Uchino, K. Quantitative CTA vascular calcification, atherosclerosis burden, and stroke mechanism in patients with ischemic stroke. J. Neurol. Sci. 2023, 449, 120667. [Google Scholar] [CrossRef]
- Xia, J.; Gao, H.; Zhang, K.; Gao, B.; Li, T.; Wang, Z. Effects of endovascular recanalization on symptomatic non-acute occlusion of intracranial arteries. Sci. Rep. 2023, 13, 4550. [Google Scholar] [CrossRef]
- Del Brutto, O.H.; Mera, R.M. Carotid siphon calcifications are associated with all-cause mortality: Results from the Atahualpa Project. Vasc. Med. 2022, 27, 487–489. [Google Scholar] [CrossRef]
- Hou, D.; Yang, X.; Wang, Y.; Huang, S.; Tang, Y.; Wu, D. Carotid Siphon Calcification Predicts the Symptomatic Progression in Branch Artery Disease With Intracranial Artery Stenosis-Brief Report. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 1094–1101. [Google Scholar] [CrossRef]
- Shen, Y.; Dong, Z.; Xu, G.; Zhong, J.; Pan, P.; Chen, Z.; Shi, H. Correlation Between Intracranial Carotid Artery Calcification and Prognosis of Acute Ischemic Stroke After Intravenous Thrombolysis. Front. Neurol. 2022, 13, 740656. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, F.; Nguyen, M.; Chen, C.D.; McKay, N.; Dincer, A.; Joseph-Mathurin, N.; Chen, G.; Liu, J.; Orlowski, H.L.P.; Morris, J.C.; et al. Intracranial internal carotid artery calcification is not predictive of future cognitive decline. Alzheimers Res. Ther. 2022, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- van der Toorn, J.E.; Bos, D.; Arshi, B.; Leening, M.J.G.; Vernooij, M.W.; Ikram, M.A.; Ikram, M.K.; Kavousi, M. Arterial calcification at different sites and prediction of atherosclerotic cardiovascular disease among women and men. Atherosclerosis 2021, 337, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Luijten, S.P.R.; van der Donk, S.C.; Compagne, K.C.J.; Yo, L.S.F.; Sprengers, M.E.S.; Majoie, C.; Roos, Y.; van Zwam, W.H.; van Oostenbrugge, R.; Dippel, D.W.J.; et al. Intracranial carotid artery calcification subtype and collaterals in patients undergoing endovascular thrombectomy. Atherosclerosis 2021, 337, 1–6. [Google Scholar] [CrossRef]
- Kauw, F.; de Jong, P.A.; Takx, R.A.P.; de Jong, H.; Kappelle, L.J.; Velthuis, B.K.; Dankbaar, J.W. Effect of intravenous thrombolysis in stroke depends on pattern of intracranial internal carotid artery calcification. Atherosclerosis 2021, 316, 8–14. [Google Scholar] [CrossRef]
- Pektezel, M.Y.; Arsava, E.M.; Gocmen, R.; Topcuoglu, M.A. Intracerebral hematoma expansion and intracranial internal carotid artery calcifications. Clin. Neurol. Neurosurg. 2021, 200, 106361. [Google Scholar] [CrossRef]
- Cho, N.J.; Park, S.; Lee, E.Y.; Oh, S.W.; Oh, H.G.; Gil, H.W. Association of Intracranial Artery Calcification with Cognitive Impairment in Hemodialysis Patients. Med. Sci. Monit. 2019, 25, 5036–5043. [Google Scholar] [CrossRef]
- Kong, W.Y.; Tan, B.Y.; Ellis, E.S.; Ngiam, N.J.; Goh, W.G.; Sharma, V.K.; Chan, B.P.; Yeo, L.L. Intracranial Artery Calcium Burden Predicts Recurrent Cerebrovascular Events in Transient Ischaemic Attack Patients. J. Stroke Cerebrovasc. Dis. 2019, 28, 2332–2336. [Google Scholar] [CrossRef]
- Compagne, K.C.J.; Clephas, P.R.D.; Majoie, C.; Roos, Y.; Berkhemer, O.A.; van Oostenbrugge, R.J.; van Zwam, W.H.; van Es, A.; Dippel, D.W.J.; van der Lugt, A.; et al. Intracranial Carotid Artery Calcification and Effect of Endovascular Stroke Treatment. Stroke 2018, 49, 2961–2968. [Google Scholar] [CrossRef]
- Gocmen, R.; Arsava, E.M.; Oguz, K.K.; Topcuoglu, M.A. Atherosclerotic intracranial internal carotid artery calcification and intravenous thrombolytic therapy for acute ischemic stroke. Atherosclerosis 2018, 270, 89–94. [Google Scholar] [CrossRef]
