Post-Extraction Bone Changes in Molars Within Personalized Implant-Prosthetic Therapy as Evaluated with Fractal Analysis of CBCT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Selection
- Patients over 18 years of age.
- Patients with first or second molars that had to be extracted.
- Patients in whom the post-extraction sockets have at least two remaining bone walls.
- Patients who do not have serious systemic diseases in ASA I or ASA II categories.
- Cooperative patients.
- Patients who want implant-prosthetic treatment.
- Patients with osteoporosis, severe hypertension, diabetes, kidney disease, or liver disease.
- Patients taking anticoagulants, systemic steroids, or systemic bisphosphonates.
- Patients who smoke >10 cigarettes per day, are alcohol dependent or are drug dependent.
- Pregnant or breastfeeding patients.
- Patients with a history of radiotherapy to the surgical area.
- Patients who have chosen immediate post-extraction dental implant placement.
- Patients with poor oral hygiene.
2.3. Patient Evaluation
2.4. Radiographic Evaluation
2.5. Fractal Analysis
- Selecting the region of interest (ROI).
- Cutting and duplicating.
- Smoothing by applying a Gaussian filter with a value of 35 to eliminate variations in image brightness.
- Subtracting the blurred image from the original image.
- Binarization, the trabecular bone image is set to black.
- Erosion and dilation to reduce image noise.
- Skeletonization of the image to be used for fractal analysis.
2.6. Statistical Analysis
3. Results
3.1. Baseline Data
3.2. Clinical Evaluation
3.3. Fractal Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CBCT | Cone Beam Computed Tomography |
FD | Fractal Dimension |
ASA | American Society of Anesthesiologists |
NIH | National Institutes of Health |
ROI | Rectangular Region of Interest |
BMD | Bone Mineral Density |
PSP | Photo Stimulable Phosphor Plate |
HU | Hounsfield Units |
References
- Ramalingam, S.; Sundar, C.; Jansen, J.A.; Alghamdi, H. Alveolar bone science: Structural characteristics and pathological changes. In Dental Implants and Bone Grafts; Woodhead Publishing: Sawston, UK, 2020; pp. 1–22. [Google Scholar]
- Khaddour, A.S.; Ghiță, R.E.; Ionescu, M.; Rîcă, R.G.; Mercuț, V.; Manolea, H.O.; Camen, A.; Drăghici, E.C.; Radu, A.; Popescu, S.M. Healing of Extraction Sites After Alveolar Ridge Preservation Using Advanced Platelet-Rich Fibrin: A Retrospective Study. Bioengineering 2024, 11, 566. [Google Scholar] [CrossRef] [PubMed]
- Ozzo, S.; Kheirallah, M. The efficiency of two different synthetic bone graft materials on alveolar ridge preservation after tooth extraction: A split-mouth study. BMC Oral Health 2024, 24, 1040. [Google Scholar] [CrossRef]
- de Sousa Gomes, P.; Daugela, P.; Poskevicius, L.; Mariano, L.; Fernandes, M.H. Molecular and Cellular Aspects of Socket Healing in the Absence and Presence of Graft Materials and Autologous Platelet Concentrates: A Focused Review. J. Oral Maxillofac. Res. 2019, 10, e2. [Google Scholar] [PubMed]
- Schropp, L.; Wenzel, A.; Kostopoulos, L.; Karring, T. Bone healing and soft tissue contour changes following single-tooth ex-traction: A clinical and radiographic 12-month prospective study. Int. J. Periodontics Restor. Dent. 2003, 23, 313–323. [Google Scholar]
- Hämmerle, C.H.; Araújo, M.G.; Simion, M. Osteology Consensus Group 2011. Evidence-based knowledge on the biology and treatment of extraction sockets. Clin. Oral Implant. Res. 2012, 23, 80–82. [Google Scholar]
- Mampilly, M.O.; Rao, L.P.; Sequiera, J.; Rao, B.H.; Chandra, J.; Rai, G. Rehabilitation of edentulous atrophic anterior mandible—The role of vertical alveolar distraction osteogenesis. J. Clin. Diagn. Res. 2014, 8, ZR01–ZR03. [Google Scholar] [CrossRef]
- Kim, J.J.; Ben Amara, H.; Chung, I.; Koo, K.T. Compromised extraction sockets: A new classification and prevalence involving both soft and hard tissue loss. J. Periodontal Implant. Sci. 2021, 51, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Groen, J.J.; Duyvensz, F.; Halsted, J.A. Diffuse alveolar atrophy of the jaw (non-inflammatory form of paradental disease) and pre-senile osteoporosis. Gerontol. Clin. 1960, 2, 68–86. [Google Scholar] [CrossRef]
