The Clinical Efficacy of Contouring Periarticular Plates on a 3D Printed Bone Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Three-Dimensional Printing
2.3. Precontouring of the Plates
2.4. Intraoperative Precontoured Plate Positioning
2.5. Comparative Study for Acetabular Fracture
2.6. Saw Bone Oriented Contoured Plates
3. Results
3.1. Clinical Data of the 3DP Technique
3.2. Data for the Precontoured Plate
3.3. Data for Intraoperative Precontoured Plate Positioning
3.4. Precontoured Plate Mismatch and Complications
3.5. Comparative Data of Acetabular Fracture Cases
3.6. Data of Saw Bone Oriented Contoured Plates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dillin, L.; Slabaugh, P. Delayed wound healing, infection, and nonunion following open reduction and internal fixation of tibial plafond fractures. J. Trauma 1986, 26, 1116–1119. [Google Scholar] [CrossRef] [PubMed]
- McFerran, M.A.; Smith, S.W.; Boulas, H.J.; Schwartz, H.S. Complications encountered in the treatment of pilon fractures. J. Orthop. Trauma 1992, 6, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.J.; Wei, H.W.; Lin, K.P.; Tsai, C.L.; Lee, P.Y. Proximal femoral morphology and the relevance to design of anatomically precontoured plates: A study of the Chinese population. Sci. World J. 2014, 2014, 106941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppermann, J.; Bredow, J.; Beyer, F.; Neiss, W.F.; Spies, C.K.; Eysel, P.; Dargel, J.; Wacker, M. Distal radius: Anatomical morphometric gender characteristics. Do anatomical pre-shaped plates pay attention on it? Arch. Orthop. Trauma Surg. 2015, 135, 133–139. [Google Scholar] [CrossRef]
- Hwang, J.H.; Oh, J.K.; Oh, C.W.; Yoon, Y.C.; Choi, H.W. Mismatch of anatomically pre-shaped locking plate on Asian femurs could lead to malalignment in the minimally invasive plating of distal femoral fractures: A cadaveric study. Arch. Orthop. Trauma Surg. 2012, 132, 51–56. [Google Scholar] [CrossRef]
- Bagaria, V.; Deshpande, S.; Rasalkar, D.D.; Kuthe, A.; Paunipagar, B.K. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. Eur. J. Radiol. 2011, 80, 814–820. [Google Scholar] [CrossRef]
- Assink, N.; Reininga, I.H.F.; Ten Duis, K.; Doornberg, J.N.; Hoekstra, H.; Kraeima, J.; Witjes, M.J.H.; de Vries, J.P.M.; FFA, I.J. Does 3D-assisted surgery of tibial plateau fractures improve surgical and patient outcome? A systematic review of 1074 patients. Eur. J. Trauma Emerg. Surg. 2022, 48, 1737–1749. [Google Scholar] [CrossRef]
- Dust, T.; Hartel, M.J.; Henneberg, J.E.; Korthaus, A.; Ballhause, T.M.; Keller, J.; Ohlmeier, M.; Maas, K.J.; Frosch, K.H.; Krause, M. The influence of 3D printing on inter- and intrarater reliability on the classification of tibial plateau fractures. Eur. J. Trauma Emerg. Surg. 2023, 49, 189–199. [Google Scholar] [CrossRef]
- Li, K.; Liu, Z.; Li, X.; Wang, J. 3D printing-assisted surgery for proximal humerus fractures: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2022, 48, 3493–3503. [Google Scholar] [CrossRef]
- Yammine, K.; Karbala, J.; Maalouf, A.; Daher, J.; Assi, C. Clinical outcomes of the use of 3D printing models in fracture management: A meta-analysis of randomized studies. Eur. J. Trauma Emerg. Surg. 2022, 48, 3479–3491. [Google Scholar] [CrossRef]
