Major Allele Frequencies in CYP2C9 and CYP2C19 in Asian and European Populations: A Case Study to Disaggregate Data Among Large Racial Categories
Abstract
1. Background
2. Objective
3. Methods
4. Results
4.1. CYP2C9
4.2. CYP2C19
5. Discussion
6. Limitations
7. Conclusions
8. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vidovic, S.; Skrbic, R.; Stojiljkovic, M.P.; Vidovic, V.; Becarevic, J.; Stoisavljevic-Satara, S.; Maksimovic, N. Prevalence of five pharmacologically most important CYP2C9 and CYP2C19 allelic variants in the population from the Republic of Srpska in Bosnia and Herzegovina. Arh. Hig. Rada Toksikol. 2021, 72, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Sangkuhl, K.; Claudio-Campos, K.; Cavallari, L.H.; Agundez, J.A.G.; Whirl-Carrillo, M.; Duconge, J.; Del Tredici, A.L.; Wadelius, M.; Rodrigues Botton, M.; Woodahl, E.L.; et al. PharmVar GeneFocus: CYP2C9. Clin. Pharmacol. Ther. 2021, 110, 662–676. [Google Scholar] [CrossRef] [PubMed]
- Miners, J.O.; Birkett, D.J. Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 1998, 45, 525–538. [Google Scholar] [CrossRef]
- Botton, M.R.; Whirl-Carrillo, M.; Del Tredici, A.L.; Sangkuhl, K.; Cavallari, L.H.; Agundez, J.A.G.; Duconge, J.; Lee, M.T.M.; Woodahl, E.L.; Claudio-Campos, K.; et al. PharmVar GeneFocus: CYP2C19. Clin. Pharmacol. Ther. 2021, 109, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz-Oleszkiewicz, B.; Wiela-Hojenska, A. CYP2C19 polymorphism in relation to the pharmacotherapy optimization of commonly used drugs. Pharmazie 2018, 73, 619–624. [Google Scholar] [CrossRef]
- PHARMGKB. CYP2C9 Drug Label Annotations. Available online: https://www.pharmgkb.org/gene/PA126/labelAnnotation (accessed on 9 May 2025).
- PHARMGKB. CYP2C19 Drug Label Annotations. Available online: https://www.pharmgkb.org/gene/PA124/labelAnnotation (accessed on 9 May 2025).
- Roman, Y. Bridging the United States population diversity gaps in clinical research: Roadmap to precision health and reducing health disparities. Pers. Med. 2025, 1–11. [Google Scholar] [CrossRef]
- Precision medicine needs an equity agenda. Nat. Med. 2021, 27, 737. [CrossRef]
- Schwartz, A.L.; Alsan, M.; Morris, A.A.; Halpern, S.D. Why Diverse Clinical Trial Participation Matters. N. Engl. J. Med. 2023, 388, 1252–1254. [Google Scholar] [CrossRef]
- Woods-Burnham, L.; Johnson, J.R.; Hooker, S.E., Jr.; Bedell, F.W.; Dorff, T.B.; Kittles, R.A. The Role of Diverse Populations in US Clinical Trials. Med 2021, 2, 21–24. [Google Scholar] [CrossRef]
- Gordon, N.P.; Lin, T.Y.; Rau, J.; Lo, J.C. Aggregation of Asian-American subgroups masks meaningful differences in health and health risks among Asian ethnicities: An electronic health record based cohort study. BMC Public Health 2019, 19, 1551. [Google Scholar] [CrossRef]
- UNFPA. Asian and the Pacific. Population trends. Available online: https://asiapacific.unfpa.org/en/topics/population-trends-9 (accessed on 9 May 2025).