- Franciotti, R.; Moharrami, M.; Quaranta, A.; Bizzoca, M.E.; Piattelli, A.; Aprile, G.; Perrotti, V. Use of fractal analysis in dental images for osteoporosis detection: A systematic review and meta-analysis. Osteoporos. Int. 2021, 32, 1041–1052. [Google Scholar] [CrossRef]
- Strauss, F.J.; Gil, A.; Smirani, R.; Rodriguez, A.; Jung, R.; Thoma, D. The use of digital technologies in peri-implant soft tissue augmentation—A narrative review on planning, measurements, monitoring and aesthetics. Clin. Oral Implant. Res. 2024, 35, 922–938. [Google Scholar] [CrossRef]
- Rytky, S.J.O.; Tiulpin, A.; Finnilä, M.A.J.; Karhula, S.S.; Sipola, A.; Kurttila, V.; Valkealahti, M.; Lehenkari, P.; Joukainen, A.; Kröger, H.; et al. Clinical Super-Resolution Computed Tomography of Bone Microstructure: Application in Musculoskeletal and Dental Imaging. Ann. Biomed. Eng. 2024, 52, 1255–1269. [Google Scholar] [CrossRef]
- Al-Sosowa, A.A.; Alhajj, M.N.; Abdulghani, E.A.; Al-Moraissi, E.A.; Zheng, H.; Pang, Y.; Wang, J. Three-dimensional Analysis of Alveolar Bone with and Without Periodontitis. Int. Dent. J. 2022, 72, 634–640. [Google Scholar] [CrossRef] [PubMed]
- He, R.T.; Tu, M.G.; Huang, H.L.; Tsai, M.T.; Wu, J.; Hsu, J.T. Improving the prediction of the trabecular bone microarchitectural parameters using dental cone-beam computed tomography. BMC Med. Imaging 2019, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Karhula, S.S.; Finnilä, M.A.J.; Rytky, S.J.O.; Cooper, D.M.; Thevenot, J.; Valkealahti, M.; Pritzker, K.P.H.; Haapea, M.; Joukainen, A.; Lehenkari, P.; et al. Quantifying Subresolution 3D Morphology of Bone with Clinical Computed Tomography. Ann. Biomed. Eng. 2020, 48, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Li, F.; Du, Q. Analysis on the relationship between Schneiderian membrane thickening in the posterior maxillary region and periapical lesions by cone beam computed tomography. Hua Xi Kou Qiang Yi Xue Za Zhi 2024, 42, 644–651. [Google Scholar]
- Yeung, A.W.K.; AlHadidi, A.; Vyas, R.; Bornstein, M.M.; Watanabe, H.; Tanaka, R. Nonionizing diagnostic imaging modalities for visualizing health and pathology of periodontal and peri-implant tissues. Periodontology 2000 2024, 95, 87–101. [Google Scholar] [CrossRef]
- Padhye, N.M.; Shirsekar, V.U.; Rakhangi, R.S.; Chalakuzhy, P.M.; Joshi, A.V. Three-dimensional assessment of the mandibular lingual foramina with implications for surgical and implant therapy: A multicentre cross-sectional study. J. Oral Biol. Craniofac. Res. 2023, 13, 186–190. [Google Scholar] [CrossRef]
- Barra, S.G.; Gomes, I.P.; Amaral, T.M.P.; Brasileiro, C.B.; Abreu, L.G.; Mesquita, R.A. New mandibular indices in cone beam computed tomography to identify low bone mineral density in postmenopausal women. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 131, 347–355. [Google Scholar] [CrossRef]
- Kathirvelu, D.; Vinupritha, P.; Kalpana, V. A computer aided diagnosis system for measurement of mandibular cortical thickness on dental panoramic radiographs in prediction of women with low bone mineral density. J. Med. Syst. 2019, 43, 148. [Google Scholar] [CrossRef]
- Soylu, E.; Coşgunarslan, A.; Çelebi, S.; Soydan, D.; Demirbaş, A.E.; Demir, O. Fractal analysis as a useful predictor for deter-mining osseointegration of dental implant? A retrospective study. Int. J. Implant. Dent. 2021, 7, 14. [Google Scholar] [CrossRef]
- Geraets, W.G.; van der Stelt, P.F. Fractal properties of bone. Dentomaxillofac. Radiol. 2000, 29, 144–153. [Google Scholar] [CrossRef]
- Sánchez, I.; Uzcátegui, G. Fractals in dentistry. J. Dent. 2011, 39, 273–292. [Google Scholar] [CrossRef]
- Yavuz, E.; Yardimci, S. Comparison of periapical radiography, panoramic radiography, and CBCT in the evaluation of trabecular bone structure using fractal analysis. Oral Radiol. 2024, 40, 394–400. [Google Scholar] [CrossRef]
- Fazzalari, N.L.; Parkinson, I.H. Fractal dimension and architecture of trabecular bone. J. Pathol. 1996, 178, 100–105. [Google Scholar] [CrossRef]
- Ruttimann, U.E.; Webber, R.L.; Hazelrig, J.B. Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surg. Oral Med. Oral Pathol. 1992, 74, 98–110. [Google Scholar] [CrossRef]