- Tábuas-Pereira, M.; Sargento-Freitas, J.; Silva, F.; Parra, J.; Mendes, P.; Seara, V.; Mesquita, M.; Baptista, M.; Cordeiro, G.; Cunha, L. Intracranial Internal Carotid Artery Wall Calcification in Ischemic Strokes Treated with Thrombolysis. Eur. Neurol. 2018, 79, 21–26. [Google Scholar] [CrossRef]
- Hernández-Pérez, M.; Bos, D.; Dorado, L.; Pellikaan, K.; Vernooij, M.W.; López-Cancio, E.; Pérez de la Ossa, N.; Gomis, M.; Castaño, C.; Munuera, J.; et al. Intracranial Carotid Artery Calcification Relates to Recanalization and Clinical Outcome After Mechanical Thrombectomy. Stroke 2017, 48, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Del Brutto, O.H.; Mera, R.M.; Sullivan, L.J.; Zambrano, M.; King, N.R. Calcifications in the carotid siphon inversely associate with cognitive performance in stroke-free community dwellers living in rural Ecuador (The Atahualpa Project). Int. J. Stroke 2016, 11, 935–937. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.W.; Liou, M.; Chung, H.W.; Liu, H.S.; Tsai, P.H.; Chiang, S.W.; Chou, M.C.; Peng, G.S.; Huang, G.S.; Hsu, H.H.; et al. High Agatston Calcium Score of Intracranial Carotid Artery: A Significant Risk Factor for Cognitive Impairment. Medicine 2015, 94, e1546. [Google Scholar] [CrossRef] [PubMed]
- Bos, D.; Portegies, M.L.; van der Lugt, A.; Bos, M.J.; Koudstaal, P.J.; Hofman, A.; Krestin, G.P.; Franco, O.H.; Vernooij, M.W.; Ikram, M.A. Intracranial carotid artery atherosclerosis and the risk of stroke in whites: The Rotterdam Study. JAMA Neurol. 2014, 71, 405–411. [Google Scholar] [CrossRef]
- Lin, T.C.; Chao, T.H.; Shieh, Y.; Lee, T.H.; Chang, Y.J.; Lee, J.D.; Peng, T.I.; Chang, K.C.; Liou, C.W.; Chang, T.Y.; et al. The impact of intracranial carotid artery calcification on the development of thrombolysis-induced intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis. 2013, 22, e455–e462. [Google Scholar] [CrossRef]
- Hong, N.R.; Seo, H.S.; Lee, Y.H.; Kim, J.H.; Seol, H.Y.; Lee, N.J.; Suh, S.I. The correlation between carotid siphon calcification and lacunar infarction. Neuroradiology 2011, 53, 643–649. [Google Scholar] [CrossRef]
- Chung, P.W.; Park, K.Y.; Moon, H.S.; Kim, Y.B.; Youn, Y.C.; Byun, J.S.; Kwon, O.S. Intracranial internal carotid artery calcification: A representative for cerebral artery calcification and association with white matter hyperintensities. Cerebrovasc. Dis. 2010, 30, 65–71. [Google Scholar] [CrossRef]
- Erbay, S.; Han, R.; Aftab, M.; Zou, K.H.; Polak, J.F.; Bhadelia, R.A. Is intracranial atherosclerosis an independent risk factor for cerebral atrophy? A retrospective evaluation. BMC Neurol. 2008, 8, 51. [Google Scholar] [CrossRef]
- Chen, X.Y.; Lam, W.W.; Ng, H.K.; Fan, Y.H.; Wong, K.S. Intracranial artery calcification: A newly identified risk factor of ischemic stroke. J. Neuroimaging 2007, 17, 300–303. [Google Scholar] [CrossRef]
- Erbay, S.; Han, R.; Baccei, S.; Krakov, W.; Zou, K.H.; Bhadelia, R.; Polak, J. Intracranial carotid artery calcification on head CT and its association with ischemic changes on brain MRI in patients presenting with stroke-like symptoms: Retrospective analysis. Neuroradiology 2007, 49, 27–33. [Google Scholar] [CrossRef]
- Taoka, T.; Iwasaki, S.; Nakagawa, H.; Sakamoto, M.; Fukusumi, A.; Takayama, K.; Wada, T.; Myochin, K.; Hirohashi, S.; Kichikawa, K. Evaluation of arteriosclerotic changes in the intracranial carotid artery using the calcium score obtained on plain cranial computed tomography scan: Correlation with angiographic changes and clinical outcome. J. Comput. Assist. Tomogr. 2006, 30, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; Fischer, P.A.; Becker, H.; Hacker, H.; Pencz, A.; Jacobi, P. Relationship between arteriosclerosis and cerebral atrophy in Parkinson’s disease. J. Neurol. 1977, 217, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Scotti, G.; De Grandi, C. Intimal and medial calcifications of the carotid siphon and cerebrovascular disease. Radiology 1975, 116, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.M.; Zacharatos, H.; Cordina, S.; Lakshminarayan, K.; Ezzeddine, M.A. Intracranial vascular calcification is protective from vasospasm after aneurysmal subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. 2014, 23, 2687–2693. [Google Scholar] [CrossRef]