- Bottern, J.; Stage, T.B.; Dunvald, A.D. Sex, racial, and ethnic diversity in clinical trials. Clin. Transl. Sci. 2023, 16, 937–945. [Google Scholar] [CrossRef]
- Clark, L.T.; Watkins, L.; Pina, I.L.; Elmer, M.; Akinboboye, O.; Gorham, M.; Jamerson, B.; McCullough, C.; Pierre, C.; Polis, A.B.; et al. Corrigendum to “Increasing Diversity in Clinical Trials: Overcoming Critical Barriers’’. [Current Problems in Cardiology, Volume 44, Issue 5 (2019) 148–172]. Curr. Probl. Cardiol. 2021, 46, 100647. [Google Scholar] [CrossRef]
- Alrajeh, K.; AlAzzeh, O.; Roman, Y. The frequency of major ABCG2, SLCO1B1 and CYP2C9 variants in Asian, Native Hawaiian and Pacific Islander women subgroups: Implications for personalized statins dosing. Pharmacogenomics 2023, 24, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Alrajeh, K.; Roman, Y.M. The frequency of rs2231142 in ABCG2 among Asian subgroups: Implications for personalized rosuvastatin dosing. Pharmacogenomics 2023, 24, 15–26. [Google Scholar] [CrossRef] [PubMed]
- AlAzzeh, O.; Roman, Y.M. The frequency of rs2231142 in ABCG2 among Native Hawaiian and Pacific Islander subgroups: Implications for personalized rosuvastatin dosing. Pharmacogenomics 2023, 24, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Asiimwe, I.G.; Pirmohamed, M. Ethnic Diversity and Warfarin Pharmacogenomics. Front. Pharmacol. 2022, 13, 866058. [Google Scholar] [CrossRef]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef]
- Zhou, Y.; Nevosadova, L.; Eliasson, E.; Lauschke, V.M. Global distribution of functionally important CYP2C9 alleles and their inferred metabolic consequences. Hum. Genom. 2023, 17, 15. [Google Scholar] [CrossRef]
- Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.; Gage, B.F.; Kimmel, S.E.; Perera, M.A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin. Pharmacol. Ther. 2017, 102, 397–404. [Google Scholar] [CrossRef]
- Lima, J.J.; Thomas, C.D.; Barbarino, J.; Desta, Z.; Van Driest, S.L.; El Rouby, N.; Johnson, J.A.; Cavallari, L.H.; Shakhnovich, V.; Thacker, D.L.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Proton Pump Inhibitor Dosing. Clin. Pharmacol. Ther. 2021, 109, 1417–1423. [Google Scholar] [CrossRef]
- Lee, C.R.; Luzum, J.A.; Sangkuhl, K.; Gammal, R.S.; Sabatine, M.S.; Stein, C.M.; Kisor, D.F.; Limdi, N.A.; Lee, Y.M.; Scott, S.A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clin. Pharmacol. Ther. 2022, 112, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Chenchula, S.; Atal, S.; Uppugunduri, C.R.S. A review of real-world evidence on preemptive pharmacogenomic testing for preventing adverse drug reactions: A reality for future health care. Pharmacogenomics J. 2024, 24, 9. [Google Scholar] [CrossRef] [PubMed]
- Swen, J.J.; van der Wouden, C.H.; Manson, L.E.; Abdullah-Koolmees, H.; Blagec, K.; Blagus, T.; Bohringer, S.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.C.; et al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: An open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet 2023, 401, 347–356. [Google Scholar] [CrossRef]
- Celinscak, Z.; Zajc Petranovic, M.; Setinc, M.; Stojanovic Markovic, A.; Pericic Salihovic, M.; Marija Zeljko, H.; Janicijevic, B.; Smolej Narancic, N.; Skaric-Juric, T. Pharmacogenetic distinction of the Croatian population from the European average. Croat. Med. J. 2022, 63, 117–125. [Google Scholar] [CrossRef]