- Kato, C.N.; Barra, S.G.; Tavares, N.P.; Amaral, T.M.; Brasileiro, C.B.; Mesquita, R.A.; Abreu, L.G. Use of fractal analysis in den-tal images: A systematic review. Dentomaxillofac. Radiol. 2020, 49, 20180457. [Google Scholar] [CrossRef]
- Parkinson, I.H.; Fazzalari, N.L. Methodological principles for fractal analysis of trabecular bone. J. Microsc. 2000, 198, 134–142. [Google Scholar] [CrossRef]
- Dundar, N.; Aslan, E.; Mutlu, O. Fractal dimension, lacunarity, and bone area fraction analysis of peri-implant trabecular bone after prosthodontic loading. Oral Radiol. 2025, 41, 120–130. [Google Scholar] [CrossRef]
- Kış, H.C.; Güleryüz Gürbulak, A. Evaluation of the peri-implant bone trabecular microstructure changes in short implants with fractal analysis. Int. J. Implant. Dent. 2020, 6, 13. [Google Scholar] [CrossRef]
- Gazzotti, S.; Aparisi Gómez, M.P.; Schileo, E.; Taddei, F.; Sangiorgi, L.; Fusaro, M.; Miceli, M.; Guglielmi, G.; Bazzocchi, A. High-resolution peripheral quantitative computed tomography: Research or clinical practice? Br. J. Radiol. 2023, 96, 20221016. [Google Scholar] [CrossRef]
- Toghyani, S.; Nasseh, I.; Aoun, G.; Noujeim, M. Effect of Image Resolution and Compression on Fractal Analysis of the Peri-apical Bone. Acta Inform. Med. 2019, 27, 167–170. [Google Scholar] [CrossRef]
- Kavitha, M.S.; Park, S.Y.; Heo, M.S.; Chien, S.I. Distributional Variations in the Quantitative Cortical and Trabecular Bone Radiographic Measurements of Mandible, Between Male and Female Populations of Korea, and Its Utilization. PLoS ONE 2016, 11, e0167992. [Google Scholar] [CrossRef]
- Ozturk, E.M.A.; Artas, A. Evaluation of Bone Mineral Changes in Panoramic Radiographs of Hypothyroid and Hyperthyroid Patients Using Fractal Dimension Analysis. J. Clin. Densitom. 2024, 27, 101443. [Google Scholar] [CrossRef]
- Lyu, L.; Yang, S.; Jing, Y.; Zhang, C.; Wang, J. Examining trabecular morphology and chemical composition of peri-scaffold osseointegrated bone. J. Orthop. Surg. Res. 2020, 15, 406. [Google Scholar] [CrossRef]
- Pothuaud, L.; Benhamou, C.L.; Porion, P.; Lespessailles, E.; Harba, R.; Levitz, P. Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture. J. Bone Miner. Res. 2000, 15, 691–699. [Google Scholar] [CrossRef]
- Abdinian, M.; Milaei, M.; Soltani, P. Digital panoramic radiography and CBCT as auxiliary tools for detection of low bone mineral density in post-menopausal women: A cross-sectional study. BMC Med. Imaging 2023, 23, 78. [Google Scholar] [CrossRef]
- Southard, T.E.; Southard, K.A.; Jakobsen, J.R.; Hillis, S.L.; Najim, C.A. Fractal dimension in radiographic analysis of alveolar process bone. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1996, 82, 569–576. [Google Scholar] [CrossRef]
- Aktuna Belgin, C.; Serindere, G. Evaluation of trabecular bone changes in patients with periodontitis using fractal analysis: A periapical radiography study. J. Periodontol. 2020, 91, 933–937. [Google Scholar] [CrossRef]
- Coşgunarslan, A.; Cangerm, E.M.; Soydan Çabuk, D.; Kış, H.C. The evaluation of the mandibular bone structure changes re-lated to lactation with fractal analysis. Oral Radiol. 2020, 36, 238–247. [Google Scholar] [CrossRef]
- Wilding, R.J.; Slabbert, J.C.; Kathree, H.; Owen, C.P.; Crombie, K.; Delport, P. The use of fractal analysis to reveal remodeling in human alveolar bone following the placement of dental implants. Arch. Oral Biol. 1995, 40, 61–72. [Google Scholar] [CrossRef]
- Popescu, A.M.; Scrieciu, M.; Dobre, F.A.; Roxana, I.; Marinescu, E.C.D.; Cojocaru, M.O.; Popescu, S.M. Oral health and the need for dental care in a group of patients from Oltenia. Rom. J. Dent. Res. 2016, 1, 62–76. [Google Scholar] [CrossRef]
- Omi, M.; Mishina, Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022, 60, e23490. [Google Scholar] [CrossRef]
- López-Valverde, N.; Macedo de Sousal, B.; Blanco Rueda, J.A. Changes of the Alveolar Bone Ridge Using Bone Mineral Grafts and Collagen Membranes After Tooth Extraction: A Systematic Review and Meta-Analysis. Bioengineering 2024, 11, 565. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Q. Pilot study of fractal dimension analysis of osteogenesis for bone substitute materials of Bio-Oss in lateral sinus augmentation. PLoS ONE 2023, 18, e0296248. [Google Scholar] [CrossRef]
