Retinal Perfusion Analysis of Children with Diabetes Mellitus Type 1 Using Optical Coherence Tomography Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical and Ophthalmological Assessment
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Central Macular Thickness, Vessel Density, FAZ, and Flow Area Parameters of OCTA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wysocka-Mincewicz, M.; Gołębiewska, J.; Olechowski, A.; Szalecki, M. Diabetic Retinopathy in Children with Type 1 Diabetes—Occurrence and Screening Using Optical Coherence Tomography. Life 2021, 11, 590. [Google Scholar] [CrossRef] [PubMed]
- Mameli, C.; Invernizzi, A.; Bolchini, A.; Bedogni, G.; Giani, E.; Macedoni, M.; Zuccotti, G.; Preziosa, C.; Pellegrini, M. Analysis of Retinal Perfusion in Children, Adolescents, and Young Adults with Type 1 Diabetes Using Optical Coherence Tomography Angiography. J. Diabetes Res. 2019, 2019, 5410672. [Google Scholar] [CrossRef] [PubMed]
- Geloneck, M.M.; Forbes, B.J.; Shaffer, J.; Ying, G.S.; Binenbaum, G. Ocular complications in children with diabetes mellitus. Ophthalmology 2015, 122, 2457–2464. [Google Scholar] [CrossRef] [PubMed]
- Gołębiewska, J.; Olechowski, A.; Wysocka-Mincewicz, M.; Odrobina, D.; Baszyńska-Wilk, M.; Groszek, A.; Szalecki, M.; Hautz, W. Optical coherence tomography angiography vessel density in children with type 1 diabetes. PLoS ONE 2017, 12, e0186479. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, R.; Harper, C.A.; Keeffe, J.E. Diabetic retinopathy management guidelines. Expert Rev. Ophthalmol. 2012, 7, 417–439. [Google Scholar] [CrossRef]
- Marjanovic, I.; Maric, V.; Bozic, M. Optical coherent tomography with angiography in glaucoma. Srp. Arh. za Celok. Lek. 2023, 151, 725–729. [Google Scholar] [CrossRef]
- Boned-Murillo, A.; Albertos-Arranz, H.; Diaz-Barreda, M.D.; Orduna-Hospital, E.; Sánchez-Cano, A.; Ferreras, A.; Cuenca, N.; Pinilla, I. Optical Coherence Tomography Angiography in Diabetic Patients: A Systematic Review. Biomedicines 2021, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Vasilijević, J.B.; Kovačević, I.M.; Dijana, R.; Dačić, B.; Marić, G.; Stanojlović, S. Optical coherence tomography angiography parameters in patients taking hydroxychloroquine therapy. Indian J. Ophthalmol. 2023, 71, 3399–3405. [Google Scholar] [CrossRef] [PubMed]
- Lazăr, A.-S.; Stanca, H.T.; Tăbăcaru, B.; Danielescu, C.; Munteanu, M.; Stanca, S. Quantitative Parameters Relevant for Diabetic Macular Edema Evaluation by Optical Coherence Tomography Angiography. Medicina 2023, 59, 1120. [Google Scholar] [CrossRef] [PubMed]
- Duong, K.; Ferm, M.; Omiunu, A.; Khouri, A.S.; Szirth, B. Longitudinal OCTA Analysis of Children with Type I Diabetes Mellitus. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3021. [Google Scholar]
- Downie, E.; Craig, M.E.; Hing, S.; Cusumano, J.; Chan, A.K.; Donaghue, K.C. Continued reduction in the prevalence of reti-nopathy in adolescents with type 1 diabetes: Role of insulin therapy and glycemic control. Diabetes Care 2011, 34, 2368–2373. [Google Scholar] [CrossRef] [PubMed]
