Individualized Selection of Valve Intervention Strategies in Aortic Disease Is Key for Better Outcomes
Abstract
1. Introduction
2. Indications for Aortic Valve Surgery
3. Criteria for Choosing Surgical Mechanical or Bioprosthetic Valve
4. Aortic Homografts
5. The Ross Procedure
6. New-Generation Surgical Aortic Valves
7. Minimally Invasive Aortic Valve Replacement
8. Small Aortic Annulus
9. Bicuspid Aortic Valve
10. Aortic Valve Endocarditis
11. Transcatheter Aortic Valve Implantation
12. The Structural Degeneration of Bioprosthetic Valves
13. Management of Bioprosthetic Valve Degeneration
14. Aortic Valve Repair
15. Innovative Therapies and Research
16. Discussion
17. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LVESD | Left ventricular end-systolic diameter |
PPM | Prosthesis-patient mismatch |
SAVR | Surgical aortic valve replacement |
TAVR | Transcatheter aortic valve replacement |
STS | Society of Thoracic Surgeons |
AVR | Aortic valve replacement |
ESC | European Society of Cardiology |
EACTS | European Association for Cardio-Thoracic Surgery |
LVEF | Left ventricular ejection fraction |
ACC | American College of Cardiology |
AHA | American Heart Association |
BVF | Bioprosthetic valve fracturing |
VIV | Valve-in-valve |
TAVI | Transcatheter aortic valve implantation |
HALT | Hypoattenuated leaflet thickening |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
TEE | Transesophageal echocardiography |
References
- Coffey, S.; Roberts-Thomson, R.; Brown, A.; Carapetis, J.; Chen, M.; Enriquez-Sarano, M.; Zuhlke, L.; Prendergast, B.D. Global epidemiology of valvular heart disease. Nat. Rev. Cardiol. 2021, 18, 853–864. [Google Scholar] [CrossRef]
- Aluru, J.S.; Barsouk, A.; Saginala, K.; Rawla, P.; Barsouk, A. Valvular Heart Disease Epidemiology. Med. Sci. 2022, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Fiedler, A.G.; Tolis, G., Jr. Surgical Treatment of Valvular Heart Disease: Overview of Mechanical and Tissue Prostheses, Advantages, Disadvantages, and Implications for Clinical Use. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 7. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, 450–500. [Google Scholar] [CrossRef]
- Schnittman, S.R.; Adams, D.H.; Itagaki, S.; Toyoda, N.; Egorova, N.N.; Chikwe, J. Bioprosthetic aortic valve replacement: Revisiting prosthesis choice in patients younger than 50 years old. J. Thorac. Cardiovasc. Surg. 2018, 155, 539–547. [Google Scholar] [CrossRef]
- Bartus, K.; Litwinowicz, R.; Sadowski, J.; Filip, G.; Kowalewski, M.; Suwalski, P.; Mazur, P.; Kedziora, A.; Jasinski, M.; Deja, M.; et al. Bioprosthetic or mechanical heart valves: Prosthesis choice for borderline patients? -Results from 9616 cases recorded in Polish national cardiac surgery registry. J. Thorac. Dis. 2020, 12, 5869–5878. [Google Scholar] [CrossRef] [PubMed]
- Useini, D.; Schlomicher, M.; Haldenwang, P.; Naraghi, H.; Moustafine, V.; Bechtel, M.; Strauch, J. Early Results after Aortic Valve Replacement Using Last Generation Bioprosthetic Aortic Valve. Heart Surg. Forum 2021, 24, E598–E962. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.F.; Seco, M.; Wu, J.J.; Edelman, J.B.; Wilson, M.K.; Vallely, M.P.; Byrom, M.J.; Bannon, P.G. Mechanical Versus Bioprosthetic Aortic Valve Replacement in Middle-Aged Adults: A Systematic Review and Meta-Analysis. Ann. Thorac. Surg. 2016, 102, 315–327. [Google Scholar] [CrossRef]