- Yu, W.; Zhong, L.; Yao, L.; Wei, Y.; Gui, T.; Li, Z.; Kim, H.; Holdreith, N.; Jiang, X.; Tong, W.; et al. Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. J. Clin. Investig. 2021, 131, e140214. [Google Scholar] [CrossRef]
- Hu, K.F.; Lin, S.W.; Lin, Y.C.; Jeng, J.H.; Huang, Y.T.; Liu, P.F.; Tseng, C.J.; Chou, Y.H. Using Cone-Beam Computed Tomography to Assess Changes in Alveolar Bone Width around Dental Implants at Native and Reconstructed Bone Sites: A Retrospective Cohort Study. J. Pers. Med. 2021, 11, 1011. [Google Scholar] [CrossRef]
- Heimes, D.; Becker, P.; Pabst, A.; Smeets, R.; Kraus, A.; Hartmann, A.; Sagheb, K.; Kämmerer, P.W. How does dental implant macrogeometry affect primary implant stability? A narrative review. Int. J. Implant. Dent. 2023, 9, 20. [Google Scholar] [CrossRef]
- Jaffin, R.A.; Berman, C.L. The excessive loss of Branemark fixtures in type IV bone: A 5-year analysis. J. Periodontol. 1991, 62, 2–4. [Google Scholar] [CrossRef]
- Jemt, T.; Book, K.; Lindén, B.; Urde, G. Failures and complications in 92 consecutively inserted overdentures supported by Brånemark implants in severely resorbed edentulous maxillae: A study from prosthetic treatment to first annual check-up. Int. J. Oral Maxillofac. Implant. 1992, 7, 162–167. [Google Scholar] [CrossRef]
- de Groot, R.J.; Oomens, M.A.E.M.; Forouzanfar, T.; Schulten, E.A.J.M. Bone augmentation followed by implant surgery in the edentulous mandible: A systematic review. J. Oral Rehabil. 2018, 45, 334–343. [Google Scholar] [CrossRef]
- Duan, Q.; An, J.; Mao, H.; Liang, D.; Li, H.; Wang, S.; Huang, C. Review about the Application of Fractal Theory in the Research of Packaging Materials. Materials 2021, 14, 860. [Google Scholar] [CrossRef]
- Ataman-Duruel, E.T.; Beycioğlu, Z.; Yılmaz, D.; Goyushov, S.; Çimen, T.; Duruel, O.; Yılmaz, H.G.; Tözüm, T.F. Evaluation of Cortical Thicknesses and Bone Density Values of Mandibular Canal Borders and Coronal Site of Alveolar Crest. J. Oral Maxillofac. Res. 2023, 14, e4. [Google Scholar] [CrossRef]
- Huang, H.; Chen, D.; Lippuner, K.; Hunziker, E.B. Human Bone Typing Using Quantitative Cone-Beam Computed Tomography. Int. Dent. J. 2023, 73, 259–266. [Google Scholar] [CrossRef]
- Hao, Y.; Zhao, W.; Wang, Y.; Yu, J.; Zou, D. Assessments of jawbone density at implant sites using 3D cone-beam computed tomography. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1398–1403. [Google Scholar]
- Shemtov-Yona, K. Quantitative assessment of the jawbone quality classification: A meta-analysis study. PLoS ONE 2021, 16, e0253283. [Google Scholar] [CrossRef]
- Selvaraj, A.; Jain, R.K.; Nagi, R.; Balasubramaniam, A. Correlation between gray values of cone-beam computed tomograms and Hounsfield units of computed tomograms: A systematic review and meta-analysis. Imaging Sci. Dent. 2022, 52, 133–140. [Google Scholar] [CrossRef]
- Tabassum, A.; Chainchel Singh, M.K.; Ibrahim, N.; Ramanarayanan, S.; Mohd Yusof, M.Y.P. Quantifications of Mandibular Trabecular Bone Microstructure Using Cone Beam Computed Tomography for Age Estimation: A Preliminary Study. Biology 2022, 11, 1521. [Google Scholar] [CrossRef]
- Guo, Z.; Du, X.; Wang, L.; Li, K.; Jiao, J.; Guglielmi, G.; Zhurakivska, K.; Lo Muzio, L.; Blake, G.M.; Cheng, X. Measurements of volumetric bone mineral density in the mandible do not predict spinal osteoporosis. Dentomaxillofac. Radiol. 2020, 49, 20190280. [Google Scholar] [CrossRef]
- Martinez, H.; Davarpanah, M.; Missika, P.; Celletti, R.; Lazzara, R. Optimal implant stabilization in low density bone. Clin. Oral Implant. Res. 2001, 12, 423–432. [Google Scholar] [CrossRef]
- Holahan, C.M.; Wiens, J.L.; Weaver, A.; Assad, D.; Koka, S. Relationship between systemic bone mineral density and local bone quality as effectors of dental implant survival. Clin. Implant. Dent. Relat. Res. 2011, 13, 29–33. [Google Scholar] [CrossRef]
