Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Mechanomyography Technique
2.3. Procedures and Patient Variables
3. Results
3.1. MIS Tubular Far Lateral Discectomy
3.2. Cervical Foraminotomy
3.3. MIS-TLIF
3.4. Case Report
4. Discussion
4.1. MIS Tubular Far Lateral Discectomy
4.2. Cervical Foraminotomy
4.3. MIS-TLIF
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibitoye, M.O.; Hamzaid, N.A.; Zuniga, J.M.; Abdul Wahab, A.K. Mechanomyography and muscle function assessment: A review of current state and prospects. Clin. Biomech. 2014, 29, 691–704. [Google Scholar] [CrossRef]
- Meagher, C.; Franco, E.; Turk, R.; Wilson, S.; Steadman, N.; McNicholas, L.; Vaidyanathan, R.; Burridge, J.; Stokes, M. New advances in mechanomyography sensor technology and signal processing: Validity and intrarater reliability of recordings from muscle. J. Rehabil. Assist. Technol. Eng. 2020, 7, 2055668320916116. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, D.M.; Linderman, S.E.; Aspenleiter, R.; Berkson, E.M. Quantifying muscle contraction with a conductive electroactive polymer sensor: Introduction to a novel surface mechanomyography device. Int. Biomech. 2023, 10, 37–46. [Google Scholar] [CrossRef]
- Croce, R.; Craft, A.; Miller, J.; Chamberlin, K.; Filipovic, D. Quadriceps mechano- and electromyographic time-frequency responses during muscular contractions to volitional exhaustion. Muscle Nerve 2016, 53, 452–463. [Google Scholar] [CrossRef]
- Kareem, S.; Dilara, K.; Maruthy, K.N.; Johnson, P.; Siva Kumar, A.V. Implementation of surface mechanomyography as a novel approach for objective evaluation of phasic muscle stretch reflexes in people with type 2 diabetes. Diabetes Metab. Syndr. 2024, 18, 103022. [Google Scholar] [CrossRef] [PubMed]
- Benitez, B.; Kwak, M.; Succi, P.J.; Weir, J.P.; Bergstrom, H.C. Unilaterally Induced Quadriceps Fatigue during Sustained Submaximal Isometric Exercise Does Not Alter Contralateral Leg Extensor Performance. J. Funct. Morphol. Kinesiol. 2023, 8, 85. [Google Scholar] [CrossRef]
- Hill, E.C.; Proppe, C.E.; Rivera, P.M.; Lubiak, S.M.; Gonzalez Rojas, D.H.; Lawson, J.E.; Choi, H.; Mansy, H.; Keller, J.L. Blood flow restriction attenuates surface mechanomyography lateral and longitudinal, but not transverse oscillations during fatiguing exercise. Physiol. Meas. 2024, 45, 045002. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Sundaraj, K.; Ahmad, R.B.; Ahamed, N.U. Mechanomyogram for muscle function assessment: A review. PLoS ONE 2013, 8, e58902. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Housh, T.J.; Hill, E.C.; Keller, J.L.; Johnson, G.O.; Schmidt, R.J. A biosignal analysis for reducing prosthetic control durations: A proposed method using electromyographic and mechanomyographic control theory. J. Musculoskelet. Neuronal Interact. 2019, 19, 142–149. [Google Scholar] [PubMed]
- Zakaria, H.M.; Tundo, K.M.; Sandles, C.; Chuang, M.; Schultz, L.; Aho, T.; Abdulhak, M. Mechanomyography for Intraoperative Assessment of Cortical Breach During Instrumented Spine Surgery. World Neurosurg. 2018, 117, e252–e258. [Google Scholar] [CrossRef]
