Haemoadsorption Combined with Continuous Renal Replacement Therapy in Abdominal Sepsis: Case Report Series
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ronco, C.; Bellomo, R. Hemoperfusion: Technical aspects and state of the art. Crit. Care 2022, 26, 135. [Google Scholar] [CrossRef] [PubMed]
- Lorenzin, A.; de Cal, M.; Marcello, M.; Sorbo, D.; Copelli, S.; Ronco, C.; de Rosa, S.; Zanella, M. Vancomycin adsorption during in vitro model of hemoperfusion with mini-module of HA380 Cartridge. Blood Purif. 2023, 52, 174–182. [Google Scholar] [CrossRef]
- Ankawi, G.; Fan, W.; Pomarè Montin, D.; Lorenzin, A.; Neri, M.; Caprara, C.; De Cal, M.; Ronco, C. A new series of sorbent devices for multiple clinical purposes: Current evidence and future directions. Blood Purif. 2019, 47, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, S.R.; Su, W.; Liu, J.Y. Removal of humoral mediators and the effect on the survival of septic patients by hemoperfusion with neutral microporous resin column. Ther. Apher. Dial. 2010, 14, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Li, G.; Yu, Y.; Bao, X.; Wei, H.; Hu, M. Clinical effects of hemoperfusion combined with pulse high-volume hemofiltration on septic shock. Medicine 2020, 99, e19058. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, S.R.; Yang, Z.L.; Liu, J.Y. Effect on extrapulmonary sepsis-induced acute lung injury by hemoperfusion with neutral microporous resin column. Ther. Apher. Dial. 2013, 17, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Honore, P.M.; Hoste, E.; Molnár, Z.; Jacobs, R.; Joannes-Boyau, O.; Malbrain, M.L.; Forni, L.G. Cytokine removal in human septic shock: Where are we and where are we going? Ann. Intensive Care 2019, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Monard, C.; Rimmelé, T.; Ronco, C. Extracorporeal blood purification therapies for sepsis. Blood Purif. 2019, 47 (Suppl. 3), 1–14. [Google Scholar] [CrossRef]
- Supady, A.; Brodie, D.; Wengenmayer, T. Extracorporeal haemoadsorption: Does the evidence support its routine use in critical care? Lancet Respir. Med. 2022, 10, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Wendel, G.P.D.; Hilty, M.P.; Held, U.; Kleinert, E.M.; Maggiorini, M. Cytokine adsorption in severe, refractory septic shock. Intensive Care Med. 2021, 47, 1334–1336. [Google Scholar] [CrossRef]
- Grimaldi, D.; Vincent, J.L. Clinical trial research in focus: Rethinking trials in sepsis. Lancet Respir. Med. 2017, 5, 610–611. [Google Scholar] [CrossRef]
- Peters-Sengers, H.; Butler, J.M.; Uhel, F.; Schultz, M.J.; Bonten, M.J.; Cremer, O.L.; Scicluna, B.P.; van Vught, L.A.; van der Poll, T. Source-specific host response and outcomes in critically ill patients with sepsis: A prospective cohort study. Intensive Care Med. 2022, 48, 92–102. [Google Scholar] [CrossRef]
- Ricci, Z.; Romagnoli, S.; Reis, T.; Bellomo, R.; Ronco, C. Hemoperfusion in the intensive care unit. Intensive Care Med. 2022, 48, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Yang, T.; Chang, K.; Deng, N.; Zhao, W.; Su, B. Targeting circulating high mobility group box-1 and histones by extracorporeal blood purification as an immunomodulation strategy against critical illnesses. Crit. Care 2023, 27, 77. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.; Forni, L.G. Extracorporeal blood purification is appropriate in critically Ill patients with COVID-19 and multiorgan failure: CON. Kidney360 2022, 3, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Cleasby, C.; Marshall, T.; Gordon, A.C.; Antcliffe, D.B. The effect of vasopressin and hydrocortisone on cytokine trajectories. Intensive Care Med. 2023, 49, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Putzu, A.; Schorer, R. Hemoadsorption in critically ill patients with or without COVID-19: A word of caution. J. Crit. Care. 2021, 65, 140–141. [Google Scholar] [CrossRef] [PubMed]
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | |
---|---|---|---|---|---|