- Al-Fakeh, H.; Sharhan, H.M.; Ziyad, T.A.; Abdulghani, E.A.; Al-Moraissi, E.; Al-Sosowa, A.A.; Liu, B.; Zhang, K. Three-dimensional radiographic assessment of bone changes around posterior dental implants at native bone site in Gansu Province, Northwest of China: A retrospective cohort study. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, e186–e191. [Google Scholar] [CrossRef]
- Qu, F.; Huang, Y.J.; Wang, Y.Y.; Cao, X.M.; Shen, Y.Y.; Wu, Z.A.; Wu, Y.Q.; Xu, C. Cone-beam CT evaluation of post-extraction alveolar bone changes at the maxillary incisor sites in an East Asian population: A cross-sectional study. Heliyon 2024, 10, e32027. [Google Scholar] [CrossRef]
- Chappuis, V.; Engel, O.; Reyes, M.; Shahim, K.; Nolte, L.P.; Buser, D. Ridge alterations post-extraction in the esthetic zone: A 3D analysis with CBCT. J. Dent. Res. 2013, 92, 195S–201S. [Google Scholar] [CrossRef]
- Hayek, E.; Aoun, G.; Geha, H.; Nasseh, I. Image-Based Bone Density Classification Using Fractal Dimensions and Histological Analysis of Implant Recipient Site. Acta Inform. Medica 2020, 28, 272–277. [Google Scholar] [CrossRef]
- Amuk, M.; Saribal, G.S.; Ersu, N.; Yilmaz, S. The effects of technical factors on the fractal dimension in different dental radio-graphic images. Eur. Oral Res. 2023, 57, 68–74. [Google Scholar] [CrossRef]
- Naitoh, M.; Hirukawa, A.; Katsumata, A.; Ariji, E. Evaluation of voxel values in mandibular cancellous bone: Relationship be-tween cone-beam computed tomography and multislice helical computed tomography. Clin. Oral Implant. Res. 2009, 20, 503–506. [Google Scholar] [CrossRef]
- Park, C.S.; Kang, S.R.; Kim, J.E.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Han, J.J.; Yi, W.J. Validation of bone mineral density measurement using quantitative CBCT image based on deep learning. Sci. Rep. 2023, 13, 11921. [Google Scholar] [CrossRef]
- Mozzo, P.; Procacci, C.; Tacconi, A.; Martini, P.T.; Andreis, I.A. A new volumetric CT machine for dental imaging based on the cone-beam technique: Preliminary results. Eur. Radiol. 1998, 8, 1558–1564. [Google Scholar] [CrossRef]
- Schulze, D.; Heiland, M.; Thurmann, H.; Adam, G. Radiation exposure during midfacial imaging using 4- and 16-slice com-puted tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac. Radiol. 2004, 33, 83–86. [Google Scholar] [CrossRef]
- Bayat, N.; Ghavimi, M.A.; Rahimipour, K.; Razi, S.; Esmaeili, F. Radiographic texture analysis of the hard tissue changes following socket preservation with allograft and xenograft materials for dental implantation: A randomized clinical trial. Oral Maxillofac. Surg. 2024, 28, 705–713. [Google Scholar] [CrossRef]
- González-Martín, O.; Lee, E.A.; Veltri, M. CBCT fractal dimension changes at the apex of immediate implants placed using undersized drilling. Clin. Oral Implant. Res. 2012, 23, 954–957. [Google Scholar] [CrossRef]
- Poiana, I.R.; Dobre, R.; Popescu, R.I.; Pituru, S.M.; Bucur, A. Utility of Cone-Beam Computed Tomography in the Detection of Low Bone Mass—A Systematic Review. J. Clin. Med. 2023, 12, 5890. [Google Scholar] [CrossRef]
- Razi, T.; Niknami, M.; Alavi Ghazani, F. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT. J. Dent. Res. Dent. Clin. Dent. Prospect. 2014, 8, 107–110. [Google Scholar]
- Orlando, F.; Arosio, F.; Arosio, P.; Di Stefano, D.A. Bone Density and Implant Primary Stability. A Study on Equine Bone Blocks. Dent. J. 2019, 7, 73. [Google Scholar] [CrossRef]
- Magat, G.; Ozcan Sener, S. Evaluation of trabecular pattern of mandible using fractal dimension, bone area fraction, and gray scale value: Comparison of cone-beam computed tomography and panoramic radiography. Oral Radiol. 2019, 35, 35–42. [Google Scholar] [CrossRef]
- Suttapreyasri, S.; Suapear, P.; Leepong, N. The Accuracy of Cone-Beam Computed Tomography for Evaluating Bone Density and Cortical Bone Thickness at the Implant Site: Micro-Computed Tomography and Histologic Analysis. J. Craniofac. Surg. 2018, 29, 2026–2031. [Google Scholar] [CrossRef]
- Bastami, F.; Shahab, S.; Parsa, A.; Abbas, F.M.; Noori Kooshki, M.H.; Namdari, M.; Lisar, H.A.; Rafiei, T.; Fahimipour, F.; Salehi, M.; et al. Can gray values derived from CT and cone beam CT estimate new bone formation? An in vivo study. Oral Maxillofac. Surg. 2018, 22, 13–20. [Google Scholar] [CrossRef]