- Andreeva, A.; Coti, I.; Werner, P.; Scherzer, S.; Kocher, A.; Laufer, G.; Andreas, M. Aortic Valve Replacement in Adult Patients with Decellularized Homografts: A Single-Center Experience. J. Clin. Med. 2023, 12, 6713. [Google Scholar] [CrossRef]
- Yazdchi, F.; Harloff, M.; Hirji, S.; Percy, E.; McGurk, S.; Cherkasky, O.; Malarczyk, A.; Newell, P.; Rinewalt, D.; Mallidi, H.R.; et al. Long-term Outcomes of Aortic Valve Replacement with Aortic Homograft: 27 Years Experience. Ann. Thorac. Surg. 2021, 112, 1929–1938. [Google Scholar] [CrossRef]
- Mazine, A.; El-Hamamsy, I.; Verma, S.; Peterson, M.D.; Bonow, R.O.; Yacoub, M.H.; David, T.E.; Bhatt, D.L. Ross Procedure in Adults for Cardiologists and Cardiac Surgeons: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2761–2777. [Google Scholar] [CrossRef]
- Sawadogo, A.; Bui-Duc, A.V.; D’Ostrevy, N.; Camilleri, L.; Azarnoush, K. Rapid-deployment aortic valve replacement in high-risk patients: A case-control study. J. Cardiovasc. Thorac. Res. 2021, 13, 23–27. [Google Scholar] [CrossRef]
- Liakopoulos, O.J.; Gerfer, S.; Rahmanian, P.; Eghbalzadeh, K.; Djordjevic, I.; Schlachtenberger, G.; Zeriouh, M.; Mader, N.; Choi, Y.H.; Wahlers, T. Rapid Deployment Aortic Valve Replacement with the Perceval S and Intuity Elite. Thorac. Cardiovasc. Surg. 2021, 69, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Di Eusanio, M.; Berretta, P. The sutureless and rapid-deployment aortic valve replacement international registry: Lessons learned from more than 4500 patients. Ann. Cardiothorac. Surg. 2020, 9, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Shala, M.; Niclauss, L. Early results of the Resilia Inspiris aortic valve in the old age patients—A retrospective comparison with the Carpentier Edwards Magna Ease. J. Cardiovasc. Thorac. Res. 2020, 12, 222–226. [Google Scholar] [CrossRef]
- Johnston, D.R.; Griffith, B.P.; Puskas, J.D.; Bavaria, J.E.; Svensson, L.G.; Investigators, C.T. Intermediate-term outcomes of aortic valve replacement using a bioprosthesis with a novel tissue. J. Thorac. Cardiovasc. Surg. 2021, 162, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Wollersheim, L.W.; Li, W.W.; Kaya, A.; Bouma, B.J.; Driessen, A.H.; van Boven, W.J.; van der Meulen, J.; de Mol, B.A. Stentless vs Stented Aortic Valve Bioprostheses in the Small Aortic Root. Semin. Thorac. Cardiovasc. Surg. 2016, 28, 390–397. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Y.; Wang, Q.; Kong, D.; Wang, Z.; Liu, J. Recent advancements in polymeric heart valves: From basic research to clinical trials. Mater. Today Bio. 2024, 28, 101194. [Google Scholar] [CrossRef] [PubMed]
- Todesco, M.; Lezziero, G.; Gerosa, G.; Bagno, A. Polymeric Heart Valves: Do They Represent a Reliable Alternative to Current Prosthetic Devices? Polymers 2025, 17, 557. [Google Scholar] [CrossRef]