- Wysocka-Mincewicz, M.; Baszyńska-Wilk, M.; Gołębiewska, J.; Olechowski, A.; Byczyńska, A.; Hautz, W.; Szalecki, M. Influence of Metabolic Parameters and Treatment Method on OCT Angiography Results in Children with Type 1 Diabetes. J. Diabetes Res. 2020, 2020, 4742952. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ma, X.; Zhou, J.; Zhang, L.; Mo, Y.; Ying, L.; Lu, W.; Zhu, W.; Bao, Y.; Vigersky, R.A.; et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 2018, 41, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Wu, H.; Wang, W.; Xiong, K.; Gong, X.; Yuan, G.; Li, T.; Li, Y.; Liu, H.; Wang, L.; et al. Association of Body Mass Index and Waist-to-Hip Ratio with Retinal Microvasculature in Healthy Chinese Adults: An Optical Coherence Tomography Angiography Study. Arch. Ophthalmol. 2022, 246, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, X.; Meng, X.; Chen, T.; Gu, Y.; Wu, Y.; Wu, Z. In vivo assessment of macula in eyes of healthy children 8 to 16 years old using optical coherence tomography angiography. Sci. Rep. 2017, 7, 8936. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Leng, Z.; Li, X.; Yan, W.; Shen, S.; Liu, L.; Zhu, H.; Huang, D.; Liu, H. Retinochoroidal microvascular changes in newly developed obese children: An optical coherence tomography angiography study. BMC Ophthalmol. 2022, 22, 443. [Google Scholar] [CrossRef] [PubMed]
- Can, G.D.; Kara, Ö; Can, M.E. High body weight-related retinal vasculopathy in children with obesity. Eur. J. Ophthalmol. 2022, 32, 1080–1085. [Google Scholar] [CrossRef]
- Guo, Y.M.; Zheng, X.M.; He, H.M.; Zheng, S.M. Retinal Microvasculopathy with Different Insulin Infusion Therapies in Children with Type 1 Diabetes Mellitus without Clinical Diabetic Retinopathy. Retina 2024, 44, 895–900. [Google Scholar] [CrossRef]
Investigated Trait | Mean | Standard Deviation (±SD) |
---|---|---|
Age (years) | 14.68 | 2.30 |
Diabetes duration (years) | 7.16 | 3.59 |
Glycated hemoglobin (%) | 8.83 | 1.64 |
Cholesterol level (mmol/L) | 4.40 | 0.94 |
Triglyceride level (mmol/L) | 0.95 | 0.58 |
LDL level (mmol/L) | 2.26 | 0.69 |
Body mass index (BMI) | 21.14 | 2.98 |
Systolic blood pressure (mmHg) | 108.33 | 10.03 |
Diastolic blood pressure (mmHg) | 69.67 | 8.30 |
Treatment type; n (%) | ||
Multiple daily insulin injections (MDI) | 19 (63.3%) | |
Continuous subcutaneous insulin infusion (CSII) | 11 (36.7%) |
Group | T1D | Control | p-Value | |
---|---|---|---|---|
OCTA Parameters | ||||
Superficial macula density (%) | 48.38 ± 3.28 | 49.47 ± 2.22 | 0.333 | |
Superficial foveal density (%) | 21.77 ± 6.07 | 18.29 ± 6.95 | 0.136 | |
Superficial parafoveal density (%) | 51.57 ± 4.20 | 52.85 ± 2.60 | 0.372 | |
Superficial perifoveal density (%) | 48.90 ± 3.48 | 49.53 ± 2.47 | 0.600 | |
Deep macula density (%) | 47.62 ± 4.76 | 49.35 ± 3.42 | 0.294 | |
Deep foveal density (%) | 37.76 ± 8.20 | 38.81 ± 5.09 | 0.705 | |
Deep parafoveal density (%) | 54.05 ± 3.70 | 53.62 ± 5.03 | 0.728 | |
