The Development and Application of Bispecific Antibodies in B-Cell Non-Hodgkin Lymphoma
Abstract
:1. Introduction
2. Early Development of Bispecific Antibodies for B-NHL
3. Structural Features of IgG-like Bispecific Antibodies
4. Bispecific Antibody Manufacturing
5. Pharmacokinetic Properties
6. Bispecific Antibodies in Clinical Practice
6.1. Mosunetuzumab
6.2. Epcoritamab
6.2.1. Epcoritamab for Large-B-Cell Lymphoma
6.2.2. Epcoritamab for Follicular Lymphoma
6.3. Glofitamab
6.4. Odronextamab
6.5. Efficacy of Bispecific Antibodies After CAR-T
6.6. Ongoing Studies on Bispecific Antibodies in B-NHL
6.6.1. DLBCL and Other Aggressive B-NHL
6.6.2. Follicular Lymphoma
6.6.3. Other B-NHL Subtypes
7. Safety Considerations
7.1. Cytokine Release Syndrome
7.2. Neurological Toxicity
7.3. Infection
8. Mechanisms of Resistance
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sehn, L.H.; Salles, G. Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2021, 384, 842–858. [Google Scholar] [CrossRef]
- Jacobsen, E. Follicular lymphoma: 2023 update on diagnosis and management. Am. J. Hematol. 2022, 97, 1638–1651. [Google Scholar] [CrossRef] [PubMed]
- Sehn, L.H.; Donaldson, J.; Chhanabhai, M.; Fitzgerald, C.; Gill, K.; Klasa, R.; MacPherson, N.; O’Reilly, S.; Spinelli, J.J.; Sutherland, J.; et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J. Clin. Oncol. 2005, 23, 5027–5033. [Google Scholar] [CrossRef] [PubMed]
- Hiddemann, W.; Kneba, M.; Dreyling, M.; Schmitz, N.; Lengfelder, E.; Schmits, R.; Reiser, M.; Metzner, B.; Harder, H.; Hegewisch-Becker, S.; et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: Results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 2005, 106, 3725–3732. [Google Scholar] [CrossRef]
- Schuster, S.J.; Tam, C.S.; Borchmann, P.; Worel, N.; McGuirk, J.P.; Holte, H.; Waller, E.K.; Jaglowski, S.; Bishop, M.R.; Damon, L.E.; et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 1403–1415. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.; Wang, M.; Arnason, J.; Purev, E.; Maloney, D.G.; Andreadis, C.; Sehgal, A.; et al. Two-year follow-up of lisocabtagene maraleucel in relapsed or refractory large B-cell lymphoma in TRANSCEND NHL 001. Blood 2024, 143, 404–416. [Google Scholar] [CrossRef]
- Westin, J.R.; Oluwole, O.O.; Kersten, M.J.; Miklos, D.B.; Perales, M.A.; Ghobadi, A.; Rapoport, A.P.; Sureda, A.; Jacobson, C.A.; Farooq, U.; et al. Survival with Axicabtagene Ciloleucel in Large B-Cell Lymphoma. N. Engl. J. Med. 2023, 389, 148–157. [Google Scholar] [CrossRef]
- Sehgal, A.; Hoda, D.; Riedell, P.A.; Ghosh, N.; Hamadani, M.; Hildebrandt, G.C.; Godwin, J.E.; Reagan, P.M.; Wagner-Johnston, N.; Essell, J.; et al. Lisocabtagene maraleucel as second-line therapy in adults with relapsed or refractory large B-cell lymphoma who were not intended for haematopoietic stem cell transplantation (PILOT): An open-label, phase 2 study. Lancet Oncol. 2022, 23, 1066–1077. [Google Scholar] [CrossRef]
- Abramson, J.S.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: Primary analysis of the phase 3 TRANSFORM study. Blood 2023, 141, 1675–1684. [Google Scholar] [CrossRef]
- Budde, L.E.; Sehn, L.H.; Matasar, M.; Schuster, S.J.; Assouline, S.; Giri, P.; Kuruvilla, J.; Canales, M.; Dietrich, S.; Fay, K.; et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: A single-arm, multicentre, phase 2 study. Lancet Oncol. 2022, 23, 1055–1065. [Google Scholar] [CrossRef]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef] [PubMed]
- Thieblemont, C.; Phillips, T.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Do, Y.R.; Feldman, T.; Gasiorowski, R.; Jurczak, W.; et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J. Clin. Oncol. 2023, 41, 2238–2247. [Google Scholar] [CrossRef] [PubMed]