- Streiber, A.M.; van den Beukel, T.C.; Vom Hofe, I.; Neitzel, J.; Vernooij, M.W.; Bos, D.; Vinke, E.J. Arterial calcification in the heart-brain axis and cognitive performance over time. Alzheimers Dement. 2025, 21, e14374. [Google Scholar] [CrossRef]
- Eggink, E.; Moll van Charante, E.P.; van Gool, W.A.; Richard, E. A Population Perspective on Prevention of Dementia. J. Clin. Med. 2019, 8, 834. [Google Scholar] [CrossRef]
- Nasrallah, I.M.; Pajewski, N.M.; Auchus, A.P.; Chelune, G.; Cheung, A.K.; Cleveland, M.L.; Coker, L.H.; Crowe, M.G.; Cushman, W.C.; Cutler, J.A.; et al. Association of Intensive vs Standard Blood Pressure Control With Cerebral White Matter Lesions. Jama 2019, 322, 524–534. [Google Scholar] [CrossRef]
- Moll van Charante, E.P.; Richard, E.; Eurelings, L.S.; van Dalen, J.W.; Ligthart, S.A.; van Bussel, E.F.; Hoevenaar-Blom, M.P.; Vermeulen, M.; van Gool, W.A. Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): A cluster-randomised controlled trial. Lancet 2016, 388, 797–805. [Google Scholar] [CrossRef]
- Webb, A.J.S.; Lawson, A.; Wartolowska, K.; Mazzucco, S.; Rothwell, P.M. Aortic Stiffness, Pulse Pressure, and Cerebral Pulsatility Progress Despite Best Medical Management: The OXVASC Cohort. Stroke 2022, 53, 1310–1317. [Google Scholar] [CrossRef]
- Kramsch, D.M.; Aspen, A.J.; Rozler, L.J. Atherosclerosis: Prevention by agents not affecting abnormal levels of blood lipids. Science 1981, 213, 1511–1512. [Google Scholar] [CrossRef]
- Xu, W.; Lu, G.; Gong, L.; Tang, W.; Liu, X.; Yang, Q.; Jiang, W.; Liu, X.; Li, X. Non-nitrogen-containing bisphosphonates and nitrogen-containing bisphosphonates for the treatment of atherosclerosis and vascular calcification: A meta-analysis. Medicine 2024, 103, e38404. [Google Scholar] [CrossRef]
- Kranenburg, G.; de Jong, P.A.; Bartstra, J.W.; Lagerweij, S.J.; Lam, M.G.; Ossewaarde-van Norel, J.; Risseeuw, S.; van Leeuwen, R.; Imhof, S.M.; Verhaar, H.J.; et al. Etidronate for Prevention of Ectopic Mineralization in Patients With Pseudoxanthoma Elasticum. J. Am. Coll. Cardiol. 2018, 71, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Bartstra, J.W.; de Jong, P.A.; Kranenburg, G.; Wolterink, J.M.; Isgum, I.; Wijsman, A.; Wolf, B.; den Harder, A.M.; Mali, W.; Spiering, W. Etidronate halts systemic arterial calcification in pseudoxanthoma elasticum. Atherosclerosis 2020, 292, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, I.M.; van den Beukel, T.; Kok, M.; Visseren, F.L.J.; de Jong, P.A.; Papapoulos, S.E.; Spiering, W. Cyclical Etidronate Reduces the Progression of Arterial Calcifications in Patients with Pseudoxanthoma Elasticum: A 6-Year Prospective Observational Study. J. Clin. Med. 2024, 13, 4612. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Nishikawa, M.; Kawahara, C.; Inazu, T.; Sakai, K.; Suzuki, G. Atorvastatin, etidronate, or both in patients at high risk for atherosclerotic aortic plaques: A randomized, controlled trial. Circulation 2013, 127, 2327–2335. [Google Scholar] [CrossRef]
- Arts, T.; Onkenhout, L.P.; Amier, R.P.; van der Geest, R.; van Harten, T.; Kappelle, J.; Kuipers, S.; van Osch, M.J.P.; van Bavel, E.T.; Biessels, G.J.; et al. Non-Invasive Assessment of Damping of Blood Flow Velocity Pulsatility in Cerebral Arteries With MRI. J. Magn. Reson. Imaging 2022, 55, 1785–1794. [Google Scholar] [CrossRef]
Author | Population | Association with Calcification Presence, Calcification Severity, or Calcification Pattern |