Deep perifoveal density (%) | 50.59 ± 5.53 | 50.22 ± 5.43 | 0.343 | |
Flow rate OR | 0.71 ± 0.39 | 0.72 ± 0.46 | 0.376 | |
Flow rate CC | 2.20 ± 0.08 | 2.22 ± 0.12 | 0.504 | |
FAZ area (mm2) | 0.22 ± 0.10 | 0.26 ± 0.05 | 0.257 |
Diabetes Duration | Glycated Hemoglobin | BMI | Type of T1D Treatment | |
---|---|---|---|---|
Superficial macula density | ||||
CC | 0.028 | −0.125 | 0.166 | 0.140 |
Sig. | 0.883 | 0.517 | 0.380 | 0.467 |
Superficial foveal density | ||||
CC | −0.083 | −0.216 | 0.115 | −0.085 |
Sig. | 0.665 | 0.261 | 0.546 | 0.661 |
Superficial parafoveal density | ||||
CC | −0.089 | −0.156 | 0.207 | 0.132 |
Sig. | 0.638 | 0.420 | 0.272 | 0.496 |
Superficial perifoveal density | ||||
CC | −0.020 | −0.100 | 0.202 | 0.132 |
Sig. | 0.917 | 0.605 | 0.286 | 0.495 |
Deep macula density | ||||
CC | −0.064 | −0.108 | 0.502 ** | 0.288 |
Sig. | 0.732 | 0.571 | 0.005 | 0.123 |
Deep foveal density | ||||
CC | −0.016 | −0.020 | 0.257 | −0.260 |
Sig. | 0.930 | 0.918 | 0.171 | 0.166 |
Deep parafoveal density | ||||
CC | 0.115 | −0.122 | 0.330 | 0.364 * |
Sig. | 0.538 | 0.519 | 0.075 | 0.048 |
Deep perifoveal density | ||||
CC | 0.085 | 0.002 | 0.490 ** | 0.420 * |
Sig. | 0.650 | 0.990 | 0.006 | 0.021 |
Flow rate OR | ||||
CC | 0.041 | −0.016 | −0.257 | −0.372 * |
Sig. | 0.827 | 0.932 | 0.170 | 0.043 |
Flow rate CC | ||||
CC | −0.140 | 0.032 | −0.339 | −0.052 |
Sig. | 0.454 | 0.868 | 0.067 | 0.785 |
FAZ area | ||||
CC | −0.095 | 0.023 | −0.004 | 0.112 |
Sig. | 0.611 | 0.905 | 0.984 | 0.556 |
CMT | ||||
CC | 0.240 | −0.121 | 0.104 | −0.268 |
Sig. | 0.193 | 0.524 | 0.586 | 0.152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilijevic, J.; Kovacevic, I.; Polovina, S.; Dacic-Krnjaja, B.; Kalezic, T.; Miletic, S.; Al Barri, L.; Stanca, S.; Ferrari, F.; Jesic, M. Retinal Perfusion Analysis of Children with Diabetes Mellitus Type 1 Using Optical Coherence Tomography Angiography. J. Pers. Med. 2024, 14, 696. https://doi.org/10.3390/jpm14070696
Vasilijevic J, Kovacevic I, Polovina S, Dacic-Krnjaja B, Kalezic T, Miletic S, Al Barri L, Stanca S, Ferrari F, Jesic M. Retinal Perfusion Analysis of Children with Diabetes Mellitus Type 1 Using Optical Coherence Tomography Angiography. Journal of Personalized Medicine. 2024; 14(7):696. https://doi.org/10.3390/jpm14070696
Chicago/Turabian StyleVasilijevic, Jelena, Igor Kovacevic, Snezana Polovina, Bojana Dacic-Krnjaja, Tanja Kalezic, Suzana Miletic, Leila Al Barri, Simona Stanca, Francis Ferrari, and Maja Jesic. 2024. "Retinal Perfusion Analysis of Children with Diabetes Mellitus Type 1 Using Optical Coherence Tomography Angiography" Journal of Personalized Medicine 14, no. 7: 696. https://doi.org/10.3390/jpm14070696
APA StyleVasilijevic, J., Kovacevic, I., Polovina, S., Dacic-Krnjaja, B., Kalezic, T., Miletic, S., Al Barri, L., Stanca, S., Ferrari, F., & Jesic, M. (2024). Retinal Perfusion Analysis of Children with Diabetes Mellitus Type 1 Using Optical Coherence Tomography Angiography. Journal of Personalized Medicine, 14(7), 696. https://doi.org/10.3390/jpm14070696