- Linton, K.M.; Vitolo, U.; Jurczak, W.; Lugtenburg, P.J.; Gyan, E.; Sureda, A.; Christensen, J.H.; Hess, B.; Tilly, H.; Cordoba, R.; et al. Epcoritamab monotherapy in patients with relapsed or refractory follicular lymphoma (EPCORE NHL-1): A phase 2 cohort of a single-arm, multicentre study. Lancet Haematol. 2024, 11, e593–e605. [Google Scholar] [CrossRef]
- Maloney, D.G. Anti-CD20 antibody therapy for B-cell lymphomas. N. Engl. J. Med. 2012, 366, 2008–2016. [Google Scholar] [CrossRef]
- Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol. 2009, 157, 220–233. [Google Scholar] [CrossRef]
- Alturki, N.A. Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment. J. Clin. Med. 2023, 12, 4301. [Google Scholar] [CrossRef]
- Ansell, S.M.; Minnema, M.C.; Johnson, P.; Timmerman, J.M.; Armand, P.; Shipp, M.A.; Rodig, S.J.; Ligon, A.H.; Roemer, M.G.M.; Reddy, N.; et al. Nivolumab for Relapsed/Refractory Diffuse Large B-Cell Lymphoma in Patients Ineligible for or Having Failed Autologous Transplantation: A Single-Arm, Phase II Study. J. Clin. Oncol. 2019, 37, 481–489. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Armand, P.; Hamadani, M.; Kline, J.; Moskowitz, C.H.; Avigan, D.; Brody, J.D.; Ribrag, V.; Herrera, A.F.; Morschhauser, F.; et al. Pembrolizumab for patients with non-Hodgkin lymphoma: Phase 1b KEYNOTE-013 study. Leuk. Lymphoma 2023, 64, 130–139. [Google Scholar] [CrossRef]
- Denlinger, N.; Bond, D.; Jaglowski, S. CAR T-cell therapy for B-cell lymphoma. Curr. Probl. Cancer 2022, 46, 100826. [Google Scholar] [CrossRef]
- Boardman, A.P.; Salles, G. CAR T-cell therapy in large B cell lymphoma. Hematol. Oncol. 2023, 41 (Suppl. 1), 112–118. [Google Scholar] [CrossRef]
- Offner, S.; Hofmeister, R.; Romaniuk, A.; Kufer, P.; Baeuerle, P.A. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 2006, 43, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Fangazio, M.; Ladewig, E.; Gomez, K.; Garcia-Ibanez, L.; Kumar, R.; Teruya-Feldstein, J.; Rossi, D.; Filip, I.; Pan-Hammarström, Q.; Inghirami, G.; et al. Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 2021, 118, e2104504118. [Google Scholar] [CrossRef] [PubMed]
- Suurs, F.V.; Lub-de Hooge, M.N.; de Vries, E.G.E.; de Groot, D.J.A. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol. Ther. 2019, 201, 103–119. [Google Scholar] [CrossRef]
- Goebeler, M.E.; Knop, S.; Viardot, A.; Kufer, P.; Topp, M.S.; Einsele, H.; Noppeney, R.; Hess, G.; Kallert, S.; Mackensen, A.; et al. Bispecific T-Cell Engager (BiTE) Antibody Construct Blinatumomab for the Treatment of Patients With Relapsed/Refractory Non-Hodgkin Lymphoma: Final Results From a Phase I Study. J. Clin. Oncol. 2016, 34, 1104–1111. [Google Scholar] [CrossRef]
- Kontermann, R.E. Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 2009, 23, 93–109. [Google Scholar] [CrossRef]
- Engelberts, P.J.; Hiemstra, I.H.; de Jong, B.; Schuurhuis, D.H.; Meesters, J.; Beltran Hernandez, I.; Oostindie, S.C.; Neijssen, J.; van den Brink, E.N.; Horbach, G.J.; et al. DuoBody-CD3xCD20 induces potent T-cell-mediated killing of malignant B cells in preclinical models and provides opportunities for subcutaneous dosing. EBioMedicine 2020, 52, 102625. [Google Scholar] [CrossRef]
- Wu, Z.; Cheung, N.V. T cell engaging bispecific antibody (T-BsAb): From technology to therapeutics. Pharmacol. Ther. 2018, 182, 161–175. [Google Scholar] [CrossRef]
- Faroudi, M.; Utzny, C.; Salio, M.; Cerundolo, V.; Guiraud, M.; Müller, S.; Valitutti, S. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: Manifestation of a dual activation threshold. Proc. Natl. Acad. Sci. USA 2003, 100, 14145–14150. [Google Scholar] [CrossRef]
- Purbhoo, M.A.; Irvine, D.J.; Huppa, J.B.; Davis, M.M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 2004, 5, 524–530. [Google Scholar] [CrossRef]
- Gaud, G.; Lesourne, R.; Love, P.E. Regulatory mechanisms in T cell receptor signalling. Nat. Rev. Immunol. 2018, 18, 485–497. [Google Scholar] [CrossRef]