---|---|---|
Lucci C, 2024 [41] | 475 cardiovascular patients | Intimal calcification: older age, systolic blood pressure (women), glucose levels (women), current smoking (men), eGFR ≤60 mL/min/1.73 m2 (men). Medial calcification: older age, vitamin K antagonists (women), lipid-lowering drugs (women) |
Gozdalski J, 2024 [42] | 65 patients with ischemic stroke | Age, diabetes, smoking, carotid-femoral PWV (higher in medial compared to intimal pattern) |
Oge DD, 2024 [43] | 250 stroke patients | Lower bone density (T-score) only with intimal calcification pattern. Intimal: age, male, diabetes, albumin. Medial: age, male, diabetes, coronary artery disease, albumin |
Singh SS, 2023 [44] | 2354-member general population sample | Lipoprotein A |
Del Brutto OH, 2020 [45] | 581 Amerindian community members aged ≥60 years | Increasing age, high fasting blood glucose, >10 enlarged basal ganglia-perivascular spaces and non-lacunar strokes |
Voigt S, 2021 [47] | 1397 stroke patients | Male gender only for intimal pattern |
Golüke NMS, 2022 [49] | 1992 memory clinic patients | Age, male (intima), diabetes mellitus (medial), hypertension (intimal), smoking (intimal), stroke |
Peeters MTJ, 2019 [40] | 376 patients with nontraumatic intracerebral hemorrhage | Age |
Sedaghat S, 2019 [53] | 2241-member general population | Lower eGFR and a higher albumin-to-creatinine ratio |
de Onofre NML, 2021 [58] | 284 dental clinic patients aged >40 years | More missing teeth, older age, hypertension, diabetes, coagulation disorders, antihypertensive drugs, C4 segment |
AlSakr A, 2021 [59] | 208 dental clinic patients aged <30 years | Periodontitis, hypertension, hyperlipidemia, increasing age, male gender, cardiovascular history |
Kockelkoren R, 2018 [25] | 1868 trauma patients | Age |
Zhang S, 2019 [1] | 207 acute ischemic stroke patients | Aldosterone |
Vos A, 2018 [50] | 1132 stroke patients | Age, pulse pressure, and family history (any calcification). Intimal: smoking, hypertension. Medial: diabetes, previous vascular disease |
Del Brutto OH, 2018 [46] | 437 Amerindian community members aged ≥60 years | Carotid-femoral PWV |
Vojinovic D, 2018 [61] | 1111-member general population | 3-hydroxybutyrate |
Olatunji RB, 2018 [51] | 130 adults with acute ischemic stroke | Age, hypertension, diabetes mellitus, hyperlipidemia, alcohol use |
Del Brutto OH, 2017 [52] | 663 adults from general population | Brachial pulse pressure |
Kim JM, 2016 [62] | 1193 patients with infarction or TIA | Serum homocysteine |
Adams HH, 2016 [57] | 2034-member general population | 47% heritability, locus 9p21.3 (rs1537372), 11p11.2 (rs11038042) |
Yilmaz A, 2015 [54] | 319 ischemic stroke patients | Age, diabetes, coronary artery disease (univariate hypertension and inverse relation with smoking) |
Bos D, 2012 [39] | 2495-member general population | Age, cardiovascular history, excessive alcohol intake (men), smoking (men), diabetes (women), hypertension (women), less obesity (women) |
Iwasa Y, 2012 [55] | 107 hemodialysis patients, 43 controls | Hemodialysis |
Mak HK, 2009 [56] | 60 Chinese patients with TIA or minor stroke | Age, diabetes |
de Weert TT, 2009 [48] | 406 patients with ischemic cerebrovascular disease | Age, male, smoking, hypercholesterolemia, history of cardiovascular disease |
Chen XY, 2006 [63] | 490 patients referred for brain CT | Age, history of ischemic stroke, white blood cell count |
Author | Population | Association with Calcification Presence, Calcification Severity, or Calcification Pattern |
---|---|---|
Engel 2024 [67] | 716 patients with subarachnoid hemorrhage | Calcification score was related to adverse outcome (aOR 4.06) and early ischemia (aOR 1.58). Calcification score was protective for vasospasm. |