- Cordoves, E.M.; Vunjak-Novakovic, G.; Kalfa, D.M. Designing Biocompatible Tissue Engineered Heart Valves In Situ: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Fioretta, E.S.; Motta, S.E.; Lintas, V.; Loerakker, S.; Parker, K.K.; Baaijens, F.P.T.; Falk, V.; Hoerstrup, S.P.; Emmert, M.Y. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat. Rev. Cardiol. 2021, 18, 92–116. [Google Scholar] [CrossRef]
- Bai, S.; Wei, B.; Chen, L.; Huang, X.; Huang, K.; Yang, L.; Zheng, C.; Wang, Y. Drug-Loaded Hybrid Tissue Engineered Heart Valve with Antithrombosis and Immunomodulation Performance. ACS Appl. Mater. Interfaces 2025, 17, 19401–19416. [Google Scholar] [CrossRef]
- Almeida, A.S.; Ceron, R.O.; Anschau, F.; de Oliveira, J.B.; Leao Neto, T.C.; Rode, J.; Rey, R.A.W.; Lira, K.B.; Delvaux, R.S.; de Souza, R. Conventional Versus Minimally Invasive Aortic Valve Replacement Surgery: A Systematic Review, Meta-Analysis, and Meta-Regression. Innovations 2022, 17, 3–13. [Google Scholar] [CrossRef]
- Zubarevich, A.; Zhigalov, K.; Schmack, B.; Rad, A.A.; Vardanyan, R.; Wendt, D.; Ruhparwar, A.; Weymann, A. Step-by-Step Minimally Invasive Aortic Valve Replacement: The RAT Approach. Braz. J. Cardiovasc. Surg. 2021, 36, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Di Bacco, L.; Miceli, A.; Glauber, M. Minimally invasive aortic valve surgery. J. Thorac. Dis. 2021, 13, 1945–1959. [Google Scholar] [CrossRef]
- Bratt, S.; Dimberg, A.; Kastengren, M.; Lilford, R.D.; Svenarud, P.; Sartipy, U.; Franco-Cereceda, A.; Dalen, M. Bleeding in minimally invasive versus conventional aortic valve replacement. J. Cardiothorac. Surg. 2024, 19, 349. [Google Scholar] [CrossRef]
- Hancock, H.C.; Maier, R.H.; Kasim, A.; Mason, J.; Murphy, G.; Goodwin, A.; Owens, W.A.; Akowuah, E. Mini sternotomy versus conventional sternotomy for aortic valve replacement: A randomised controlled trial. BMJ Open 2021, 11, e041398. [Google Scholar] [CrossRef]
- Telyuk, P.; Hancock, H.; Maier, R.; Batty, J.A.; Goodwin, A.; Owens, W.A.; Ogundimu, E.; Akowuah, E. Long-term outcomes of mini sternotomy versus conventional sternotomy for aortic valve replacement: A randomized controlled trial. Eur. J. Cardiothorac. Surg. 2022, 63, ezac540. [Google Scholar] [CrossRef]
- Tavakoli, R.; Danial, P.; Oudjana, A.H.; Jamshidi, P.; Gassmann, M.; Leprince, P.; Lebreton, G. Biological aortic valve replacement: Advantages and optimal indications of stentless compared to stented valve substitutes. A review. Gen. Thorac. Cardiovasc. Surg. 2018, 66, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Christ, T.; Claus, B.; Zielinski, C.; Falk, V.; Grubitzsch, H. Long-Term Outcome of the Sorin Freedom SOLO Stentless Aortic Valve. J. Heart Valve Dis. 2016, 25, 679–684. [Google Scholar]
- Beckmann, E.; Martens, A.; Alhadi, F.; Hoeffler, K.; Umminger, J.; Kaufeld, T.; Sarikouch, S.; Koigeldiev, N.; Cebotari, S.; Schmitto, J.D.; et al. Aortic valve replacement with sutureless prosthesis: Better than root enlargement to avoid patient-prosthesis mismatch? Interact. Cardiovasc. Thorac. Surg. 2016, 22, 744–749. [Google Scholar] [CrossRef]
- Verma, R.; Cohen, G.; Colbert, J.; Fedak, P.W.M. Bicuspid aortic valve associated aortopathy: 2022 guideline update. Curr. Opin. Cardiol. 2023, 38, 61–67. [Google Scholar] [CrossRef]