- Quirynen, M.; Lamoral, Y.; Dekeyser, C.; Peene, P.; van Steenberghe, D.; Bonte, J.; Baert, A.L. CT scan standard reconstruction technique for reliable jawbone volume determination. Int. J. Oral Maxillofac. Implant. 1990, 5, 384–389. [Google Scholar]
- Feldkamp, L.A.; Goldstein, S.A.; Parfitt, A.M.; Jesion, G.; Kleerekoper, M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Miner. Res. 1989, 4, 3–11. [Google Scholar] [CrossRef]
- Goyushov, S.; Dursun, E.; Tözüm, T.F. Mandibular cortical indices and their relation to gender and age in the cone-beam computed tomography. Dentomaxillofac. Radiol. 2020, 49, 20190210. [Google Scholar] [CrossRef]
- Ko, Y.C.; Tsai, M.T.; Fuh, L.J.; Tsai, M.J.; Wang, X.H.; Huang, H.L.; Hsu, J.T. Association between Age of Menopause and Thickness of Crestal Cortical Bone at Dental Implant Site: A Cross-Sectional Observational Study. Int. J. Environ. Res. Public Health 2020, 17, 5868. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S.; Riggs, B.L.; Atkinson, E.J.; Oberg, A.L.; McDaniel, L.J.; Holets, M.; Peterson, J.M.; Melton, L.J., 3rd. Effects of sex and age on bone microstructure at the ultradistal radius: A population-based noninvasive in vivo assessment. J. Bone Miner. Res. 2006, 21, 124–131. [Google Scholar] [CrossRef]
- Arisan, V.; Karabuda, Z.C.; Avsever, H.; Özdemir, T. Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-assisted implant placement. Part I: Relationship of radiographic gray density and implant stability. Clin. Implant. Dent. Relat. Res. 2013, 15, 893–906. [Google Scholar] [CrossRef]
- Eser, S.; Sarıbaş, E. Anatomical assessment of the trabecular structure of the alveolar bone in periodontal disease by fractal analysis method. Folia Morphol. 2024, 83, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, B.F.; de Castro, J.G.K.; de Melo, N.S.; de Souza Figueiredo, P.T.; Moreira-Mesquita, C.R.; de Paula, A.P.; Sindeaux, R.; Leite, A.F. Fractal dimension analysis on CBCT scans for detecting low bone mineral density in postmenopausal women. Imaging Sci. Dent. 2022, 52, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Shen, Y.W.; Fuh, L.J.; Peng, S.L.; Tsai, M.T.; Huang, H.L.; Hsu, J.T. Relationship Between Cortical Bone Thickness and Cancellous Bone Density at Dental Implant Sites in the Jawbone. Diagnostics 2020, 10, 710. [Google Scholar] [CrossRef]
- Afzoon, S.; Ghorbani, F.; Hasani, M. Evaluation of the mandibular condyles trabecular structure in patients with severe class III pattern: A computed tomography (CT) fractal analysis study. Sci. Rep. 2023, 13, 18183. [Google Scholar] [CrossRef]
- Demiralp, K.Ö.; Kurşun-Çakmak, E.Ş.; Bayrak, S.; Akbulut, N.; Atakan, C.; Orhan, K. Trabecular structure designation using fractal analysis technique on panoramic radiographs of patients with bisphosphonate intake: A preliminary study. Oral Radiol. 2019, 35, 23–28. [Google Scholar] [CrossRef]
- Da Silva, M.E.B.; Dos Santos, H.S.; Ruhland, L.; Rabelo, G.D.; Badaró, M.M. Fractal analysis of dental periapical radiographs: A revised image processing method. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2023, 135, 669–677. [Google Scholar] [CrossRef]
- Miranda-Viana, M.; Fontenele, R.C.; Nogueira-Reis, F.; Farias-Gomes, A.; Oliveira, M.L.; Freitas, D.Q.; Haiter-Neto, F. DICOM file format has better radiographic image quality than other file formats: An objective study. Braz. Dent. J. 2023, 34, 150–157. [Google Scholar] [CrossRef]
- Yasar, F.; Apaydin, B.; Yilmaz, H.H. The effects of image compression on quantitative measurements of digital panoramic radiographs. Med. Oral Patol. Oral Y Cirugia Bucal 2012, 17, e1074–e1081. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.F.; de Souza Figueiredo, P.T.; Caracas, H.; Sindeaux, R.; Guimaraes, A.T.B.; Lazarte, L.; de Paula, A.P.; de Melo, N.S. Systematic review with hierarchical clustering analysis for the fractal dimension in assessment of skeletal bone mineral density using dental radio-graphs. Oral Radiol. 2015, 31, 1–13. [Google Scholar] [CrossRef]