- Gisselbrecht, C.; Glass, B.; Mounier, N.; Singh Gill, D.; Linch, D.C.; Trneny, M.; Bosly, A.; Ketterer, N.; Shpilberg, O.; Hagberg, H.; et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J. Clin. Oncol. 2010, 28, 4184–4190. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.A.; Leach, S.; Woolcock, B.; deLeeuw, R.J.; Bashashati, A.; Sehn, L.H.; Connors, J.M.; Chhanabhai, M.; Brooks-Wilson, A.; Gascoyne, R.D. CD20 mutations involving the rituximab epitope are rare in diffuse large B-cell lymphomas and are not a significant cause of R-CHOP failure. Haematologica 2009, 94, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Salles, G.; Duell, J.; González Barca, E.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; André, M.; et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef]
- Caimi, P.F.; Ai, W.; Alderuccio, J.P.; Ardeshna, K.M.; Hamadani, M.; Hess, B.; Kahl, B.S.; Radford, J.; Solh, M.; Stathis, A.; et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): A multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021, 22, 790–800. [Google Scholar] [CrossRef]
- Plaks, V.; Rossi, J.M.; Chou, J.; Wang, L.; Poddar, S.; Han, G.; Wang, Z.; Kuang, S.Q.; Chu, F.; Davis, R.E.; et al. CD19 target evasion as a mechanism of relapse in large B-cell lymphoma treated with axicabtagene ciloleucel. Blood 2021, 138, 1081–1085. [Google Scholar] [CrossRef]
- Ridgway, J.B.; Presta, L.G.; Carter, P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996, 9, 617–621. [Google Scholar] [CrossRef]
- Schaefer, W.; Regula, J.T.; Bähner, M.; Schanzer, J.; Croasdale, R.; Dürr, H.; Gassner, C.; Georges, G.; Kettenberger, H.; Imhof-Jung, S.; et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl. Acad. Sci. USA 2011, 108, 11187–11192. [Google Scholar] [CrossRef]
- Madsen, A.V.; Pedersen, L.E.; Kristensen, P.; Goletz, S. Design and engineering of bispecific antibodies: Insights and practical considerations. Front. Bioeng. Biotechnol. 2024, 12, 1352014. [Google Scholar] [CrossRef]
- Seckinger, A.; Delgado, J.A.; Moser, S.; Moreno, L.; Neuber, B.; Grab, A.; Lipp, S.; Merino, J.; Prosper, F.; Emde, M.; et al. Target Expression, Generation, Preclinical Activity, and Pharmacokinetics of the BCMA-T Cell Bispecific Antibody EM801 for Multiple Myeloma Treatment. Cancer Cell 2017, 31, 396–410. [Google Scholar] [CrossRef]
- Bacac, M.; Colombetti, S.; Herter, S.; Sam, J.; Perro, M.; Chen, S.; Bianchi, R.; Richard, M.; Schoenle, A.; Nicolini, V.; et al. CD20-TCB with Obinutuzumab Pretreatment as Next-Generation Treatment of Hematologic Malignancies. Clin. Cancer Res. 2018, 24, 4785–4797. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y. Pharmacokinetics of Bispecific Antibody. Curr. Pharmacol. Rep. 2017, 3, 126–137. [Google Scholar] [CrossRef]
- Glassman, P.M.; Abuqayyas, L.; Balthasar, J.P. Assessments of antibody biodistribution. J. Clin. Pharmacol. 2015, 55 (Suppl. 3), S29–S38. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.L. Antibody fragments: Hope and hype. mAbs 2010, 2, 77–83. [Google Scholar] [CrossRef]
- Baxter, L.T.; Zhu, H.; Mackensen, D.G.; Jain, R.K. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res. 1994, 54, 1517–1528. [Google Scholar]
- Godfrey, J.K.; Gao, L.; Shouse, G.; Song, J.Y.; Pak, S.; Lee, B.; Chen, B.T.; Kallam, A.; Baird, J.H.; Marcucci, G.; et al. Glofitamab stimulates immune cell infiltration of CNS tumors and induces clinical responses in secondary CNS lymphoma. Blood 2024, 144, 457–461. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.A.; Kersten, M.J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 91–103. [Google Scholar] [CrossRef]
- Fowler, N.H.; Dickinson, M.; Dreyling, M.; Martinez-Lopez, J.; Kolstad, A.; Butler, J.; Ghosh, M.; Popplewell, L.; Chavez, J.C.; Bachy, E.; et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: The phase 2 ELARA trial. Nat. Med. 2022, 28, 325–332. [Google Scholar] [CrossRef]