- Pedersen, R.S.; Brasch-Andersen, C.; Sim, S.C.; Bergmann, T.K.; Halling, J.; Petersen, M.S.; Weihe, P.; Edvardsen, H.; Kristensen, V.N.; Brosen, K.; et al. Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: Identification of CYP2C haplotypes in healthy Nordic populations. Eur. J. Clin. Pharmacol. 2010, 66, 1199–1205. [Google Scholar] [CrossRef]
- Buzoianu, A.D.; Trifa, A.P.; Muresanu, D.F.; Crisan, S. Analysis of CYP2C9*2, CYP2C9*3 and VKORC1 -1639 G>A polymorphisms in a population from South-Eastern Europe. J. Cell. Mol. Med. 2012, 16, 2919–2924. [Google Scholar] [CrossRef] [PubMed]
- Skadric, I.; Stojkovic, O. Defining screening panel of functional variants of CYP1A1, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 genes in Serbian population. Int. J. Leg. Med. 2020, 134, 433–439. [Google Scholar] [CrossRef]
- Dorado, P.; Berecz, R.; Norberto, M.J.; Yasar, U.; Dahl, M.L.; Llerena, A. CYP2C9 genotypes and diclofenac metabolism in Spanish healthy volunteers. Eur. J. Clin. Pharmacol. 2003, 59, 221–225. [Google Scholar] [CrossRef]
- Sanchez-Diz, P.; Estany-Gestal, A.; Aguirre, C.; Blanco, A.; Carracedo, A.; Ibanez, L.; Passiu, M.; Provezza, L.; Ramos-Ruiz, R.; Ruiz, B.; et al. Prevalence of CYP2C9 polymorphisms in the south of Europe. Pharmacogenomics J. 2009, 9, 306–310. [Google Scholar] [CrossRef]
- Dorji, P.W.; Tshering, G.; Na-Bangchang, K. CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South-East and East Asian populations: A systematic review. J. Clin. Pharm. Ther. 2019, 44, 508–524. [Google Scholar] [CrossRef]
- Ustare, L.A.T.; Reyes, K.G.; Lasac, M.A.G.; Brodit, S.E., Jr.; Baclig, M.O. Single nucleotide polymorphisms on CYP2C9 gene among Filipinos and its association with post-operative pain relief via COX-2 inhibitors. Int. J. Mol. Epidemiol. Genet. 2020, 11, 31–38. [Google Scholar] [PubMed]
- Sun, B.; Wen, Y.F.; Culhane-Pera, K.A.; Lo, M.; Xiong, T.; Lee, K.; Peng, K.; Thyagarajan, B.; Bishop, J.R.; Zierhut, H.; et al. Differences in Predicted Warfarin Dosing Requirements Between Hmong and East Asians Using Genotype-Based Dosing Algorithms. Pharmacotherapy 2021, 41, 265–276. [Google Scholar] [CrossRef]
- Gaikwad, T.; Ghosh, K.; Shetty, S. VKORC1 and CYP2C9 genotype distribution in Asian countries. Thromb. Res. 2014, 134, 537–544. [Google Scholar] [CrossRef]
- Jose, R.; Chandrasekaran, A.; Sam, S.S.; Gerard, N.; Chanolean, S.; Abraham, B.K.; Satyanarayanamoorthy, K.; Peter, A.; Rajagopal, K. CYP2C9 and CYP2C19 genetic polymorphisms: Frequencies in the south Indian population. Fundam. Clin. Pharmacol. 2005, 19, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.G.; Prasad, H.C.; Kim, R.B.; Stein, C.M. CYP2C9 allelic variants: Ethnic distribution and functional significance. Adv. Drug Deliv. Rev. 2002, 54, 1257–1270. [Google Scholar] [CrossRef]
- Soga, Y.; Nishimura, F.; Ohtsuka, Y.; Araki, H.; Iwamoto, Y.; Naruishi, H.; Shiomi, N.; Kobayashi, Y.; Takashiba, S.; Shimizu, K.; et al. CYP2C polymorphisms, phenytoin metabolism and gingival overgrowth in epileptic subjects. Life Sci. 2004, 74, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Vu, N.P.; Nguyen, H.T.T.; Tran, N.T.B.; Nguyen, T.D.; Huynh, H.T.T.; Nguyen, X.T.; Nguyen, D.T.; Nong, H.V.; Nguyen, H.H. CYP2C19 genetic polymorphism in the Vietnamese population. Ann. Hum. Biol. 2019, 46, 491–497. [Google Scholar] [CrossRef]