van der Toorn JE, 2020 [64] | 1239 females and 1118 males, general population | All-cause mortality in males (aHR 1.34) and cardiovascular mortality in males (aHR 2.11) and females (aHR 1.95). |
Kamphuis MJ, 2024 [68] | 150 with unruptured and 150 with ruptured aneurysms | Siphon calcifications are not associated with rupture status. |
Zhu J, 2023 [69] | 207 patients with anterior circulation stroke | Medial siphon calcification pattern is associated with poor stroke outcome (sOR: 7.418). |
Van den Beukel T, 2024 [37] | 2339-member general population, stroke- and dementia-free | Siphon calcification presence increased risk of incident dementia (aHR 1.53). |
Shimoyama T, 2023 [70] | 375 acute ischemic stroke patients | Calcification volumes in the siphon associated with large artery stroke in younger patients (aOR; 2.89). |
Xia J, 2023 [71] | 177 patients with non-acute occlusion | Siphon calcification was associated with successful recanalization. |
Mazzacane F, 2023 [65] | 485 ischemic stroke patients | Intimal calcification was associated with lacunar stroke etiology (aOR 2). |
Del Brutto OH, 2022 [72] | 778 persons who underwent head CT | Visual calcification score of moderate or severe was associated with all-cause mortality (aHR 1.82). |
Hou D, 2022 [73] | 310 stroke patients | Siphon calcification presence and lower density was independently associated with stroke progression (aOR density 1.23). |
Shen Y, 2022 [74] | 156 stroke patients who received IVT | Modified Woodcock score associated with poor stroke outcome (aOR = 1.35) and death (aOR = 2.41). |
Rahmani F, 2022 [75] | Case–control of 230 subjects who underwent PET/CT | Agatston score of the siphon was not associated with cognitive decline. |
Van den Beukel TC, 2022 [38] | Population-based cohort of 2391 stroke-free participants | All siphon calcification subtypes were associated with a higher risk of stroke (aHR intimal: 2.11, elastic lamina: 2.66, mixed 2.57). |
Van der Toorn JE, 2021 [76] | 1184 women and 983 men, population cohort | Especially in women, siphon calcification score was associated with myocardial infarction (MI), other coronary heart disease mortality, and stroke (aHR women 1.62, men 1.26). |
Luijten SPR, 2021 [77] | 2701 stroke patients who underwent EVT | Patients with intimal siphon calcification pattern benefit more from an extensive collateral circulation in terms of outcome. |
Kouw F, 2021 [78] | 982 stroke patients | Intravenous thrombolysis was significantly associated with favorable clinical outcome in medial siphon calcifications. |
Pektezel MY [79] | 201 patients with intracerebral hematoma | No clear association with hematoma expansion, mortality, or adverse outcome. |
Golüke N, 2021 [49] | 1992 memory clinic patients | No independent association between siphon calcification (pattern or severity) and cognitive function. |
He XW, 2019 [66] | 32 acute ischemic stroke patients | Siphon calcification severity was not independently associated with stroke severity, hemorrhagic transformation, functional outcome, or mortality. |
Cho N, 2019 [80] | 69 patients with chronic kidney disease | Siphon calcium score was not significantly associated with cognitive impairment (aOR 2.65 (0.49–16.04), but power was limited. |
Kong WY, 2019 [81] | 156 consecutive TIA patients | A higher CT calcium score was significantly associated with recurrent ischemic events (aOR 1.25). |
Compagne K, 2018 [82] | 500 stroke patients included in the MR CLEAN study | Siphon medial calcification patients had better functional outcome with endovascular therapy (aOR 2.32) compared to those with intimal calcifications (aOR 0.82). |
Gocmen R, 2018 [83] | 91 consecutive acute anterior circulation stroke patients | Medial dominance of siphon calcification tended to be associated with less early response to intravenous thrombolysis (p = 0.052), but not to later outcome or hemorrhagic transformation. |