- Morschhauser, F.; Dahiya, S.; Palomba, M.L.; Martin Garcia-Sancho, A.; Reguera Ortega, J.L.; Kuruvilla, J.; Jäger, U.; Cartron, G.; Izutsu, K.; Dreyling, M.; et al. Lisocabtagene maraleucel in follicular lymphoma: The phase 2 TRANSCEND FL study. Nat. Med. 2024, 30, 2199–2207. [Google Scholar] [CrossRef]
- Budde, L.E.; Assouline, S.; Sehn, L.H.; Schuster, S.J.; Yoon, S.S.; Yoon, D.H.; Matasar, M.J.; Bosch, F.; Kim, W.S.; Nastoupil, L.J.; et al. Single-Agent Mosunetuzumab Shows Durable Complete Responses in Patients With Relapsed or Refractory B-Cell Lymphomas: Phase I Dose-Escalation Study. J. Clin. Oncol. 2022, 40, 481–491. [Google Scholar] [CrossRef]
- Budde, E.L.; Bartlett, N.L.; Giri, P.; Schuster, S.J.; Assouline, S.; Yoon, S.-S.; Fay, K.; Matasar, M.J.; Gutierrez, N.C.; Marlton, P.; et al. Subcutaneous Mosunetuzumab Is Active with a Manageable Safety Profile in Patients (pts) with Relapsed/Refractory (R/R) B-Cell Non-Hodgkin Lymphomas (B-NHLs): Updated Results from a Phase I/II Study. Blood 2022, 140, 3753–3755. [Google Scholar] [CrossRef]
- Hutchings, M.; Mous, R.; Clausen, M.R.; Johnson, P.; Linton, K.M.; Chamuleau, M.E.D.; Lewis, D.J.; Sureda Balari, A.; Cunningham, D.; Oliveri, R.S.; et al. Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: An open-label, phase 1/2 study. Lancet 2021, 398, 1157–1169. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.; Morschhauser, F.; Iacoboni, G.; Carlo-Stella, C.; Offner, F.C.; Sureda, A.; Salles, G.; Martínez-Lopez, J.; Crump, M.; Thomas, D.N.; et al. Glofitamab, a Novel, Bivalent CD20-Targeting T-Cell-Engaging Bispecific Antibody, Induces Durable Complete Remissions in Relapsed or Refractory B-Cell Lymphoma: A Phase I Trial. J. Clin. Oncol. 2021, 39, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Ku, M.; Hertzberg, M.; Fox, C.P. Glofitamab plus gemcitabine and oxaliplatin (Glofit-GemOx) for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL): Results of a global randomized phase III trial (STARGLO). In Proceedings of the European Hematology Association Congress, Madrid, Spain, 13–16 June 2024. [Google Scholar]
- Bannerji, R.; Arnason, J.E.; Advani, R.H.; Brown, J.R.; Allan, J.N.; Ansell, S.M.; Barnes, J.A.; O’Brien, S.M.; Chávez, J.C.; Duell, J.; et al. Odronextamab, a human CD20×CD3 bispecific antibody in patients with CD20-positive B-cell malignancies (ELM-1): Results from the relapsed or refractory non-Hodgkin lymphoma cohort in a single-arm, multicentre, phase 1 trial. Lancet Haematol. 2022, 9, e327–e339. [Google Scholar] [CrossRef]
- Ayyappan, S.; Kim, W.S.; Kim, T.M.; Walewski, J.; Cho, S.-G.; Jarque, I.; Iskierka-Jazdzewska, E.; Poon, M.; Oh, S.Y.; Inng Lim, F.L.W.; et al. Final Analysis of the Phase 2 ELM-2 Study: Odronextamab in Patients with Relapsed/Refractory (R/R) Diffuse Large B-Cell Lymphoma (DLBCL). Blood 2023, 142, 436. [Google Scholar] [CrossRef]
- Villasboas, J.C.; Kim, T.M.; Taszner, M.; Novelli, S.; Cho, S.-G.; Merli, M.; Jimenez Ubieto, A.; Tessoulin, B.; Poon, M.; Walewski, J.; et al. Results of a Second, Prespecified Analysis of the Phase 2 Study ELM-2 Confirm High Rates of Durable Complete Response with Odronextamab in Patients with Relapsed/Refractory (R/R) Follicular Lymphoma (FL) with Extended Follow-up. Blood 2023, 142, 3041. [Google Scholar] [CrossRef]
- Iacoboni, G.; Iraola-Truchuelo, J.; O’Reilly, M.; Navarro, V.; Menne, T.; Kwon, M.; Martín-López, A.; Chaganti, S.; Delgado, J.; Roddie, C.; et al. Treatment outcomes in patients with large B-cell lymphoma after progression to chimeric antigen receptor T-cell therapy. Hemasphere 2024, 8, e62. [Google Scholar] [CrossRef]
