Serum Sortilin Levels as a Biomarker for Metabolic and Hormonal Dysregulation in Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochemical Analysis
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shele, G.; Genkil, J.; Speelman, D. A systematic review of the effects of exercise on hormones in women with polycystic ovary syndrome. J. Funct. Morphol. Kinesiol. 2020, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Guo, C.X.; Zhu, F.F.; Qu, P.P.; Lin, W.J.; Xiong, J. Clinical characteristics, metabolic features, and phenotype of Chinese women with polycystic ovary syndrome: A large-scale case–control study. Arch. Gynecol. Obstet. 2012, 287, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Wekker, V.; van Dammen, L.; Koning, A.; Heida, K.Y.; Painter, R.C.; Limpens, J.; E Laven, J.S.; van Lennep, J.E.R.; Roseboom, T.J.; Hoek, A. Long-term cardiometabolic disease risk in women with PCOS: A systematic review and meta-analysis. Hum. Reprod. Updat. 2020, 26, 942–960. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.S.; Madsen, P.; Christensen, E.I.; Nykjær, A.; Gliemann, J.; Kasper, D.; Pohlmann, R.; Petersen, C.M. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 2001, 20, 2180–2190. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Cayabyab, F.S.; Chen, X.; Yang, J.; Wang, L.; Peng, T.; Lv, Y. Implications of sortilin in lipid metabolism and lipid disorder diseases. DNA Cell Biol. 2017, 36, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Biscetti, F.; Bonadia, N.; Santini, F.; Angelini, F.; Nardella, E.; Pitocco, D.; Santoliquido, A.; Filipponi, M.; Landolfi, R.; Flex, A. Sortilin levels are associated with peripheral arterial disease in type 2 diabetic subjects. Cardiovasc. Diabetol. 2019, 18, 5. [Google Scholar] [CrossRef]
- Goettsch, C.; Kjolby, M.; Aikawa, E. Sortilin and its multiple roles in cardiovascular and metabolic diseases. Arter. Thromb. Vasc. Biol. 2018, 38, 19–25. [Google Scholar] [CrossRef] [PubMed]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Glintborg, D. Endocrine and metabolic characteristics in polycystic ovary syndrome. Dan. Med. J. 2016, 63, B5232. [Google Scholar] [PubMed]
- Ong, M.L.T. The Effects and Mechanisms of Paeoniflorin on Murine Ovarian Cells for the Treatment of Polycystic Ovarian Syndrome. Ph.D. Thesis, Open Publications of UTS Scholars, Broadwey, UK, 2018. [Google Scholar]
- Zeng, X.; Xie, Y.-J.; Liu, Y.-T.; Long, S.-L.; Mo, Z.-C. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta 2019, 502, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, C. Hormonal changes in PCOS. J. Endocrinol. 2024, 261, e230342. [Google Scholar] [CrossRef] [PubMed]
- Nykjaer, A.; Willnow, T.E. Sortilin: A receptor to regulate neuronal viability and function. Trends Neurosci. 2012, 35, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Ghaemimanesh, F.; Bayat, A.A.; Babaei, S.; Ahmadian, G.; Zarnani, A.-H.; Behmanesh, M.; Jeddi-Tehrani, M.; Rabbani, H. Production and characterization of a novel monoclonal antibody against human sortilin. Monoclon. Antibodies Immunodiagn. Immunother. 2015, 34, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Maan, P.; Gautam, R.; Arora, T. Unveiling the role of artificial intelligence (AI) in polycystic ovary syndrome (PCOS) diagnosis: A comprehensive review. Reprod. Sci. 2024, 31, 2901–2915. [Google Scholar] [CrossRef] [PubMed]