Tábuas-Pereira M, 2018 [84] | 396 consecutive ischemic stroke patients | Siphon calcification score was only associated with mortality (aOR 1.10), not with other adverse outcomes. |
Hernández-Pérez M, 2017 [85] | 194 patients admitted to a stroke unit | Siphon calcification associated with incomplete revascularization (aOR 0.73) and with poor outcome (aOR 1.31). |
Del Brutto, 2016 [86] | 584 persons without previous stroke | Inverse relation between siphon calcification severity and cognition (adjusted Beta −2.04, −3.76 to −0.33). |
Kao HW, 2015 [87] | 579 patients scanned for multiple indications | Lower cognitive function association with 100-point increment of siphon Agatston score (aOR 1.06). |
Bos D, 2014 [88] | 2323 stroke-free persons | Siphon calcification volume was related to incident stroke (aHR per SD 1.43). |
Lin TC, 2013 [89] | 297 stroke patients | Moderate to severe siphon calcification risk factor for hemorrhagic transformation (aOR 2.52). |
Hong NR, 2011 [90] | 445 patients who underwent CT and MRI | Carotid siphon calcification severity with lacunar infarcts (aOR 1.29, 1.15–1.45). |
Chung PW, 2010 [91] | 159 acute ischemic stroke patients | Siphon calcification was associated with periventricular white matter lesions (aOR 2.62), deep white matter lesions (aOR 3.25), and lacunar infarcts (aOR 3.09). |
Erbay S, 2008 [92] | 65 acute patients who underwent CT and MRI | Siphon calcification was associated with central atrophy (after adjustment for age), but not with cortical atrophy. |
Chen XY, 2007 [93] | 175 stroke cases and 182 controls | Association between siphon calcification and ischemic stroke (aOR = 3.172). |
Erbay S, 2007 [94] | 65 acute patients who underwent CT and MRI | Severe siphon calcification was associated with acute small vessel infarcts after multivariable adjustment (p = 0.002). |
Taoka T, 2006 [95] | 72 patients with unenhanced CT and angiography | N = 7 experienced a stroke. Mean calcium score of the no-stroke group was 88 (SD 171) and of the stroke group was 312 (SD 539). |
Schneider E, 1977 [96] | 173 treated and untreated Parkinsonian patients | Medial calcification is associated with brain atrophy, but not with Parkinsonism. |
Scotti G, 1975 [97] | 5570 patients who underwent skull radiography | Both intimal and medial calcifications were associated with stroke occurrence, with a similar effect size. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jong, P.A.; Bos, D.; Koek, H.L.; Deckers, P.T.; Harlianto, N.I.; Ruigrok, Y.M.; Spiering, W.; Zwanenburg, J.; Mali, W.P.T.M. The Carotid Siphon as a Pulsatility Modulator for Brain Protection: Role of Arterial Calcification Formation. J. Pers. Med. 2025, 15, 356. https://doi.org/10.3390/jpm15080356
de Jong PA, Bos D, Koek HL, Deckers PT, Harlianto NI, Ruigrok YM, Spiering W, Zwanenburg J, Mali WPTM. The Carotid Siphon as a Pulsatility Modulator for Brain Protection: Role of Arterial Calcification Formation. Journal of Personalized Medicine. 2025; 15(8):356. https://doi.org/10.3390/jpm15080356
Chicago/Turabian Stylede Jong, Pim A., Daniel Bos, Huiberdina L. Koek, Pieter T. Deckers, Netanja I. Harlianto, Ynte M. Ruigrok, Wilko Spiering, Jaco Zwanenburg, and Willem P.Th.M. Mali. 2025. "The Carotid Siphon as a Pulsatility Modulator for Brain Protection: Role of Arterial Calcification Formation" Journal of Personalized Medicine 15, no. 8: 356. https://doi.org/10.3390/jpm15080356
APA Stylede Jong, P. A., Bos, D., Koek, H. L., Deckers, P. T., Harlianto, N. I., Ruigrok, Y. M., Spiering, W., Zwanenburg, J., & Mali, W. P. T. M. (2025). The Carotid Siphon as a Pulsatility Modulator for Brain Protection: Role of Arterial Calcification Formation. Journal of Personalized Medicine, 15(8), 356. https://doi.org/10.3390/jpm15080356