- Bartol, S.; Wybo, C. The Use of Mechanomyography (MMG) to Locate Nerves During Spine Surgery Procedures. Spine J. 2010, 10, S128. [Google Scholar] [CrossRef]
- Skinner, S.; Guo, L. Intraoperative neuromonitoring during surgery for lumbar stenosis. Handb. Clin. Neurol. 2022, 186, 205–227. [Google Scholar] [PubMed]
- Wilson, J.P.; Vallejo, J.B.; Kumbhare, D.; Guthikonda, B.; Hoang, S. The Use of Intraoperative Neuromonitoring for Cervical Spine Surgery: Indications, Challenges, and Advances. J. Clin. Med. 2023, 12, 4652. [Google Scholar] [CrossRef] [PubMed]
- Strike, S.A.; Hassanzadeh, H.; Jain, A.; Kebaish, K.M.; Njoku, D.B.; Becker, D.; Ain, M.C.; Sponseller, P.D. Intraoperative Neuromonitoring in Pediatric and Adult Spine Deformity Surgery. Clin. Spine Surg. 2017, 30, E1174–E1181. [Google Scholar] [CrossRef]
- Gertsch, J.H.; Moreira, J.J.; Lee, G.R.; Hastings, J.D.; Ritzl, E.; Eccher, M.A.; Cohen, B.A.; Shils, J.L.; McCaffrey, M.T.; Balzer, G.K.; et al. membership of the ASNM. Practice guidelines for the supervising professional: Intraoperative neurophysiological monitoring. J. Clin. Monit. Comput. 2019, 33, 175–183. [Google Scholar] [CrossRef]
- Toleikis, J.R.; Pace, C.; Jahangiri, F.R.; Hemmer, L.B.; Toleikis, S.C. Intraoperative somatosensory evoked potential (SEP) monitoring: An updated position statement by the American Society of Neurophysiological Monitoring. J. Clin. Monit. Comput. 2024, 38, 1003–1042. [Google Scholar] [CrossRef] [PubMed]
- Zelenski, N.A.; Oishi, T.; Shin, A.Y. Intraoperative Neuromonitoring for Peripheral Nerve Surgery. J. Hand Surg. Am. 2023, 48, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Wedemeyer, Z.; Jelacic, S.; Michaelsen, K.; Silliman, W.; Togashi, K.; Bowdle, A. Comparative performance of stimpod electromyography with mechanomyography for quantitative neuromuscular blockade monitoring. J. Clin. Monit. Comput. 2024, 38, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, J.R.; Taghlabi, K.M.; Bhenderu, L.S.; Cruz-Garza, J.G.; Javeed, S.; Dibble, C.F.; Ray, W.Z.; Faraji, A.H. Incorporating Intraoperative Mechanomyography to Peripheral Nerve Decompression Surgery. Oper. Neurosurg. 2023, 24, 445–450. [Google Scholar] [CrossRef]
- Holland, N.R.; Lukaczyk, T.A.; Riley, L.H.I.I.I.; Kostuik, J.P. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots: Implications for intraoperative electromyography pedicle screw testing. Spine 1998, 23, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Ament, J.D.; Leon, A.; Kim, K.D.; Johnson, J.P.; Vokshoor, A. Intraoperative neuromonitoring in spine surgery: Large database analysis of cost-effectiveness. N. Am. Spine Soc. J. 2023, 14, 100206. [Google Scholar] [CrossRef] [PubMed]
- Buraimoh, M.; Ansok, C.; Pawloski, J.; Jung, E.K.; Bartol, S. Facet Sparing Foraminal Decompression Using the Flexible Shaver Foraminotomy System: Nerve Safety, Pain Relief, and Patient Satisfaction. Int. J. Spine Surg. 2018, 12, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Gadjradj, P.S.; Rubinstein, S.M.; Peul, W.C.; Depauw, P.R.; Vleggeert-Lankamp, C.L.; Seiger, A.; Van Susante, J.L.C.; De Boer, M.R.; Van Tulder, M.W.; Harhangi, B.S. Full endoscopic versus open discectomy for sciatica: Randomised controlled non-inferiority trial. BMJ 2022, 376, e065846. [Google Scholar] [CrossRef]