- Geisler, T.; Schaeffeler, E.; Dippon, J.; Winter, S.; Buse, V.; Bischofs, C.; Zuern, C.; Moerike, K.; Gawaz, M.; Schwab, M. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics 2008, 9, 1251–1259. [Google Scholar] [CrossRef]
- Ragia, G.; Arvanitidis, K.I.; Tavridou, A.; Manolopoulos, V.G. Need for reassessment of reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17 discovery: The case of Greece. Pharmacogenomics 2009, 10, 43–49. [Google Scholar] [CrossRef]
- Scordo, M.G.; Caputi, A.P.; D’Arrigo, C.; Fava, G.; Spina, E. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol. Res. 2004, 50, 195–200. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, Y.; Zhang, D.; Zou, Y.; Li, X.; Chen, R.; Zhang, X.; Chen, S.; Bai, F. CYP2C19 gene polymorphism in Ningxia. Pharmacol. Rep. 2023, 75, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qin, S.; Xie, J.; Tang, J.; Yang, L.; Shen, W.; Zhao, X.; Du, J.; He, G.; Feng, G.; et al. Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics 2008, 9, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.J.; Guo, T.; Xia, D.Y.; Jia, L.H. Allele and genotype frequencies of CYP3A4, CYP2C19, and CYP2D6 in Han, Uighur, Hui, and Mongolian Chinese populations. Genet. Test. Mol. Biomark. 2012, 16, 102–108. [Google Scholar] [CrossRef]
- Yamada, S.; Onda, M.; Kato, S.; Matsuda, N.; Matsuhisa, T.; Yamada, N.; Miki, M.; Matsukura, N. Genetic differences in CYP2C19 single nucleotide polymorphisms among four Asian populations. J. Gastroenterol. 2001, 36, 669–672. [Google Scholar] [CrossRef]
- Alrajeh, K.Y.; Roman, Y.M. The frequency of major CYP2C19 genetic polymorphisms in women of Asian, Native Hawaiian and Pacific Islander subgroups. Pers. Med. 2022, 19, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.A.; Ishizaki, T.; Chiba, K.; de Morais, S.M.; Bell, D.; Krahn, P.M.; Evans, D.A. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 1997, 7, 59–64. [Google Scholar] [CrossRef]
- Wen, Y.F.; Culhane-Pera, K.A.; Thyagarajan, B.; Bishop, J.R.; Zierhut, H.; Lo, M.; Xiong, T.; Peng, K.; Holzer, K.; Lee, K.; et al. Potential Clinical Relevance of Differences in Allele Frequencies Found within Very Important Pharmacogenes between Hmong and East Asian Populations. Pharmacotherapy 2020, 40, 142–152. [Google Scholar] [CrossRef]
- Gulati, S.; Yadav, A.; Kumar, N.; Kanupriya; Kumar, G.; Aggarwal, N.; Gupta, R. Frequency distribution of high risk alleles of CYP2C19, CYP2E1, CYP3A4 genes in Haryana population. Environ. Toxicol. Pharmacol. 2014, 37, 1186–1193. [Google Scholar] [CrossRef]
- Anichavezhi, D.; Chakradhara Rao, U.S.; Shewade, D.G.; Krishnamoorthy, R.; Adithan, C. Distribution of CYP2C19*17 allele and genotypes in an Indian population. J. Clin. Pharm. Ther. 2012, 37, 313–318. [Google Scholar] [CrossRef]
- Ghodke, Y.; Joshi, K.; Arya, Y.; Radkar, A.; Chiplunkar, A.; Shintre, P.; Patwardhan, B. Genetic polymorphism of CYP2C19 in Maharashtrian population. Eur. J. Epidemiol. 2007, 22, 907–915. [Google Scholar] [CrossRef]