- Misch, C.E. Density of bone: Effect on treatment plans, surgical approach, healing, and progressive boen loading. Int. J. Oral Implantol. 1990, 6, 23–31. [Google Scholar] [PubMed]
- Bucur, S.M.; Cocoș, D.I.; Cucui, R.M.S.; Nazarie, S. Evaluation of the bone supply necessary for implant insertion using the cbct technique–prospective study. Rom. J. Oral Rehabil. 2021, 13. [Google Scholar]
- Morar, L.; Băciuț, G.; Băciuț, M.; Bran, S.; Colosi, H.; Manea, A.; Dinu, C. Analysis of CBCT bone density using the Hounsfield scale. Prosthesis 2022, 4, 414–423. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Partridge, N.C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016, 31, 233–245. [Google Scholar] [CrossRef]
- Jonasson, G.; Skoglund, I.; Rythén, M. The rise and fall of the alveolar process: Dependency of teeth and metabolic aspects. Arch. Oral Biol. 2018, 96, 195–200. [Google Scholar] [CrossRef]
- Daluz, A.; Saliba-Serre, B.; Foti, B.; Lan, R. Age estimation from alveolar bone loss, re-evaluation of Ruquet’s method. Forensic Sci. Med. Pathol. 2024, 20, 79–88. [Google Scholar] [CrossRef]
- Teterina, A.; Niratisairak, S.; Morseth, B.; Bolstad, N. General and local predictors of mandibular cortical bone morphology in adult females and males: The seventh survey of the Tromsø Study. Clin. Oral Investig. 2023, 27, 6577–6587. [Google Scholar] [CrossRef]
- Preoteasa, E.; Florica, L.I.; Obadan, F.; Imre, M. Minimally Invasive Implant Treatment Alternatives for. Curr. Concepts Dent. Implantol. 2015, 77. [Google Scholar]
- Mitrea, M.; Walid, E.A.; Saveanu, C.I.; Hurjui, L.L.; Niculescu, S.; Dmour, A.; Forna, N.C. Clinical implications of sinus lift procedures. Rom. J. Oral Rehabil. 2021, 13, 144–152. [Google Scholar]
- Cho, Y.J.; Jeong, Y.T.; Cho, H.W.; Lee, J.M. A Revisit of Socket Preservation for Dental Implantation. Anti-Aging 2024, 2, 3–12. [Google Scholar]
Study Variable | Category | Gender | Total | |
---|---|---|---|---|
Females (%) | Males (%) | |||
Patients | - | 35 | 25 | 60 (100%) |
Age (years old) | ≤56 | 16 (53.33%) | 14 (46.67%) | 30 (100%) |
45.71% | 56.00% | |||
>56 | 19 (63.33%) | 11 (36.67%) | 30 (100%) | |
54.29% | 44.00% | |||
Residence | Rural | 6 (60%) | 4 (40%) | 10 (100%) |
17.14% | 16.00% | |||
Urban | 29 (58%) | 21 (42%) | 50 (100%) | |
82.86% | 84.00% | |||
Number of extractions | 1 | 14 (60.87%) | 9 (39.13%) | 23 (100%) |
40.00% | 36.00% | |||
2 | 19 (55.88%) | 15 (44.12%) | 34 (100%) | |
54.29% | 60.00% | |||
3 | 2 (66.67%) | 1 (33.33%) | 3 (100%) | |
5.71% | 4.00% | |||
No. of extracted teeth | - | 58 (58%) | 42 (42%) | 100 (100%) |
Location | Maxilla | 23 (56.1%) | 18 (43.9%) | 41 (100%) |
39.66% | 42.86% | |||
Mandible | 35 (59.32%) | 24 (40.68%) | 59 (100%) | |
60.34% | 57.14% | |||
Molar | First molar | 30 (51.72%) | 28 (48.28%) | 58 (100%) |
51.72% | 66.67% | |||
Second molar | 28 (66.67%) | 14 (33.33%) | 42 (100%) | |
48.28% | 33.33% |
Study Variable | Category | Age (Years Old) | Total | |
---|---|---|---|---|
≤56 | >56 | |||
Number of extractions | - | 50 (50%) | 50 (50%) | 100 (100%) |
Maxilla | Total | 18 (43.90%) | 23 (56.10%) | 41 (100%) |
First molar | 11 (45.83%) | 13 (54.17%) | 24 (100%) | |
61.11% | 56.52% | |||
Second molar | 7 (41.18%) | 10 (58.82%) | 17 (100%) | |
38.89% | 43.48% | |||
Mandible | Total | 32 (54.24%) | 27 (45.76%) | 59 (100%) |
First molar | 20 (58.82%) | 14 (41.18%) | 34 (100%) | |
62.50% | 51.85% | |||
Second molar | 12 (48.00%) | 13 (52.00%) | 25 (100%) | |
37.50% | 48.15% |
CBCT Plane | Before Tooth Extraction | After Tooth Extraction | Difference | ||||
---|---|---|---|---|---|---|---|
Min | Max | Mean ± SD | Min | Max | Mean ± SD | ||
Vertical plane | 0.705 | 1.358 | 1.167 ± 0.117 | 0.748 | 1.354 | 1.154 ± 0.119 | 0.013 |
Sagittal plane | 0.796 | 1.290 | 1.138 ± 0.102 | 0.660 | 1.345 | 1.134 ± 0.123 | −0.207 |
Transverse plane | 0.660 | 1.378 | 1.102 ± 0.162 | 0.660 | 1.312 | 1.074 ± 0.164 | 0.028 |
Study Variable | Vertical | Sagittal | Transversal | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Mean ± SD | p * | Median | Mean ± SD | p * | Median | Mean ± SD | p * | |
Age (median) | 0.009 | 0.013 ± 0.169 | 0.150 ** | 0.009 | 0.004 ± 0.145 | 0.820 ** | 0.022 | 0.027 ± 0.194 | 0.596 ** |
Age groups | |||||||||