- Bargagna, M.; Ascione, G.; Zancanaro, E.; Fioravanti, F.; Sala, A.; Trumello, C.; Chang, G.; Verzini, A.; Castiglioni, A.; Maisano, F. Bicuspid Aortic Valve, from the Unknown till the Perfection of the Species. Rev. Cardiovasc. Med. 2024, 25, 310. [Google Scholar] [CrossRef]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Riviere, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases. Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [PubMed]
- King, M.; Stambulic, T.; Payne, D.; Fernandez, A.L.; El-Diasty, M. The use of sutureless and rapid-deployment aortic valve prosthesis in patients with bicuspid aortic valve: A focused review. J. Card. Surg. 2022, 37, 3355–3362. [Google Scholar] [CrossRef] [PubMed]
- Waksman, R.; Craig, P.E.; Torguson, R.; Asch, F.M.; Weissman, G.; Ruiz, D.; Gordon, P.; Ehsan, A.; Parikh, P.; Bilfinger, T.; et al. Transcatheter Aortic Valve Replacement in Low-Risk Patients with Symptomatic Severe Bicuspid Aortic Valve Stenosis. JACC Cardiovasc. Interv. 2020, 13, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Yeats, B.B.; Yadav, P.K.; Dasi, L.P.; Thourani, V.H. Transcatheter aortic valve replacement for bicuspid aortic valve disease: Does conventional surgery have a future? Ann. Cardiothorac. Surg. 2022, 11, 389–401. [Google Scholar] [CrossRef]
- Jorgensen, T.H.; Thyregod, H.G.H.; Savontaus, M.; Willemen, Y.; Bleie, O.; Tang, M.; Niemela, M.; Angeras, O.; Gudmundsdottir, I.J.; Sartipy, U.; et al. Transcatheter aortic valve implantation in low-risk tricuspid or bicuspid aortic stenosis: The NOTION-2 trial. Eur. Heart J. 2024, 45, 3804–3814. [Google Scholar] [CrossRef]
- Del Val, D.; Panagides, V.; Mestres, C.A.; Miro, J.M.; Rodes-Cabau, J. Infective Endocarditis After Transcatheter Aortic Valve Replacement: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 81, 394–412. [Google Scholar] [CrossRef]
- Cahill, T.J.; Raby, J.; Jewell, P.D.; Brennan, P.F.; Banning, A.P.; Byrne, J.; Kharbanda, R.K.; MacCarthy, P.A.; Thornhill, M.H.; Sandoe, J.A.T.; et al. Risk of infective endocarditis after surgical and transcatheter aortic valve replacement. Heart 2022, 108, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar] [CrossRef]
- Feld, Y.; Yakobi, D.; Hazan, S.; Weigler, A. Transcatheter aortic valve repair for aortic regurgitation with the Cusper device. EuroIntervention 2022, 18, e179–e180. [Google Scholar] [CrossRef]
- Akodad, M.; Lefèvre, T. Front TAVI: Simplification Is the Ultimate Sophistication. Cardiovasc. Med. 2018, 5, 96. [Google Scholar]
- Pontes, Í.C.M.; Guimarães, C.P.B.F.; Fonseca, E.K.U.N.; Silva, M.M.A.; Sasdelli Neto, R.; Ishi-kawa, W.Y. Computed tomography angiography in the planning of transcatheter aortic valve replacement: A step-by-step approach. Radiol. Bras. 2022, 55, 373–379. [Google Scholar] [CrossRef]
- Bhushan, S.; Huang, X.; Li, Y.; He, S.; Mao, L.; Hong, W.; Xiao, Z. Paravalvular Leak After Transcatheter Aortic Valve Implantation Its Incidence, Diagnosis, Clinical Implications, Prevention, Management, and Future Perspectives: A Review Article. Curr. Probl. Cardiol. 2022, 47, 100957. [Google Scholar] [CrossRef]