- Shalia, K.K.; Shah, V.K.; Pawar, P.; Divekar, S.S.; Payannavar, S. Polymorphisms of MDR1, CYP2C19 and P2Y12 genes in Indian population: Effects on clopidogrel response. Indian Heart J. 2013, 65, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Chiba, K.; Ishizaki, T. Genotyping of S-mephenytoin 4′-hydroxylation in an extended Japanese population. Clin. Pharmacol. Ther. 1996, 60, 661–666. [Google Scholar] [CrossRef]
- Fukushima-Uesaka, H.; Saito, Y.; Maekawa, K.; Ozawa, S.; Hasegawa, R.; Kajio, H.; Kuzuya, N.; Yasuda, K.; Kawamoto, M.; Kamatani, N.; et al. Genetic variations and haplotypes of CYP2C19 in a Japanese population. Drug Metab. Pharmacokinet. 2005, 20, 300–307. [Google Scholar] [CrossRef]
- Lee, S.S. The ethical implications of stratifying by race in pharmacogenomics. Clin. Pharmacol. Ther. 2007, 81, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Roh, H.K.; Dahl, M.L.; Tybring, G.; Yamada, H.; Cha, Y.N.; Bertilsson, L. CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics 1996, 6, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Lee, S.J.; Gwak, J.; Jung, H.J.; Thi-Le, H.; Song, I.S.; Kim, E.Y.; Shin, J.G. Comparisons of CYP2C19 genetic polymorphisms between Korean and Vietnamese populations. Ther. Drug Monit. 2007, 29, 455–459. [Google Scholar] [CrossRef]
- Kim, K.A.; Song, W.K.; Kim, K.R.; Park, J.Y. Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles. J. Clin. Pharm. Ther. 2010, 35, 697–703. [Google Scholar] [CrossRef]
- Li, X.P.; Wang, J.L.; Lei, S.X.; Chen, B.Y.; Ma, X.; He, F.; Yue, C.F.; Liu, H.X.; Hu, J.P.; Xiong, Q.; et al. Prevalence of CYP2C19 Variants in Patients with Cardiovascular Disease from the Yunnan-Guizhou Plateau in Southwestern China. Pharmgenomics Pers. Med. 2025, 18, 105–113. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, X.; Chen, H.; Tan, X.; Yang, Z.; Deng, L.; Wang, B.; Kong, S.; Li, S.; Cui, Y.; et al. A pangenome reference of 36 Chinese populations. Nature 2023, 619, 112–121. [Google Scholar] [CrossRef]
- Kiffmeyer, W.R.; Langer, E.; Davies, S.M.; Envall, J.; Robison, L.L.; Ross, J.A. Genetic polymorphisms in the Hmong population: Implications for cancer etiology and survival. Cancer 2004, 100, 411–417. [Google Scholar] [CrossRef]
- Sengupta, D.; Choudhury, A.; Basu, A.; Ramsay, M. Population Stratification and Underrepresentation of Indian Subcontinent Genetic Diversity in the 1000 Genomes Project Dataset. Genome Biol. Evol. 2016, 8, 3460–3470. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, I.M.; Roman, Y.M. Individualized Management of Osteoarthritis: The Role of Pharmacogenomics to Optimize Pain Therapy. Future Pharmacol. 2025, 5, 30. [Google Scholar] [CrossRef]
- Theken, K.N.; Lee, C.R.; Gong, L.; Caudle, K.E.; Formea, C.M.; Gaedigk, A.; Klein, T.E.; Agundez, J.A.G.; Grosser, T. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin. Pharmacol. Ther. 2020, 108, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.T.; Bishop, J.R.; Schneiderhan, M.E. Using pharmacogenomics and therapeutic drug monitoring to guide drug selection and dosing in outpatient mental health comprehensive medication management. Ment. Health Clin. 2020, 10, 254–258. [Google Scholar] [CrossRef]