- Ariga, M.; Nedachi, T.; Katagiri, H.; Kanzaki, M. Functional role of sortilin in myogenesis and development of insulin-responsive glucose transport system in C2C12 myocytes. J. Biol. Chem. 2008, 283, 10208–10220. [Google Scholar] [CrossRef]
- Stenbit, A.E.; Tsao, T.-S.; Li, J.; Burcelin, R.; Geenen, D.L.; Factor, S.M.; Houseknecht, K.; Katz, E.B.; Charron, M.J. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat. Med. 1997, 3, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Matye, D.J.; Li, T. Insulin resistance induces posttranslational hepatic sortilin 1 degradation in mice. J. Biol. Chem. 2015, 290, 11526–11536. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, N.; Béraud-Dufour, S.; Lebrun, P.; Hivelin, C.; Coppola, T. Sortilin in Glucose Homeostasis: From Accessory Protein to Key Player? Front. Pharmacol. 2019, 9, 1561. [Google Scholar] [CrossRef] [PubMed]
- Demir, I.; Akan, O.Y.; Guler, A.; Bozkaya, G.; Aslanipour, B.; Calan, M. Relation of decreased circulating sortilin levels with unfavorable metabolic profiles in subjects with newly diagnosed type 2 diabetes mellitus. Am. J. Med. Sci. 2020, 359, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.J.; Ahn, C.H.; Kim, B.-R.; Kim, K.M.; Moon, J.H.; Lim, S.; Park, K.S.; Lim, C.; Jang, H.; Choi, S.H. Circulating sortilin level as a potential biomarker for coronary atherosclerosis and diabetes mellitus. Cardiovasc. Diabetol. 2017, 16, 92. [Google Scholar] [CrossRef] [PubMed]
- Pani, A.; Gironi, I.; Di Vieste, G.; Mion, E.; Bertuzzi, F.; Pintaudi, B. From prediabetes to type 2 diabetes mellitus in women with polycystic ovary syndrome: Lifestyle and pharmacological management. Int. J. Endocrinol. 2020, 2020, 6276187. [Google Scholar] [CrossRef]
- Hrovat, A.; Kravos, N.A.; Goričar, K.; Sever, M.J.; Janež, A.; Dolžan, V. SORCS1 polymorphism and insulin secretion in obese women with polycystic ovary syndrome. Gynecol. Endocrinol. 2016, 32, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K.; Strong, A.; Frank-Kamenetsky, M.; Lee, N.E.; Ahfeldt, T.; Sachs, K.V.; Li, X.; Li, H.; Kuperwasser, N.; Ruda, V.M.; et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 2010, 466, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Biscetti, F.; Nardella, E.; Rando, M.M.; Cecchini, A.L.; Bonadia, N.; Bruno, P.; Angelini, F.; Di Stasi, C.; Contegiacomo, A.; Santoliquido, A.; et al. Sortilin levels correlate with major cardiovascular events of diabetic patients with peripheral artery disease following revascularization: A prospective study. Cardiovasc. Diabetol. 2020, 19, 147. [Google Scholar] [CrossRef] [PubMed]
- Strong, A.; Rader, D.J. Sortilin as a regulator of lipoprotein metabolism. Curr. Atheroscler. Rep. 2012, 14, 211–218. [Google Scholar] [CrossRef]
- Dapas, M.; Dunaif, A. Deconstructing a syndrome: Genomic insights into PCOS causal mechanisms and classification. Endocr. Rev. 2022, 43, 927–965. [Google Scholar] [CrossRef] [PubMed]
- Kjolby, M.; Andersen, O.M.; Breiderhoff, T.; Fjorback, A.W.; Pedersen, K.M.; Madsen, P.; Jansen, P.; Heeren, J.; Willnow, T.E.; Nykjaer, A. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010, 12, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Mateen, S.; Ahmad, R.; Moin, S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J. Assist. Reprod. Genet. 2022, 39, 2439–2473. [Google Scholar] [CrossRef] [PubMed]