- Bruno, F.; D’Ascenzo, F.; Vaira, M.P.; Elia, E.; Omedè, P.; Kodali, S.; Barbanti, M.; Rodès-Cabau, J.; Husser, O.; Sossalla, S.; et al. Predictors of pacemaker implantation after transcatheter aortic valve implantation according to kind of prosthesis and risk profile: A systematic review and contemporary meta-analysis. Eur. Heart J. Qual Care Clin. Outcomes 2021, 7, 143–153. [Google Scholar] [CrossRef]
- Lauten, P.; Costello-Boerrigter, L.C.; Goebel, B.; Gonzalez-Lopez, D.; Schreiber, M.; Kuntze, T.; Al Jassem, M.; Lapp, H. Transcatheter Aortic Valve Implantation: Addressing the Subsequent Risk of Permanent Pacemaker Implantation. J. Cardiovasc. Dev. Dis. 2023, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- Levi, A.; Linder, M.; Seiffert, M.; Witberg, G.; Pilgrim, T.; Tomii, D.; Barkan, Y.T.; Van Mieghem, N.M.; Adrichem, R.; Codner, P.; et al. The Impact of Cerebral Embolic Protection Devices on Characteristics and Out-comes of Stroke Complicating TAVR. ASTRO-TAVI Study Group. JACC Cardiovasc. Interv. 2024, 17, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Kharbanda, R.K.; Kennedy, J.; Jamal, Z.; Dodd, M.; Evans, R.; Bal, K.K.; Perkins, A.D.; Blackman, D.J.; Hildick-Smith, D.; Banning, A.P.; et al. Routine Cerebral Embolic Protection during Transcatheter Aor-tic-Valve Implantation. BHF PROTECT-TAVI Investigators. N. Engl. J. Med. 2025, 392, 2403–2412. [Google Scholar] [CrossRef]
- Arévalos, V.; Spione, F.; Vela, P.; Iacovelli, F.; Sanchis, L.; Freixa, X.; Brugaletta, S.; Tesorio, T.; Altisent, O.A.; Sabaté, M.; et al. Coronary obstruction following transcatheter aortic valve replacement. Risk evaluation and preventive strategies. REC Interv. Cardiol. 2024, 6, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.; Fukui, M.; Dworak, M.W.; Okeson, B.K.; Garberich, R.; Hashimoto, G.; Sato, H.; Cavalcante, J.L.; Bapat, V.N.; Lesser, J.; et al. Clinical Impact of Hypoattenuating Leaflet Thickening After Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2022, 15, e011480. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.; Dangas, G. Hypoattenuated Leaflet Thickening After Transcatheter Aortic Valve Replacement: Additional Data, Yet Still Many Unanswered Questions. Circ. Cardiovasc. Interv. 2022, 15, e011828. [Google Scholar] [CrossRef] [PubMed]
- Chidester, J.; Donisan, T.; Desai, P.V.; Banthiya, S.; Zaghloul, A.; Jessen, M.E.; Park, K.; Tan, W.; Tsai, S.; Huffman, L.; et al. Access Options for Transcatheter Aortic Valve Replacement. J. Clin. Med. 2025, 14, 1651. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, T.; Attizzani, G.F.; Gada, H.; Chetcuti, S.J.; Williams, M.R.; Ahmed, M.; Petrossian, G.A.; Saybolt, M.D.; Allaqaband, S.Q.; Merhi, W.M.; et al. Use and performance of the evolut FX transcatheter aortic valve system. Cardiovasc. Revasc. Med. 2024, 67, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Yashima, F.; Shirai, S.; Tada, N.; Naganuma, T.; Yamawaki, M.; Yamanaka, F.; Mizutani, K.; Noguchi, M.; Ueno, H.; et al. Performance and outcomes of the SAPIEN 3 Ultra RESILIA transcatheter heart valve in the OCEAN-TAVI registry. EuroIntervention 2024, 20, 579–590. [Google Scholar] [CrossRef]
- Beerkens, F.J.; Tang, G.H.L.; Kini, A.S.; Lerakis, S.; Dangas, G.D.; Mehran, R.; Khera, S.; Goldman, M.; Fuster, V.; Bhatt, D.L.; et al. Transcatheter Aortic Valve Replacement Beyond Severe Aortic Stenosis: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2025, 85, 944–964. [Google Scholar] [CrossRef]