- Di Blasi, R.; Le Gouill, S.; Bachy, E.; Cartron, G.; Beauvais, D.; Le Bras, F.; Gros, F.X.; Choquet, S.; Bories, P.; Feugier, P.; et al. Outcomes of patients with aggressive B-cell lymphoma after failure of anti-CD19 CAR T-cell therapy: A DESCAR-T analysis. Blood 2022, 140, 2584–2593. [Google Scholar] [CrossRef]
- Zurko, J.; Nizamuddin, I.; Epperla, N.; David, K.; Cohen, J.B.; Moyo, T.K.; Ollila, T.; Hess, B.; Roy, I.; Ferdman, R.; et al. Peri-CAR-T practice patterns and survival predictors for all CAR-T patients and post-CAR-T failure in aggressive B-NHL. Blood Adv. 2023, 7, 2657–2669. [Google Scholar] [CrossRef]
- Crochet, G.; Iacoboni, G.; Couturier, A.; Bachy, E.; Iraola-Truchuelo, J.; Gastinne, T.; Cartron, G.; Fradon, T.; Lesne, B.; Kwon, M.; et al. Efficacy of CAR T-cell therapy is not impaired by previous bispecific antibody treatment in large B-cell lymphoma. Blood 2024, 144, 334–338. [Google Scholar] [CrossRef]
- Bröske, A.E.; Korfi, K.; Belousov, A.; Wilson, S.; Ooi, C.H.; Bolen, C.R.; Canamero, M.; Alcaide, E.G.; James, I.; Piccione, E.C.; et al. Pharmacodynamics and molecular correlates of response to glofitamab in relapsed/refractory non-Hodgkin lymphoma. Blood Adv. 2022, 6, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Djebli, N.; Morcos, P.N.; Jaminion, F.; Guerini, E.; Kratochwil, N.A.; Justies, N.; Schick, E.; Kwan, A.; Humphrey, K.; Lundberg, L.; et al. Population Pharmacokinetics and Exposure-Response Analyses for Glofitamab in Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma (R/R NHL): Confirmation of Efficacy and CRS Mitigation in Patients with Step-up Dosing. Blood 2020, 136, 1–2. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Crombie, J.L.; Graff, T.; Falchi, L.; Karimi, Y.H.; Bannerji, R.; Nastoupil, L.; Thieblemont, C.; Ursu, R.; Bartlett, N.; Nachar, V.; et al. Consensus recommendations on the management of toxicity associated with CD3 × CD20 bispecific antibody therapy. Blood 2024, 143, 1565–1575. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. Immune effector cell associated neurotoxicity syndrome in chimeric antigen receptor-T cell therapy. Front. Immunol. 2022, 13, 879608. [Google Scholar] [CrossRef]
- Thompson, J.A.; Schneider, B.J.; Brahmer, J.; Achufusi, A.; Armand, P.; Berkenstock, M.K.; Bhatia, S.; Budde, L.E.; Chokshi, S.; Davies, M.; et al. Management of Immunotherapy-Related Toxicities, Version 1.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 387–405. [Google Scholar] [CrossRef]
- Philipp, N.; Kazerani, M.; Nicholls, A.; Vick, B.; Wulf, J.; Straub, T.; Scheurer, M.; Muth, A.; Hänel, G.; Nixdorf, D.; et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 2022, 140, 1104–1118. [Google Scholar] [CrossRef]
- Reynolds, G.K.; Maclean, M.; Cliff, E.R.S.; Teh, B.W.; Thursky, K.A.; Slavin, M.A.; Anderson, M.A.; Hawkes, E.A. Infections in patients with lymphoma treated with bispecific antibodies: A systematic review and meta-analysis. Blood Adv. 2024, 8, 3555–3559. [Google Scholar] [CrossRef]
- Schuster, S.J.; Huw, L.Y.; Bolen, C.R.; Maximov, V.; Polson, A.G.; Hatzi, K.; Lasater, E.A.; Assouline, S.E.; Bartlett, N.L.; Budde, L.E.; et al. Loss of CD20 expression as a mechanism of resistance to mosunetuzumab in relapsed/refractory B-cell lymphomas. Blood 2024, 143, 822–832. [Google Scholar] [CrossRef]
- Kotlov, N.; Bagaev, A.; Revuelta, M.V.; Phillip, J.M.; Cacciapuoti, M.T.; Antysheva, Z.; Svekolkin, V.; Tikhonova, E.; Miheecheva, N.; Kuzkina, N.; et al. Clinical and Biological Subtypes of B-cell Lymphoma Revealed by Microenvironmental Signatures. Cancer Discov. 2021, 11, 1468–1489. [Google Scholar] [CrossRef]
- Pascual, M.; Mena-Varas, M.; Robles, E.F.; Garcia-Barchino, M.J.; Panizo, C.; Hervas-Stubbs, S.; Alignani, D.; Sagardoy, A.; Martinez-Ferrandis, J.I.; Bunting, K.L.; et al. PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas. Blood 2019, 133, 2401–2412. [Google Scholar] [CrossRef] [PubMed]