Variables | PCOS (n = 80) | Controls (n = 80) | p Value |
---|---|---|---|
Age, years | 30.05 ± 6.85 | 30.12 ± 6.49 | 0.945 |
BMI, kg/m2 | 26.30 ± 4.50 | 26.65 ± 4.43 | 0.623 |
Waist circumference, cm | 93.39 ± 12.45 | 92.44 ± 13.67 | 0.648 |
SBP, mmHg | 108.60 ± 12.62 | 107.28 ± 11.57 | 0.493 |
DBP, mmHg | 73.98 ± 6.51 | 73.54 ± 5.71 | 0.654 |
Ferriman–Gallwey score | 14.77 ± 2.84 | 4.32 ± 1.19 | <0.001 * |
Glucose, mg/dL | 83.97 ± 7.90 | 81.41 ± 5.65 | 0.020 * |
Glucose, at 120 min with OGTT | 122.90 ± 14.45 | 120.82 ± 11.54 | 0.317 |
HbA1c, % | 5.28 ± 0.17 | 5.24 ± 0.18 | 0.199 |
Insulin, µIU/mL | 17.41 ± 6.38 | 11.04 ± 4.56 | <0.001 * |
HOMA-IR | 3.63 ± 1.43 | 2.21± 0.90 | <0.001 * |
Total cholesterol, mg/dL | 204.73 ± 33.26 | 202.76 ± 43.47 | 0.747 |
LDL-C, mg/dL | 134.45 ± 28.34 | 131.52 ± 27.44 | 0.508 |
HDL-C, mg/dL | 42.05 ± 9.46 | 49.16 ± 10.80 | <0.001 * |
Triglyceride, mg/dL | 141.14 ± 32.58 | 110.38 ± 29.98 | <0.001 * |
Hs-CRP, mg/L | 1.19 ± 0.54 | 0.68± 0.21 | <0.001 * |
FSH, mIU/mL | 6.75 ± 1.84 | 7.31 ± 1.92 | 0.068 |
LH, mIU/mL | 14.03 ± 4.13 | 8.59 ± 3.01 | <0.001 * |
Estradiol, pg/mL | 50.04 ± 11.98 | 49.26 ± 8.12 | 0.632 |
Total testosterone, nmol/L | 2.88 ± 0.41 | 1.70 ± 0.35 | <0.001 * |
SHBG, nmol/L | 36.99 ± 11.51 | 68.74 ± 14.84 | <0.001 * |
FAI, % | 8.25 ± 1.69 | 2.48 ± 0.10 | <0.001 * |
DHEA-S, µg/dL | 180.77 ± 72.09 | 154.06 ± 38.61 | 0.004 * |
Sortilin, pg/mL | 69.51 ± 27.75 | 48.60 ± 21.20 | <0.001 * |
Sortilin | ||||
---|---|---|---|---|
PCOS | Control | |||
r | p | r | p | |
Age | 0.054 | 0.173 | 0.035 | 0.102 |
BMI | 0.074 | 0.216 | 0.104 | 0.189 |
Waist circumference | 0.097 | 0.105 | 0.115 | 0.124 |
SBP | 0.032 | 0.258 | 0.053 | 0.296 |
DBP | 0.102 | 0.342 | 0.098 | 0.112 |
Insulin | 0.131 | 0.097 | 0.084 | 0.103 |
Glucose | 0.147 | 0.068 | 0.102 | 0.098 |
Glucose at 120 min with OGTT | 0.034 | 0.105 | 0.054 | 0.201 |
HOMA-IR | 0.135 | 0.094 | 0.093 | 0.102 |
HbA1c | 0.116 | 0.174 | 0.105 | 0.213 |
FAI | 0.189 | 0.245 | 0.141 | 0.314 |
Hs-CRP | 0.094 | 0.214 | 0.052 | 0.321 |
Total cholesterol | −0.114 | 0.054 | 0.105 | 0.066 |
LDL-C | −0.198 | 0.028 * | −0.182 | 0.033 * |
HDL-C | 0.102 | 0.069 | 0.116 | 0.087 |
Triglyceride | −0.139 | 0.077 | 0.093 | 0.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarslan, P.; Doruk, M. Serum Sortilin Levels as a Biomarker for Metabolic and Hormonal Dysregulation in Polycystic Ovary Syndrome. J. Pers. Med. 2025, 15, 70. https://doi.org/10.3390/jpm15020070
Alarslan P, Doruk M. Serum Sortilin Levels as a Biomarker for Metabolic and Hormonal Dysregulation in Polycystic Ovary Syndrome. Journal of Personalized Medicine. 2025; 15(2):70. https://doi.org/10.3390/jpm15020070
Chicago/Turabian StyleAlarslan, Pinar, and Mehmet Doruk. 2025. "Serum Sortilin Levels as a Biomarker for Metabolic and Hormonal Dysregulation in Polycystic Ovary Syndrome" Journal of Personalized Medicine 15, no. 2: 70. https://doi.org/10.3390/jpm15020070
APA StyleAlarslan, P., & Doruk, M. (2025). Serum Sortilin Levels as a Biomarker for Metabolic and Hormonal Dysregulation in Polycystic Ovary Syndrome. Journal of Personalized Medicine, 15(2), 70. https://doi.org/10.3390/jpm15020070