- Brankovic, M.; Sharma, A. Transcatheter Aortic Valve Implantation and Replacement: The Latest Advances and Prospects. J. Clin. Med. 2025, 14, 1844. [Google Scholar] [CrossRef] [PubMed]
- Kaza, A.K.; Pigula, F.A. Are Bioprosthetic Valves Appropriate for Aortic Valve Replacement in Young Patients? Semin. Thorac. Cardiovasc. Surg. Pediatr. Card Surg. Annu. 2016, 19, 63–67. [Google Scholar] [CrossRef]
- Percy, E.D.; Harloff, M.; Hirji, S.; Malarczyk, A.; Cherkasky, O.; Yazdchi, F.; McGurk, S.; Shekar, P.; Kaneko, T. Subclinical Structural Valve Degeneration in Young Patients with Bioprosthetic Aortic Valves. Ann. Thorac. Surg. 2021, 111, 1486–1493. [Google Scholar] [CrossRef]
- Belluschi, I.; Buzzatti, N.; Castiglioni, A.; De Bonis, M.; Maisano, F.; Alfieri, O. Aortic and mitral bioprosthetic valve dysfunction: Surgical or percutaneous solutions? Eur. Heart J. Suppl. 2021, 23 (Suppl. E), E6–E12. [Google Scholar] [CrossRef]
- Wernly, B.; Zappe, A.K.; Unbehaun, A.; Sinning, J.M.; Jung, C.; Kim, W.K.; Fichtlscherer, S.; Lichtenauer, M.; Hoppe, U.C.; Alushi, B.; et al. Transcatheter valve-in-valve implantation (VinV-TAVR) for failed surgical aortic bioprosthetic valves. Clin. Res. Cardiol. 2019, 108, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Pibarot, P.; Simonato, M.; Barbanti, M.; Linke, A.; Kornowski, R.; Rudolph, T.; Spence, M.; Moat, N.; Aldea, G.; Mennuni, M.; et al. Impact of Pre-Existing Prosthesis-Patient Mismatch on Survival Following Aortic Valve-in-Valve Procedures. JACC Cardiovasc. Interv. 2018, 11, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Ruge, H.; Erlebach, M.; Lange, R. Frequency of Bioprosthetic Valve Fracturing Utilization in an All-Comers Valve-in-Valve TAVR Cohort. Front. Cardiovasc. Med. 2021, 8, 653871. [Google Scholar] [CrossRef]
- Bilkhu, R.; Jahangiri, M.; Otto, C.M. Patient-prosthesis mismatch following aortic valve replacement. Heart 2019, 105 (Suppl. 2), s28–s33. [Google Scholar] [CrossRef]
- Chhatriwalla, A.K.; Allen, K.B.; Saxon, J.T.; Cohen, D.J.; Aggarwal, S.; Hart, A.J.; Baron, S.J.; Dvir, D.; Borkon, A.M. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement. Circ. Cardiovasc. Interv. 2017, 10, e005216. [Google Scholar] [CrossRef] [PubMed]
- Bavaria, J.E.; Griffith, B.; Heimansohn, D.A.; Rozanski, J.; Johnston, D.R.; Bartus, K.; Girardi, L.N.; Beaver, T.; Takayama, H.; Mumtaz, M.A.; et al. Five-year Outcomes of the COMMENCE Trial Investigating Aortic Valve Replacement with RESILIA Tissue. Ann. Thorac. Surg. 2023, 115, 1429–1436. [Google Scholar] [CrossRef]
- Saleem, S.; Ullah, W.; Syed, M.A.; Megaly, M.; Thalambedu, N.; Younas, S.; Zahid, S.; Alam, M.; Virani, S.S.; Verma, D.R.; et al. Meta-analysis comparing valve-in-valve TAVR and redo-SAVR in patients with degenerated bioprosthetic aortic valve. Catheter. Cardiovasc. Interv. 2021, 98, 940–947. [Google Scholar] [CrossRef]
- Herrmann, H.C.; Daneshvar, S.A.; Fonarow, G.C.; Stebbins, A.; Vemulapalli, S.; Desai, N.D.; Malenka, D.J.; Thourani, V.H.; Rymer, J.; Kosinski, A.S. Prosthesis-Patient Mismatch in Patients Undergoing Transcatheter Aortic Valve Replacement: From the STS/ACC TVT Registry. J. Am. Coll. Cardiol. 2018, 72, 2701–2711. [Google Scholar] [CrossRef]