- Huitema, J.M.; van der Gaast, N.; Brouwers, L.; Jaarsma, R.L.; Doornberg, J.N.; Edwards, M.J.R.; Hermans, E. Are 3D-printed Models of Tibial Plateau Fractures a Useful Addition to Understanding Fractures for Junior Surgeons? Clin. Orthop. Relat. Res. 2022, 480, 1170–1177. [Google Scholar] [CrossRef]
- Fidanza, A.; Perinetti, T.; Logroscino, G.; Saracco, M. 3D Printing Applications in Orthopaedic Surgery: Clinical Experience and Opportunities. Appl. Sci. 2022, 12, 3245. [Google Scholar] [CrossRef]
- Shon, H.C.; Bang, J.Y.; Lee, Y.; Koh, K.H.; Kim, J.W. Optimal plate position in minimally invasive plate osteosynthesis for mid-shaft clavicle fractures: Simulation using 3D-printed models of actual clinical cases. Eur. J. Trauma Emerg. Surg. 2021, 47, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Lee, Y.; Seo, J.; Park, J.H.; Seo, Y.M.; Kim, S.S.; Shon, H.C. Clinical experience with three-dimensional printing techniques in orthopedic trauma. J. Orthop. Sci. 2018, 23, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Grottkau, B.; He, Z.; Ye, C. Three dimensional printing technology and materials for treatment of elbow fractures. Int. Orthop. 2017, 41, 2381–2387. [Google Scholar] [CrossRef]
- Chung, K.J.; Hong, D.Y.; Kim, Y.T.; Yang, I.; Park, Y.W.; Kim, H.N. Preshaping plates for minimally invasive fixation of calcaneal fractures using a real-size 3D-printed model as a preoperative and intraoperative tool. Foot Ankle Int. 2014, 35, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.L.; Chou, Y.C.; Li, Y.T.; Chen, J.E.; Hung, C.C.; Wu, C.C.; Shen, H.C.; Yeh, T.T. Pre-operative virtual simulation and three-dimensional printing techniques for the surgical management of acetabular fractures. Int. Orthop. 2019, 43, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.C.; Li, Y.T.; Chou, Y.C.; Chen, J.E.; Wu, C.C.; Shen, H.C.; Yeh, T.T. Conventional plate fixation method versus pre-operative virtual simulation and three-dimensional printing-assisted contoured plate fixation method in the treatment of anterior pelvic ring fracture. Int. Orthop. 2019, 43, 425–431. [Google Scholar] [CrossRef]
- Upex, P.; Jouffroy, P.; Riouallon, G. Application of 3D printing for treating fractures of both columns of the acetabulum: Benefit of pre-contouring plates on the mirrored healthy pelvis. Orthop. Traumatol. Surg. Res. 2017, 103, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Maini, L.; Sharma, A.; Jha, S.; Sharma, A.; Tiwari, A. Three-dimensional printing and patient-specific pre-contoured plate: Future of acetabulum fracture fixation? Eur. J. Trauma Emerg. Surg. 2018, 44, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Maini, L.; Verma, T.; Sharma, A.; Sharma, A.; Mishra, A.; Jha, S. Evaluation of accuracy of virtual surgical planning for patient-specific pre-contoured plate in acetabular fracture fixation. Arch. Orthop. Trauma Surg. 2018, 138, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Chana-Rodríguez, F.; Mañanes, R.P.; Rojo-Manaute, J.; Gil, P.; Martínez-Gómiz, J.M.; Vaquero-Martín, J. 3D surgical printing and pre contoured plates for acetabular fractures. Injury 2016, 47, 2507–2511. [Google Scholar] [CrossRef] [PubMed]