≤56 years | 0.024 | 0.021 ± 0.186 | 0.611 * | 0.019 | −0.009 ± 0.14 | 0.852 * | 0.025 | 0.051 ± 0.204 | 0.428 * |
>56 years | 0.001 | 0.007 ± 0.154 | −0.005 | 0.015 ± 0.149 | 0.022 | 0.008 ± 0.185 | |||
Gender | |||||||||
Female | 0.005 | 0.017 ± 0.178 | 0.914 * | −0.028 | −0.019 ± 0.149 | 0.021 *# | 0.022 | −0.003 ± 0.19 | 0.232 * |
Male | 0.015 | 0.008 ± 0.157 | 0.034 | 0.035 ± 0.135 | 0.024 | 0.07 ± 0.193 | |||
Residence | |||||||||
Urban area | 0.000 | 0.017 ± 0.171 | 0.597 * | 0.002 | 0.002 ± 0.152 | 0.893 * | 0.025 | 0.032 ± 0.202 | 0.521 * |
Rural area | 0.036 | −0.001 ± 0.161 | 0.022 | 0.011 ± 0.109 | −0.011 | 0.007 ± 0.154 |
Study Variable | CBCT Plane | Before Tooth Extraction | After Tooth Extraction | ||||
---|---|---|---|---|---|---|---|
Min | Max | Average ± SD | Min | Max | Average ± SD | ||
Maxilla | V | 0.705 | 1.326 | 1.109 ± 0.136 | 0.748 | 1.354 | 1.165 ± 0.112 |
S | 0.796 | 1.273 | 1.140 ± 0.109 | 0.956 | 1.345 | 1.155 ± 0.090 | |
T | 0.660 | 1.378 | 1.159 ± 0.119 | 0.660 | 1.312 | 1.098 ± 0.164 | |
Mandible | V | 1.045 | 1.358 | 1.206 ± 0.081 | 0.759 | 1.333 | 1.145 ± 0.124 |
S | 0.799 | 1.29 | 1.136 ± 0.098 | 0.660 | 1.325 | 1.119 ± 0.141 | |
T | 0.660 | 1.378 | 1.062 ± 0.177 | 0.660 | 1.249 | 1.058 ± 0.163 | |
First Molar | V | 0.705 | 1.358 | 1.170 ± 0.108 | 0.937 | 1.354 | 1.186 ± 0.096 |
S | 0.796 | 1.273 | 1.125 ± 0.119 | 0.660 | 1.321 | 1.125 ± 0.136 | |
T | 0.660 | 1.378 | 1.106 ± 0.176 | 0.660 | 1.312 | 1.082 ± 0.166 | |
Second Molar | V | 0.796 | 1.326 | 1.161 ± 0.128 | 0.748 | 1.292 | 1.107 ± 0.133 |
S | 0.991 | 1.290 | 1.155 ± 0.07 | 0.913 | 1.345 | 1.146 ± 0.103 | |
T | 0.719 | 1.314 | 1.096 ± 0.143 | 0.660 | 1.265 | 1.064 ± 0.162 |
Study Variable | Vertical | Sagittal | Transversal | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Mean ± SD | p * | Median | Mean ± SD | p * | Median | Mean ± SD | p * | |
Location | |||||||||
Maxilla | −0.034 | −0.056 ± 0.177 | 0.001 # | 0.023 | −0.015 ± 0.147 | 0.790 | 0.050 | 0.061 ± 0.153 | 0.129 |
Mandible | 0.034 | 0.062 ± 0.145 | −0.013 | 0.017 ± 0.144 | −0.013 | 0.004 ± 0.216 | |||
Molar | |||||||||
First Molar | −0.004 | −0.016 ± 0.145 | 0.039 # | 0.015 | 0 ± 0.153 | 0.955 | 0.025 | 0.024 ± 0.202 | 0.867 |
Second Molar | 0.055 | 0.054 ± 0.191 | −0.022 | 0.009 ± 0.135 | 0.019 | 0.032 ± 0.185 |
Parameter | B | t | Sig | CI interval | |
---|---|---|---|---|---|
Lower | Upper | ||||
Gender | 0.027 | −1.188 | 0.238 | −0.381 | 0.096 |
Age group | 0.159 | −3.286 | 0.001 # | −0.013 | −0.003 |
Maxilla/mandible | 0.116 | 2.603 | 0.011 # | 0.038 | 0.280 |
Molar (First/Second Molar) | 0.069 | 3.753 | 0.000 # | 0.055 | 0.177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaddour, A.S.; Popescu, S.M.; Ionescu, M.; Sălan, A.I.; Ghiţă, R.E.; Cojocaru, M.O.; Marinescu, I.R.; Amărăscu, M.O.; Draghici, E.C. Post-Extraction Bone Changes in Molars Within Personalized Implant-Prosthetic Therapy as Evaluated with Fractal Analysis of CBCT. J. Pers. Med. 2025, 15, 154. https://doi.org/10.3390/jpm15040154
Khaddour AS, Popescu SM, Ionescu M, Sălan AI, Ghiţă RE, Cojocaru MO, Marinescu IR, Amărăscu MO, Draghici EC. Post-Extraction Bone Changes in Molars Within Personalized Implant-Prosthetic Therapy as Evaluated with Fractal Analysis of CBCT. Journal of Personalized Medicine. 2025; 15(4):154. https://doi.org/10.3390/jpm15040154
Chicago/Turabian StyleKhaddour, Antonia Samia, Sanda Mihaela Popescu, Mihaela Ionescu, Alex Ioan Sălan, Răzvan Eugen Ghiţă, Melania Olimpia Cojocaru, Iulia Roxana Marinescu, Marina Olimpia Amărăscu, and Emma Cristina Draghici. 2025. "Post-Extraction Bone Changes in Molars Within Personalized Implant-Prosthetic Therapy as Evaluated with Fractal Analysis of CBCT" Journal of Personalized Medicine 15, no. 4: 154. https://doi.org/10.3390/jpm15040154
APA StyleKhaddour, A. S., Popescu, S. M., Ionescu, M., Sălan, A. I., Ghiţă, R. E., Cojocaru, M. O., Marinescu, I. R., Amărăscu, M. O., & Draghici, E. C. (2025). Post-Extraction Bone Changes in Molars Within Personalized Implant-Prosthetic Therapy as Evaluated with Fractal Analysis of CBCT. Journal of Personalized Medicine, 15(4), 154. https://doi.org/10.3390/jpm15040154