- Tarantini, G.; Dvir, D.; Tang, G.H.L. Transcatheter aortic valve implantation in degenerated surgical aortic valves. EuroIntervention 2021, 17, 709–719. [Google Scholar] [CrossRef]
- Sa, M.P.; Van den Eynde, J.; Simonato, M.; Hirji, S.; Erten, O.; Jacquemyn, X.; Tasoudis, P.; Dokollari, A.; Sicouri, S.; Weymann, A.; et al. Late outcomes of valve-in-valve transcatheter aortic valve implantation versus re-replacement: Meta-analysis of reconstructed time-to-event data. Int. J. Cardiol. 2023, 370, 112–121. [Google Scholar] [CrossRef]
- Majmundar, M.; Doshi, R.; Kumar, A.; Johnston, D.; Brockett, J.; Kanaa, N.A.; Lahorra, J.A.; Svensson, L.G.; Krishnaswamy, A.; Reed, G.W.; et al. Valve-in-valve transcatheter aortic valve implantation versus repeat surgical aortic valve replacement in patients with a failed aortic bioprosthesis. EuroIntervention 2022, 17, 1227–1237. [Google Scholar] [CrossRef]
- Kaneko, T.; Bapat, V.N.; Alakhtar, A.M.; Zaid, S.; George, I.; Grubb, K.J.; Harrington, K.; Pirelli, L.; Atkins, M.; Desai, N.D.; et al. Transcatheter heart valve explantation for transcatheter aortic valve replacement failure: A Heart Valve Collaboratory expert consensus document on operative techniques. J. Thorac. Cardiovasc. Surg. 2025, 169, 878–889. [Google Scholar] [CrossRef]
- Mylonas, K.S.; Angouras, D.C. Bioprosthetic Valves for Lifetime Management of Aortic Stenosis: Pearls and Pitfalls. J. Clin. Med. 2023, 12, 7063. [Google Scholar] [CrossRef]
- Sassis, L.; Kefala-Karli, P.; Cucchi, I.; Kouremenos, I.; Demosthenous, M.; Diplaris, K. Valve Repair in Aortic Insufficiency: A State-of-the-art Review. Curr. Cardiol. Rev. 2023, 19, e270422204131. [Google Scholar] [CrossRef]
- Leopold, J.A. PCSK9 and Calcific Aortic Valve Stenosis: Moving Beyond Lipids. JACC Basic. Transl. Sci. 2020, 5, 662–664. [Google Scholar] [CrossRef] [PubMed]
- Nsaibia, M.J.; Devendran, A.; Goubaa, E.; Bouitbir, J.; Capoulade, R.; Bouchareb, R. Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail? J. Clin. Med. 2022, 11, 3331. [Google Scholar] [CrossRef]
- Bartoli-Leonard, F.; Pennel, T.; Caputo, M. Immunotherapy in the Context of Aortic Valve Diseases. Cardiovasc. Drugs Ther. 2024, 38, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Sa, M.P.B.; Cavalcanti, L.R.P.; Perazzo, A.M.; Gomes, R.A.F.; Clavel, M.A.; Pibarot, P.; Biondi-Zoccai, G.; Zhigalov, K.; Weymann, A.; Ruhparwar, A.; et al. Calcific Aortic Valve Stenosis and Atherosclerotic Calcification. Curr. Atheroscler. Rep. 2020, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Forrest, J.K.; Yakubov, S.J.; Deeb, G.M.; Gada, H.; Mumtaz, M.A.; Ramlawi, B.; Bajwa, T.; Crouch, J.; Merhi, W.; Wai Sang, S.l.; et al. 5-Year Outcomes After Transcatheter or Surgical Aortic Valve Replacement in Low-Risk Patients with Aortic Stenosis. J. Am. Coll. Cardiol. 2025, 85, 1523–1532. [Google Scholar] [CrossRef]