Gender | Male | Female | Male | Female | Female |
Age (years) | 79 | 54 | 29 | 78 | 75 |
Source of infection | Ileal dehiscence | Rectal perforation | Sigmoid perforation | Colonic perforation | Caecum perforation |
Cultures | |||||
Blood | - | - | - | Eggerthella lenta | - |
Peritoneal | Escherichia coli | - | Escherichia coli | - | Escherichia coli |
Enterococcus faecalis | Proteus mirabilis | Bacteroides distasonis | |||
Bacteroides fragilis | Klebsiella pneumoniae | ||||
Pseudomonas aeruginosa | |||||
Antibiotics | Meropenem Linezolid | Meropenem Linezolid | Meropenem Linezolid | Meropenem Linezolid | Meropenem Linezolid |
SAPS 3 | 88 | 64 | 50 | 64 | 75 |
SOFA | 11 | 9 | 10 | 9 | 9 |
Mechanical ventilation | Yes | Yes | Yes | Yes | Yes |
AKI | Yes | Yes | Yes | Yes | Yes |
KDIGO class | 3 | 3 | 3 | 2 | 3 |
RRT | Yes | Yes | Yes | No | Yes |
Case | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Initial CRRT dose (mL/kg/h) | 29 | 16 | 23 | 22 | 14 | |||||
Cartridges (n) | 4 | 2 | 2 | 2 | 2 | |||||
Treatment schedule (hours) | 12-12-24-24 | 6-6 | 6-6 | 6-6 | 6-6 | |||||
Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
Urea (mg/dL) | 89 | 54 | 76 | 92 | 129 | 85 | 60 | 53 | 86 | 81 |
Creatinine (mg/dL) | 1.51 | 0.54 | 2.39 | 2.26 | 2.93 | 0.81 | 1.21 | 1.19 | 2.47 | 1.46 |
Potassium (mmol/L) | 4.37 | 3.06 | 4.1 | 4.15 | 4.63 | 3.38 | 4.1 | 2.81 | 5.65 | 3.73 |
Sodium (mmol/L) | 140 | 144 | 142 | 135 | 143 | 143 | 143 | 138 | 132 | 127 |
Bicarbonate (mmol/L) | 17.5 | 28.4 | 22.1 | 22.4 | 27.9 | 27.9 | 20.2 | 27.8 | 18.4 | 19.6 |
Urine volume (mL/24 h) | 0 | 2860 | 1395 | 5050 | 1220 | 2435 | 20 | 4240 | 333 | 1440 |
Hb (g/dL) | 10.3 | 8.9 | 10.2 | 8.4 | 8.4 | 8.5 | 14.6 | 9.7 | 10.7 | 7.2 |
Total white cells (×103/L) | 13.42 | 28 | 47.55 | 22.38 | 16 | 14.2 | 5.6 | 9.2 | 4 | 33.8 |
Platelets (×103/L) | 192 | 64 | 160 | 56 | 491 | 172 | 164 | 60 | 446 | 18 |
PT (s) | 16.4 | 13.7 | 14 | 13.8 | 12 | 10.8 | 12.6 | 11.7 | 11.1 | 9.7 |
aPTT (s) | 56.4 | 34.5 | 26.6 | 32.4 | 24.2 | 22.8 | 32.1 | 39.4 | 28.6 | 32.7 |
Heart rate (beat/mi) | 110 | 68 | 120 | 101 | 110 | 84 | 99 | 84 | 93 | 82 |
MAP (mmHg) | 69 | 93 | 69 | 96 | 76 | 81 | 79 | 81 | 90 | 83 |
Lactate (mmol/L) | 5.1 | 1.7 | 2.1 | 0.7 | 2.0 | 1.1 | 6.8 | 2.0 | 4.4 | 1.4 |
Noradrenaline (μg/kg/min) | 0.85 | 0 | 0.75 | 0 | 0.5 | 0 | 0.65 | 0.07 | 0.65 | 0.15 |
PaO2/FiO2 | 158 | 187 | 308 | 520 | 220 | 351 | 206 | 255 | 326 | 420 |
PCT (ng/mL) | 11.49 | 0.93 | 36.12 | 41.86 | 19.4 | 3.59 | 39.91 | 11.5 | 35.1 | 7.74 |
CRP (mg/L) | 487.63 | 173.2 | 163 | 342 | 411 | 230 | 175 | 281 | 412.81 | 205 |
IL-6 (ng/L) | 5000 | 193 | 4038 | 112 | 5446 | 216 | 5000 | 372 | 5000 | 187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Morán, F.; Mateu-Campos, M.L.; Bernal-Julián, F.; Gil-Santana, A.; Sánchez-Herrero, Á.; Martínez-Gaspar, T. Haemoadsorption Combined with Continuous Renal Replacement Therapy in Abdominal Sepsis: Case Report Series. J. Pers. Med. 2023, 13, 1113. https://doi.org/10.3390/jpm13071113
Sánchez-Morán F, Mateu-Campos ML, Bernal-Julián F, Gil-Santana A, Sánchez-Herrero Á, Martínez-Gaspar T. Haemoadsorption Combined with Continuous Renal Replacement Therapy in Abdominal Sepsis: Case Report Series. Journal of Personalized Medicine. 2023; 13(7):1113. https://doi.org/10.3390/jpm13071113
Chicago/Turabian StyleSánchez-Morán, Fernando, María Lidón Mateu-Campos, Francisco Bernal-Julián, Ali Gil-Santana, Ángeles Sánchez-Herrero, and Teresa Martínez-Gaspar. 2023. "Haemoadsorption Combined with Continuous Renal Replacement Therapy in Abdominal Sepsis: Case Report Series" Journal of Personalized Medicine 13, no. 7: 1113. https://doi.org/10.3390/jpm13071113
APA StyleSánchez-Morán, F., Mateu-Campos, M. L., Bernal-Julián, F., Gil-Santana, A., Sánchez-Herrero, Á., & Martínez-Gaspar, T. (2023). Haemoadsorption Combined with Continuous Renal Replacement Therapy in Abdominal Sepsis: Case Report Series. Journal of Personalized Medicine, 13(7), 1113. https://doi.org/10.3390/jpm13071113