- Blagih, J.; Buck, M.D.; Vousden, K.H. p53, cancer and the immune response. J. Cell Sci. 2020, 133, jcs237453. [Google Scholar] [CrossRef]
- Verkleij, C.P.; O’Neill, C.A.; Broekmans, M.E.; Frerichs, K.A.; Bruins, W.S.; Duetz, C.; Kruyswijk, S.; Baglio, S.R.; Skerget, S.; Montes de Oca, R.; et al. T-Cell Characteristics Impact Response and Resistance to T-Cell–Redirecting Bispecific Antibodies in Multiple Myeloma. Clin. Cancer Res. 2024, 30, 3006–3022. [Google Scholar] [CrossRef]
- Gaballa, S.; Nair, R.; Jacobs, R.W.; Devata, S.; Cho, S.-G.; Stevens, D.A.; Yoon, D.H.; Shah, N.N.; Brennan, D.; Law, J.; et al. Double Step-up Dosing (2SUD) Regimen Mitigates Severe Icans and CRS While Maintaining High Efficacy in Subjects with Relapsed/Refractory (R/R) B-Cell Non-Hodgkin Lymphoma (NHL) Treated with AZD0486, a Novel CD19xCD3 T-Cell Engager (TCE): Updated Safety and Efficacy Data from the Ongoing First-in-Human (FIH) Phase 1 Trial. Blood 2023, 142, 1662. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Li, L.; Qian, Z.; Zhou, K.; Fan, L.; Tan, P.; Giri, P.; Li, Z.; Kenealy, M.; et al. GB261, an Fc-Function Enabled and CD3 Affinity De-Tuned CD20/CD3 Bispecific Antibody, Demonstrated a Highly Advantageous Safety/Efficacy Balance in an Ongoing First-in-Human Dose-Escalation Study in Patients with Relapsed/Refractory Non-Hodgkin Lymphoma. Blood 2023, 142, 1719. [Google Scholar] [CrossRef]
- Wei, J.; Montalvo-Ortiz, W.; Yu, L.; Krasco, A.; Olson, K.; Rizvi, S.; Fiaschi, N.; Coetzee, S.; Wang, F.; Ullman, E.; et al. CD22-targeted CD28 bispecific antibody enhances antitumor efficacy of odronextamab in refractory diffuse large B cell lymphoma models. Sci. Transl. Med. 2022, 14, eabn1082. [Google Scholar] [CrossRef]
- Claus, C.; Ferrara, C.; Xu, W.; Sam, J.; Lang, S.; Uhlenbrock, F.; Albrecht, R.; Herter, S.; Schlenker, R.; Hüsser, T.; et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci. Transl. Med. 2019, 11, eaav5989. [Google Scholar] [CrossRef]
- Skokos, D.; Waite, J.C.; Haber, L.; Crawford, A.; Hermann, A.; Ullman, E.; Slim, R.; Godin, S.; Ajithdoss, D.; Ye, X.; et al. A class of costimulatory CD28-bispecific antibodies that enhance the antitumor activity of CD3-bispecific antibodies. Sci. Transl. Med. 2020, 12, eaaw7888. [Google Scholar] [CrossRef]
- Wu, L.; Seung, E.; Xu, L.; Rao, E.; Lord, D.M.; Wei, R.R.; Cortez-Retamozo, V.; Ospina, B.; Posternak, V.; Ulinski, G.; et al. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat. Cancer 2020, 1, 86–98. [Google Scholar] [CrossRef]
- Lu, H.; Oka, A.; Coulson, M.; Polli, J.R.; Aardalen, K.; Ramones, M.; Walker, D.B.; Carrion, A.; Alexander, D.; Klopfenstein, M.; et al. PIT565, a First-in-Class Anti-CD19, Anti-CD3, Anti-CD2 Trispecific Antibody for the Treatment of B Cell Malignancies. Blood 2022, 140, 3148. [Google Scholar] [CrossRef]
- Sam, J.; Hofer, T.; Kuettel, C.; Claus, C.; Thom, J.; Herter, S.; Georges, G.; Korfi, K.; Lechmann, M.; Eigenmann, M.J.; et al. CD19-CD28: An affinity-optimized CD28 agonist for combination with glofitamab (CD20-TCB) as off-the-shelf immunotherapy. Blood 2024, 143, 2152–2165. [Google Scholar] [CrossRef] [PubMed]
- Reusch, U.; Burkhardt, C.; Fucek, I.; Le Gall, F.; Le Gall, M.; Hoffmann, K.; Knackmuss, S.H.; Kiprijanov, S.; Little, M.; Zhukovsky, E.A. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. mAbs 2014, 6, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Nieto, Y.; Banerjee, P.; Kaur, I.; Griffin, L.; Barnett, M.; Ganesh, C.; Borneo, Z.; Bassett, R.L.; Kerbauy, L.N.; Basar, R.; et al. Innate Cell Engager (ICE®) AFM13 Combined with Preactivated and Expanded (P+E) Cord Blood (CB)-Derived Natural Killer (NK) Cells for Patients with Refractory CD30-Positive Lymphomas: Final Results. Blood 2023, 142, 774. [Google Scholar] [CrossRef]