- Modine, T.; Tchétché, D.; Van Mieghem, N.M.; Deeb, G.M.; Chetcuti, S.J.; Yakubov, S.J.; Sorajja, P.; Gada, H.; Mumtaz, M.; Ramlawi, B.; et al. Three-Year Outcomes Following TAVR in Younger (<75 Years) Low-Surgical-Risk Severe Aortic Stenosis Patients. Circ. Cardiovasc. Interv. 2024, 17, e014018. [Google Scholar] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Pibarot, P.; Hahn, R.T.; Genereux, P.; Kodali, S.K.; Kapadia, S.R.; Cohen, D.J.; Pocock, S.J.; et al. Transcatheter Aortic-Valve Replacement in Low-Risk Patients at Five Years. PARTNER 3 Investigators. N. Engl. J. Med. 2023, 389, 1949–1960. [Google Scholar] [CrossRef]
- Blankenberg, S.; Seiffert, M.; Vonthein, R.; Baumgartner, H.; Bleiziffer, S.; Borger, M.A.; Choi, Y.H.; Clemmensen, P.; Cremer, J.; Czerny, M.; et al. Transcatheter or Surgical Treatment of Aortic Valve Stenosis. Engl. J. Med. 2024, 390, 1572–1583. [Google Scholar] [CrossRef] [PubMed]
- Oatway, C.; Shimamura, J.; Bagur, R.; Fujii, S.; Chu, M.W.A. Simultaneous Hybrid Transcatheter Aortic Valve Implantation and Endoscopic Mitral Valve Repair. CJC Open 2023, 5, 230–232. [Google Scholar] [CrossRef] [PubMed]
Durability | Less CPB Time | Less Cross Clamp Time | Small Aortic Annulus | Minimally Invasive Surgery | Less PPM | Pacemaker Implantation | Designed for Future Valve in Valve Procedure | |
---|---|---|---|---|---|---|---|---|
Sutureless Valves | √ | √ | √ | √ | √ | √ | ||
Rapid Deployment Valves | √ | √ | √ | √ | ||||
Valves with Expandable Annulus | √ | √ | ||||||
Stentless Valves | √ | √ | ||||||
Stented Valves | √ |
Aortic Endocarditis | Bicuspid Aortic Valve | Low Risk Patients | Young Patients | Aortic Regurgitation | Aortic Stenosis | |
---|---|---|---|---|---|---|
Surgical Intervention | √ | √ | √ | √ | √ | √ |
Transcatheter Intervention | √ |
Durability | Large EOA | Pacemaker Implantation | Better Positioning | Better Coronary Access | Better Hemodynamic Performance | |
---|---|---|---|---|---|---|
Self-expanding | √ | √ | √ | √ | ||
Balloon-Expandable | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Androutsopoulou, V.; Zotos, P.-A.; Xanthopoulos, A.; Boultadakis, E.; Magouliotis, D.; Schizas, N.; Iliopoulos, D.C.; Skoularigis, J.; Athanasiou, T. Individualized Selection of Valve Intervention Strategies in Aortic Disease Is Key for Better Outcomes. J. Pers. Med. 2025, 15, 337. https://doi.org/10.3390/jpm15080337
Androutsopoulou V, Zotos P-A, Xanthopoulos A, Boultadakis E, Magouliotis D, Schizas N, Iliopoulos DC, Skoularigis J, Athanasiou T. Individualized Selection of Valve Intervention Strategies in Aortic Disease Is Key for Better Outcomes. Journal of Personalized Medicine. 2025; 15(8):337. https://doi.org/10.3390/jpm15080337
Chicago/Turabian StyleAndroutsopoulou, Vasiliki, Prokopis-Andreas Zotos, Andrew Xanthopoulos, Evangelos Boultadakis, Dimitrios Magouliotis, Nikolaos Schizas, Dimitrios C. Iliopoulos, John Skoularigis, and Thanos Athanasiou. 2025. "Individualized Selection of Valve Intervention Strategies in Aortic Disease Is Key for Better Outcomes" Journal of Personalized Medicine 15, no. 8: 337. https://doi.org/10.3390/jpm15080337
APA StyleAndroutsopoulou, V., Zotos, P.-A., Xanthopoulos, A., Boultadakis, E., Magouliotis, D., Schizas, N., Iliopoulos, D. C., Skoularigis, J., & Athanasiou, T. (2025). Individualized Selection of Valve Intervention Strategies in Aortic Disease Is Key for Better Outcomes. Journal of Personalized Medicine, 15(8), 337. https://doi.org/10.3390/jpm15080337