- Wessell, N.; Khalil, J.; Zavatsky, J.; Ghacham, W.; Bartol, S. Verification of nerve decompression using mechanomyography. Spine J. 2016, 16, 679–686. [Google Scholar] [CrossRef]
- Lener, S.; Wipplinger, C.; Hernandez, R.N.; Hussain, I.; Kirnaz, S.; Navarro-Ramirez, R.; Schmidt, F.A.; Kim, E.; Härtl, R. Defining the MIS-TLIF: A Systematic Review of Techniques and Technologies Used by Surgeons Worldwide. Glob. Spine J. 2020, 10 (Suppl. S2), 151S–167S. [Google Scholar] [CrossRef] [PubMed]
- Limbrick, D.D.; Wright, N.M. Verification of nerve root decompression during minimally-invasive lumbar microdiskectomy: A practical application of surgeon-driven evoked EMG. Minim. Invasive Neurosurg. 2005, 48, 273–277. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Frequency (n = 22) |
---|---|
Sex | |
Male | 13 (59.1%) |
Female | 9 (40.9%) |
Procedure | |
MIS Tubular Far Lateral Discectomies | 14 (63.6%) |
Age (years) | 61.3 ± 15.3 |
BMI (kg/m2) | 25.8 ± 4.4 |
Blood Loss (n, %) | |
<50 mL | 13 (92.8%) |
<250 mL | 1 (7.2%) |
Mean Operative Time (min) | 120 ± 58.5 |
Mean Hospital Stay (days) | 1.4 ± 0.5 |
Cervical Foraminotomy | 5 (22.7%) |
Age (years) | 48.4 ± 17.9 |
BMI (kg/m2) | 23.1 ± 5.2 |
Blood Loss (n, %) | |
<50 mL | 4 (80%) |
<250 mL | 1 (20%) |
Mean Operative Time (min) | 133.4 ± 75.9 |
Mean Hospital Stay (days) | 1.2 ± 0.4 |
MIS-TLIF | 3 (13.6%) |
Age (years) | 66.7 ± 4.9 |
BMI (kg/m2) | 25.2 ± 1.1 |
Blood Loss (n, %) | |
<50 mL | 1 (33.3%) |
<250 mL | 1 (33.3%) |
<500 mL | 1 (33.3%) |
Mean Operative Time (min) | 232 ± 45 |
Mean Hospital Stay (days) | 3 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommer, F.; Hussain, I.; Willett, N.; Hamad, M.K.; Ikwuegbuenyi, C.A.; Navarro-Ramirez, R.; Kirnaz, S.; McGrath, L.; Goldberg, J.; Ng, A.; et al. Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery. J. Pers. Med. 2025, 15, 42. https://doi.org/10.3390/jpm15020042
Sommer F, Hussain I, Willett N, Hamad MK, Ikwuegbuenyi CA, Navarro-Ramirez R, Kirnaz S, McGrath L, Goldberg J, Ng A, et al. Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery. Journal of Personalized Medicine. 2025; 15(2):42. https://doi.org/10.3390/jpm15020042
Chicago/Turabian StyleSommer, Fabian, Ibrahim Hussain, Noah Willett, Mousa K. Hamad, Chibuikem A. Ikwuegbuenyi, Rodrigo Navarro-Ramirez, Sertac Kirnaz, Lynn McGrath, Jacob Goldberg, Amanda Ng, and et al. 2025. "Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery" Journal of Personalized Medicine 15, no. 2: 42. https://doi.org/10.3390/jpm15020042
APA StyleSommer, F., Hussain, I., Willett, N., Hamad, M. K., Ikwuegbuenyi, C. A., Navarro-Ramirez, R., Kirnaz, S., McGrath, L., Goldberg, J., Ng, A., Mykolajtchuk, C., Haber, S., Sullivan, V., Gadjradj, P. S., & Härtl, R. (2025). Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery. Journal of Personalized Medicine, 15(2), 42. https://doi.org/10.3390/jpm15020042