- Mei, M.G.; Corazzelli, G.; Morschhauser, F.; Phillips, E.; Collins, G.P.; Lee, H.J.; Ansell, S.M.; Moskowitz, C.H.; Johnson, N.A.; Kuruvilla, J.; et al. Safety and Preliminary Efficacy of Sabestomig (AZD7789), an Anti-PD-1 and Anti-TIM-3 Bispecific Antibody, in Patients with Relapsed or Refractory Classical Hodgkin Lymphoma Previously Treated with Anti-PD-(L)1 Therapy. Blood 2023, 142, 4433. [Google Scholar] [CrossRef]
CD20xCD3 Bispecific Antibody | CD19-Directed CAR-T | |
---|---|---|
FDA-Approved Agents | Glofitamab, epcoritamab | Axi-cel, liso-cel, tisa-cel |
Current indication | ≥2 prior lines of therapy |
|
Availability | Immediately available No risk of manufacturing failure | Delay of 3–5 weeks for manufacturing Manufacturing failure or out-of-specification product possible |
Infrastructure and logistical concerns | No special accreditation required No apheresis or cell processing facilities | Facility must be FACT-accredited; Apheresis and cell processing facilities and personnel required; Financial navigators and nurse navigators/transplant coordinators often required |
Dosing schedule | Repeated dosing required | One-time administration |
CRS rate | All grades: 50–63% Grade ≥ 3: 1–4% | All grades: 42–93% Grade ≥ 3: 2–22% |
ICANS rate | All grades: 3–8% Grade ≥ 3: 1–3% | All grades: 30–64% Grade ≥ 3: 10–28% |
Grade ≥ infection | 15–23% Pneumocystis, CMV reactivation, and PML have been reported | 12–19% Wide variety of opportunistic infections reported |
Cytopenias | Grade ≥ 3 neutropenia observed in 26–38% receiving BsAb monotherapy | Post-CAR-T cytopenias very common; persistent cytopenias lasting > 9 days reported in 2–45% of patients |
Mosunetuzumab | Epcoritamab | Glofitamab | |||
---|---|---|---|---|---|
Structural features |
|
|
| ||
Route of administration | IV (SC in development) | SC | IV | ||
Terminal half-life | 16.1 days | 22 days | 7.6 days | ||
Cycle length | 21 days | 28 days | 21 days | ||
Treatment schedule and duration | Dose administered every 21 days after completing C1 step-up Duration: treat for 8 cycles if in CR, 17 cycles if PR/SD | Doses administered: C1–3: days 1,8, 15, and 22 C4–9: days 1 and 15 C10+: day 1 Duration: treat until progression Dose optimization for patients with FL: additional 3 mg intermediate step-up dose added to C1D15 | Dose administered every 21 days after C1 step-up Treat for 12 cycles C1D1 obinutuzumab pre-treatment to mitigate CRS | ||
Indications | FL | DLBCL | FL (dose optimization) | DLBCL | |
Dosing | C1 D1: 1 mg C1 D8: 2 mg C1 D15: 60 mg C2 D1: 60 mg Cycle 3+ Day 1: 30 mg | C1D1: 0.16 mg C1D8: 0.8 mg C1D15: 48 mg C1D22: 48 mg C2+: 48 mg | C1D1: 0.16 mg C1D8: 0.8 mg C1D15: 3 mg C1D22: 48 mg C2+: 48 mg | C1D1: obinutuzumab 1000 mg C1D8: 2.5 mg C1D15: 10 mg C2-C12D1: 30 mg | |
Hospitalization during step-up | Not required | 24 h after C1D15 dose | Not required with dose optimization | 24 h after C1D8 dose | |
CRS incidence | Grade 1 | 26% | 32% | 40% | 47% |
Grade 2 | 17% | 15% | 9% | 12% | |
Grade 3 | 1% | 3% | 0% | 3% | |
Grade 4 | 1% | 0% | 0% | 1% | |
Grade 5 | 0% | 0% | 0% | 0% | |
Timing of CRS events (median time to onset, when reported) | C1D1: 23.3% (5 h) C1D8: 5.6% (20 h) C1D15: 36.4% (27 h) C2D1: 10.2% (38 h) C3+: 2.4% | C1D1: 5.8% C1D8: 11.8% C1D15: 42.8% (20 h) C1D22: 4.9% C2+: 3% | C1D1: 11% C1D8: 6% C1D15: 14% C1D22: 36% (60 h) C2+ 10% | C1D8: 42.8% (13.5 h, range 6.5–52) C1D15: 25.2% C2D1: 26% C3+D1: 0.9% | |
ICANS incidence | Grade 1–2 | 3% | 5.8% | 0% | 5% |
Grade 3 | 0% | 0% | 0% | 3% | |
Grade 4 | 0% | 0% | 0% | ||
Grade 5 | 0% | 0.6% | 0% | 0% |
Clinical Setting | Trial Name/NCT | Treatment Regimen | Phase | Key Eligibility/Design Features |
---|---|---|---|---|
Diffuse Large-B-cell Lymphoma | ||||
First-line treatment | NCT06047080 SKYGLO | Glofitamab + R-pola-CHP vs. R-pola-CHP | III | IPI 2–5 |
NCT05578976 EPCORE DLBCL-2 | Epcoritamab + R-CHOP vs. R-CHOP | III | IPI 2–5 | |