- Roman, Y.; McClish, D.; Price, E.; Sabo, R.T.; Woodward, O.; Mersha, T.; Shah, N.; Armada, A.; Terkeltaub, R. Cardiometabolic genomics and pharmacogenomics investigations in Filipino Americans: Steps towards precision health and reducing health disparities. Am. Heart J. Plus Cardiol. Res. Pract. 2022, 15, 100136. [Google Scholar] [CrossRef] [PubMed]
- Vo, V.; Lopez, G.; Malay, S.; Roman, Y.M. Cardiovascular Risk Factors Among Asian Americans: Perspectives on the Role of Acculturation in Cardiovascular Diseases Health Disparities. J. Immigr. Minor. Health 2024, 26, 409–420. [Google Scholar] [CrossRef]
- Roman, Y.M. Race and precision medicine: Is it time for an upgrade? Pharmacogenomics J. 2019, 19, 1–4. [Google Scholar] [CrossRef]
Medication Name | CYP2C9 PGx Label LOR | Approved Drug Label | Clinical PGx Guidelines | ||||
---|---|---|---|---|---|---|---|
EMA | FDA | HC | SM | CPIC | DPWG | ||
Siponimod | Testing Required | ✓ | ✓ | ✓ | ✓ | ||
Actionable PGx | |||||||
Celecoxib | Actionable PGx | ✓ | ✓ | ✓ | ✓ | ||
Dronabinol | Actionable PGx | ✓ | |||||
Fosphenytoin | Actionable PGx | ✓ | ✓ | ||||
Informative PGx | ✓ | ||||||
Glimepiride | Actionable PGx | ✓ | |||||
Glyburide | Actionable PGx | ✓ | |||||
Losartan | Actionable PGx | ✓ | |||||
Phenytoin | Actionable PGx | ✓ | ✓ | ✓ | ✓ | ||
Warfarin | Actionable PGx | ✓ | ✓ | ✓ | ✓ | ||
Meloxicam | Informative PGx | ✓ | ✓ | ||||
Prasugrel | Informative PGx | ✓ |
Medication Name | CYP2C19 PGx Label LOR | Approved Drug Labels | Clinical PGx Guidelines | ||||
---|---|---|---|---|---|---|---|
EMA | FDA | HC | SM | CPIC | DPWG | ||
Mavacamten | Testing Required | ✓ | |||||
Informative PGx | ✓ | ✓ | |||||
Amitriptyline | Actionable PGx | ✓ | ✓ | ✓ | |||
Carisoprodol | Actionable PGx | ✓ | |||||
Citalopram | Actionable PGx | ✓ | ✓ | ✓ | ✓ | ✓ | |
Clobazam | Actionable PGx | ✓ | ✓ | ||||
Clopidogrel | Actionable PGx | ✓ | ✓ | ✓ | ✓ | ✓ | |
Informative PGx | ✓ | ||||||
Citalopram | Actionable PGx | ✓ | ✓ | ✓ | ✓ | ✓ | |
Escitalopram | Actionable PGx | ✓ | ✓ | ✓ | ✓ | ||
Informative PGx | ✓ | ||||||
Lansoprazole | Actionable PGx | ✓ | ✓ | ✓ | |||
Pantoprazole | Actionable PGx | ✓ | ✓ | ✓ | |||
Informative PGx | ✓ | ||||||
Voriconazole | Actionable PGx | ✓ | ✓ | ✓ | |||
Informative PGx | ✓ | ✓ | ✓ | ||||
Diazepam | Informative PGx | ✓ | ✓ | ||||
Omeprazole | Actionable PGx | ✓ | ✓ | ✓ | |||
Informative PGx | ✓ | ||||||
Phenytoin | Informative PGx | ✓ | |||||
Prasugrel | Informative PGx | ✓ | |||||
Ticagrelor | Informative PGx | ✓ | |||||
Dexlansoprazole | Actionable PGx | ✓ | ✓ | ||||
Informative PGx | ✓ | ✓ | |||||
Esomeprazole | Actionable PGx | ✓ | |||||
Informative PGx | ✓ |
CYP2C9 Diplotype | Activity Score | Phenotype |
---|---|---|
*1/*1 | 2.0 | Normal Metabolizer |
*1/*2 | 1.5 | Intermediate Metabolizer |
*1/*3 | 1.0 | Intermediate Metabolizer |
*1/*5 | 1.5 | Intermediate Metabolizer |
*1/*8 | 1.5 | Intermediate Metabolizer |
*1/*11 | 1.5 | Intermediate Metabolizer |
*2/*2 | 1.0 | Intermediate Metabolizer |
*2/*3 | 0.5 | Poor Metabolizer |
*2/*5 | 1.0 | Intermediate Metabolizer |
*2/*8 | 1.0 | Intermediate Metabolizer |
*2/*11 | 1.0 | Intermediate Metabolizer |
*3/*3 | 0.0 | Poor Metabolizer |
*3*5 | 0.5 | Poor Metabolizer |
*3/*8 | 0.5 | Poor Metabolizer |