- Papotto, G.; Testa, G.; Mobilia, G.; Perez, S.; Dimartino, S.; Giardina, S.M.C.; Sessa, G.; Pavone, V. Use of 3D printing and pre-contouring plate in the surgical planning of acetabular fractures: A systematic review. Orthop. Traumatol. Surg. Res. 2022, 108, 103111. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, C.; Zhang, C.; Tao, Z.; Cai, L. The Feasibility of 3D Printing Technology on the Treatment of Pilon Fracture and Its Effect on Doctor-Patient Communication. Biomed Res. Int. 2018, 2018, 8054698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Location of Fracture | Numbers of Cases | Mirrored Image | Virtually Reduced Image |
---|---|---|---|
Fractures of humerus shaft | 11 | 2 | 9 |
Fractures of tibia plateau | 12 | 7 | 5 |
Fractures of pilon | 2 | 0 | 2 |
Fractures of Acetabulum | 9 | 7 | 2 |
Total | 34 | 16 | 18 |
Location of Fracture | 3D Printing (hours) | Virtual Reduction (hours) |
---|---|---|
Fractures of humerus shaft | 10 | 0.5 |
Fractures of tibia plateau | 5 | 1 |
Fractures of pilon | 4.5 | 0.7 |
Fractures of acetabulum | 12 | 1 |
Location of Fracture | Number of Contoured Plates | Contouring Time of the Surgeon (min) | Numbers of Plate Contouring in between Trial Positioning | Numbers of Trial for Plate Positioning |
---|---|---|---|---|
Fractures of humerus shaft | 1 | 9.2 | 7 | 8.3 |
Fractures of tibia plateau | 2 | 13.8 | 15.1 | 13.5 |
Fractures of pilon | 1.5 | 8.8 | 6.5 | 6 |
Fractures of acetabulum | 1.3 | 11.6 | 10 | 8.5 |
Location of Fracture | Numbers of Plates | Total Time for Plate Positioning (min) | Trial Numbers of Plate Positioning | Numbers of Cases Need for Further Contouring |
---|---|---|---|---|
Fractures of humerus shaft | 1 | 3.7 | 1.3 | 1 |
Fractures of tibia plateau | 2 | 7.7 | 3.2 | 0 |
Fractures of pilon | 1.5 | 2.6 | 1.5 | 0 |
Fractures of acetabulum | 1.3 | 5.4 | 1.6 | 0 |
Group 1 (n = 11) | Group 2 (n = 9) | p Value | |
---|---|---|---|
Instrumentation time (min) | 91 | 40.6 | <0.05 |
Total operation time (min) | 332.5 | 294.3 | 0.211 |
Blood loss (mL) | 1040 | 866.6 | 0.611 |
Complications | L5 nerve root irritation | None |
Location of Fracture | Numbers of Cases Needed for Additional Contouring | Surgeon’s Additional Contouring Time (min) | Number of Additional Contouring in between Trial Positioning | Number of Additional Trial for Plate Positioning |
---|---|---|---|---|
Tibia plateau facture | 12 (12/12) | 8.4 | 8.2 | 7.8 |
Acetabulum fracture | 7 (7/9) | 5.6 | 6.2 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakong, S.-y.; Cho, J.-W.; Kim, B.-S.; Park, S.-J.; Lim, E.-J.; Oh, J.-K. The Clinical Efficacy of Contouring Periarticular Plates on a 3D Printed Bone Model. J. Pers. Med. 2023, 13, 1145. https://doi.org/10.3390/jpm13071145
Sakong S-y, Cho J-W, Kim B-S, Park S-J, Lim E-J, Oh J-K. The Clinical Efficacy of Contouring Periarticular Plates on a 3D Printed Bone Model. Journal of Personalized Medicine. 2023; 13(7):1145. https://doi.org/10.3390/jpm13071145
Chicago/Turabian StyleSakong, Seung-yeob, Jae-Woo Cho, Beom-Soo Kim, Sung-Jun Park, Eic-Ju Lim, and Jong-Keon Oh. 2023. "The Clinical Efficacy of Contouring Periarticular Plates on a 3D Printed Bone Model" Journal of Personalized Medicine 13, no. 7: 1145. https://doi.org/10.3390/jpm13071145
APA StyleSakong, S.-y., Cho, J.-W., Kim, B.-S., Park, S.-J., Lim, E.-J., & Oh, J.-K. (2023). The Clinical Efficacy of Contouring Periarticular Plates on a 3D Printed Bone Model. Journal of Personalized Medicine, 13(7), 1145. https://doi.org/10.3390/jpm13071145