NCT06091865 OLYMPIA-3 | Odronextamab + CHOP vs. R-CHOP | III | IPI 2–5 | |
NCT06045247 | Epcoritamab + R-mini-CVP | II | Older unfit/frail and anthracycline ineligible | |
Salvage therapy prior to transplant/cell therapy | NCT05852717 | Epcoritamab + R-GDP | II | After cycle 3, patients may proceed to ASCT, CAR-T, or epcoritamab monotherapy at the investigator’s discretion |
Peri-CAR-T | NCT05633615 SWOG 2114 | Mosunetuzumab vs. polatuzumab vs. mosunetuzumab + polatuzumab vs. observation | II | Patients with PR or SD on day +30 PET scan after CAR-T are randomized to an experimental arm |
NCT06071871 PORTAL | Glofitamab + polatuzumab | II | Evaluating regimen as bridging therapy for CAR-T; patients not in CR on day +30 resume treatment | |
NCT06238648 | Epcoritamab vs. Observation | II | Patients randomized if not in CR after CD19-directed CAR-T | |
NCT06213311 | Glofitamab + Axi-cel | II | Second-line therapy | |
Other combinations for R/R disease | NCT05283720 M22-132 | Epcoritamab + golcadamide | II | Part of a basket study evaluating epcoritamab-containing regimens |
NCT04970901 LOTIS-7 | Loncastuximab + glofitamab or mosunetuzumab | Ib | Part of a basket study evaluating loncastuximab-containing regimens | |
NCT05171647 SUNMO | Mosunetuzumab + polatuzumab vs. R-GemOx | III | Subcutaneous mosunetuzumab used | |
Follicular Lymphoma | ||||
First-line therapy | NCT06337318 S2308 | Mosunetuzumab vs. Rituximab | III | Low tumor burden |
NCT06097364 OLYMPIA-2 | Odronextamab + CHOP/CVP vs. R-CHOP/CVP | III | High tumor burden | |
NCT06284122 MorningLyte | Mosunetuzumab + lenalidomide vs. R2 | III | High tumor burden, FLIPI2-5 eligible | |
R/R FL | NCT05409066 EPCORE FL-1 | Epcoritamab + R2 vs. R2 | III | Time-limited therapy (12 cycles) |
NCT04712097 CELESTIMO | Mosunetuzumab + lenalidomide vs. R2 | III | Time-limited therapy (12 cycles) | |
Marginal Zone Lymphoma | ||||
First-line therapy | NCT04792502 | Mosunetuzumab + lenalidomide | II | Mosunetuzumab monotherapy for 4 cycles then response-adapted treatment with len; also has an FL cohort |
NCT05783596 | Glofitamab + obinutuzumab | II | High tumor burden; also has an FL cohort | |
R/R MZL | NCT06006117 | Mosunetuzumab + lenalidomide vs. R-chemo | III | Eligibility: extra-nodal, nodal, and splenic MZL with 1–3 prior lines of systemic therapy |
Mantle cell lymphoma | ||||
First-line therapy | NCT05861050 | Glofitamab + obinutuzumab + venetoclax + lenalidomide | I/II | Enrolling high-risk patients |
R/R MCL | NCT06084936 GLOBRYTE | Glofitamab vs. Investigator’s choice | III | Prior covalent BTKi exposure |
NCT05833763 GOLDILOX | Glofitamab + pirtobrutinib | II | Prior covalent BTKi exposure | |
NCT06192888 | Glofitamab + lenalidomide | I | Prior BTKi exposure | |
NCT06054776 | Glofitamab + obinutuzumab + acalabrutinib | II | ||
NCT05283720 | Epcoritamab + ibrutinib; Epcoritamab + ibrutinib + venetoclax; Epcoritamab + pirtobrutinib | II | Basket study of epcoritamab combinations in NHL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Romancik, J.T. The Development and Application of Bispecific Antibodies in B-Cell Non-Hodgkin Lymphoma. J. Pers. Med. 2025, 15, 51. https://doi.org/10.3390/jpm15020051
Sun L, Romancik JT. The Development and Application of Bispecific Antibodies in B-Cell Non-Hodgkin Lymphoma. Journal of Personalized Medicine. 2025; 15(2):51. https://doi.org/10.3390/jpm15020051
Chicago/Turabian StyleSun, Laura, and Jason T. Romancik. 2025. "The Development and Application of Bispecific Antibodies in B-Cell Non-Hodgkin Lymphoma" Journal of Personalized Medicine 15, no. 2: 51. https://doi.org/10.3390/jpm15020051
APA StyleSun, L., & Romancik, J. T. (2025). The Development and Application of Bispecific Antibodies in B-Cell Non-Hodgkin Lymphoma. Journal of Personalized Medicine, 15(2), 51. https://doi.org/10.3390/jpm15020051