*3/*11 | 0.5 | Poor Metabolizer |
*5/*5 | 1.0 | Intermediate Metabolizer |
*5/*8 | 1.0 | Intermediate Metabolizer |
*5/*11 | 1.0 | Intermediate Metabolizer |
*8/*8 | 1.0 | Intermediate Metabolizer |
*8/*11 | 1.0 | Intermediate Metabolizer |
*11/*11 | 1.0 | Intermediate Metabolizer |
CYP2C19 Diplotype | Activity Score | Phenotype |
---|---|---|
*1/*1 | n/a | Normal Metabolizer |
*1/*2 | n/a | Intermediate Metabolizer |
*1/*3 | n/a | Intermediate Metabolizer |
*1/*17 | n/a | Rapid Metabolizer |
*2/*2 | n/a | Poor Metabolizer |
*2/*3 | n/a | Poor Metabolizer |
*2/*17 | n/a | Intermediate Metabolizer |
*3/*3 | n/a | Poor Metabolizer |
*3*17 | n/a | Intermediate Metabolizer |
*17/*17 | n/a | Ultrarapid Metabolizer |
Population | CYP2C9 Allele Frequency (%) | References | ||||
---|---|---|---|---|---|---|
*2 | *3 | *5 | *8 | *11 | ||
Overall European (Range) | 9.9–15.7 | 5.3–9.8 | ||||
| 14.7 | 7.6 | [27] | |||
| 12.1 | 5.3 | [28] | |||
| 9.9 | 6.5 | [28] | |||
| 11.3 | 9.3 | [29] | |||
| 11.7 | 8.1 | [30] | |||
| 15.6 | 9.8 | [31] | |||
| 15.7 | 7.8 | [32] | |||
Overall Asian (Range) | 0–4.0 | 0.5–18.9 | 0 | 1.8 | 0–0.05 | |
| 0–0.3 | 2.0–9.0 | 0 | 1.8 | 0.05 | [33] |
| 0–0.5 | 1.0–1.9 | [16,34] | |||
| 0 | 16.6–18.9 | [35] | |||
| 4.0 | 8.0–9.0 | [36,37] | |||
| 0 | 0.5–5.4 | 0 | [16,33,36,38,39] | ||
| 0 | 1.1–5.0 | 0 | 0 | [16,33,36,38] | |
| 0 | 2.2–3.5 | [33,40] |
Population | CYP2C19 Allele Frequency (%) | References | ||
---|---|---|---|---|
*2 | *3 | *17 | ||
Overall European (Range) | 11.1–16.3 | 0 | 19.6–25.5 | |
| 0 | 23.9 | [27] | |
| 15.0 | 20.1 | [28] | |
| 15.2 | 0 | 25.5 | [41] |
| 13.1 | 0 | 19.6 | [42] |
| 11.1 | 0 | [43] | |
| 15.2 | 22.0 | [28] | |
| 16.3 | 22.2 | [30] | |
Overall Asian (Range) | 20.5–53.8 | 0–15.6 | 0–17.9 | |
| 24.9–45.5 | 3.4–5.2 | 1.2–2.1 | [33,44,45,46,47] |
| 35.8–39.0 | 6.0–8.5 | 0.5 | [48,49] |
| 42.2–53.8 | 0–0.3 | 0 | [50] |
| 22.0–41.7 | 0–1.2 | 10.2–17.9 | [37,51,52,53,54] |
| 26.7–35.1 | 9.1–15.6 | 1.1 | [33,47,55,56] |
| 21.0–33.8 | 7.6–12.0 | 1.3–1.5 | [33,48,57,58,59,60] |
| 20.5–27.6 | 2.5–13.9 | 1.0 | [33,40,47,59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieh, H.-E.V.; Roman, Y.M. Major Allele Frequencies in CYP2C9 and CYP2C19 in Asian and European Populations: A Case Study to Disaggregate Data Among Large Racial Categories. J. Pers. Med. 2025, 15, 274. https://doi.org/10.3390/jpm15070274
Nieh H-EV, Roman YM. Major Allele Frequencies in CYP2C9 and CYP2C19 in Asian and European Populations: A Case Study to Disaggregate Data Among Large Racial Categories. Journal of Personalized Medicine. 2025; 15(7):274. https://doi.org/10.3390/jpm15070274
Chicago/Turabian StyleNieh, Horng-Ee Vincent, and Youssef Malak Roman. 2025. "Major Allele Frequencies in CYP2C9 and CYP2C19 in Asian and European Populations: A Case Study to Disaggregate Data Among Large Racial Categories" Journal of Personalized Medicine 15, no. 7: 274. https://doi.org/10.3390/jpm15070274
APA StyleNieh, H.-E. V., & Roman, Y. M. (2025). Major Allele Frequencies in CYP2C9 and CYP2C19 in Asian and European Populations: A Case Study to Disaggregate Data Among Large Racial Categories. Journal of Personalized Medicine, 15(7), 274. https://doi.org/10.3390/jpm15070274