Apical Vertebras Distribution Modifier for Coronal Balance Classification in Adult Idiopathic Scoliosis
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.; Danielsson, A.; Morcuende, J.A. Adolescent idiopathic scoliosis. Lancet 2008, 371, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Pasha, S.; Baldwin, K. Are we simplifying balance evaluation in adolescent idiopathic scoliosis? Clin. Biomech. 2018, 51, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Lemans, J.V.; Zavatsky, J.; Agarwal, A.; Kruyt, M.C.; Matsumoto, K.; Serhan, H.; Agarwal, A.K.; Goel, V. Spinal Balance/Alignment—Clinical Relevance and Biomechanics. J. Biomech. Eng. 2019. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ploumis, A.; Simpson, A.K.; Cha, T.D.; Herzog, J.P.; Wood, K.B. Coronal Spinal Balance in Adult Spine Deformity Patients with Long Spinal Fusions: A Minimum 2- to 5-Year Follow-up Study. J. Spinal Disord. Tech. 2015, 28, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Daubs, M.D.; Lenke, L.G.; Bridwell, K.H.; Kim, Y.J.; Hung, M.; Cheh, G.; Koester, L.A. Does correction of preoperative coronal imbalance make a difference in outcomes of adult patients with a deformity? Spine 2013, 38, 476–483. [Google Scholar] [CrossRef]
- Glassman, S.D.; Berven, S.; Bridwell, K.; Horton, W.; Dimar, J.R. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 2005, 30, 682–688. [Google Scholar] [CrossRef]
- Tokunaga, M.; Minami, S.; Kitahara, H.; Isobe, K.; Nakata, Y.; Moriya, H. Vertebral decancellation for severe scoliosis. Spine 2000, 25, 469–474. [Google Scholar] [CrossRef]
- Di Silvestre, M.; Bakaloudis, G.; Lolli, F.; Vommaro, F.; Martikos, K.; Parisini, P. Posterior fusion only for thoracic adolescent idiopathic scoliosis of more than 80 degrees: Pedicle screws versus hybrid instrumentation. Eur. Spine J. 2008, 17, 1336–1349. [Google Scholar] [CrossRef]
- Yamin, S.; Li, L.; Xing, W.; Tianjun, G.; Yupeng, Z. Staged surgical treatment for severe and rigid scoliosis. J. Orthop. Surg. Res. 2008, 3, 26. [Google Scholar] [CrossRef]
- Librianto, D.; Saputra, R.; Djaja, Y.P.; Phedy, P.; Fachrisal Saleh, I. Preoperative skull tongs-femoral traction versus cotrel longitudinal traction for rigid and severe scoliosis: Cohort study. Ann. Med. Surg. 2021, 63, 102177. [Google Scholar] [CrossRef]
- Miller, D.J.; Jameel, O.; Matsumoto, H.; Hyman, J.E.; Schwab, F.J.; Roye, D.P., Jr.; Vitale, M.G. Factors affecting distal end & global decompensation in coronal/sagittal planes 2 years after fusion. Stud. Health Technol. Inform. 2010, 158, 141–146. [Google Scholar] [PubMed]
- Anari, J.B.; Tatad, A.; Cahill, P.J.; Flynn, J.M.; Harms Study Group. The Impact of Posterior Spinal Fusion (PSF) on Coronal Balance in Adolescent Idiopathic Scoliosis (AIS): A New Classification and Trends in the Postoperative Period. J. Pediatr. Orthop. 2020, 40, e788–e793. [Google Scholar] [CrossRef]
- Mannem, A.; Cheung, P.W.H.; Kawasaki, S.; Shigematsu, H.; Cheung, J.P.Y. What determines immediate postoperative coronal balance and delayed global coronal balance after anterior spinal fusion for Lenke 5C curves? Eur. Spine J. 2021, 30, 2007–2019. [Google Scholar] [CrossRef]
- McCance, S.E.; Denis, F.; Lonstein, J.E.; Winter, R.B. Coronal and sagittal balance in surgically treated adolescent idiopathic scoliosis with the King II curve pattern. A review of 67 consecutive cases having selective thoracic arthrodesis. Spine 1998, 23, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hai, Y.; Tao, L.; Yang, J.; Zhou, L.; Yin, P.; Pan, A.; Zhang, Y.; Liu, C. Posterior Multiple-Level Asymmetrical Ponte Osteotomies for Rigid Adult Idiopathic Scoliosis. World Neurosurg. 2019, 127, e467–e473. [Google Scholar] [CrossRef] [PubMed]
- Glassman, S.D.; Bridwell, K.; Dimar, J.R.; Horton, W.; Berven, S.; Schwab, F. The impact of positive sagittal balance in adult spinal deformity. Spine 2005, 30, 2024–2029. [Google Scholar] [CrossRef]
- Ilharreborde, B. Sagittal balance and idiopathic scoliosis: Does final sagittal alignment influence outcomes, degeneration rate, or failure rate? Eur. Spine J. 2018, 27 (Suppl. S1), 48–58. [Google Scholar] [CrossRef]
- Shetty, A.P.; Suresh, S.; Aiyer, S.N.; Kanna, R.; Rajasekaran, S. Radiological factors affecting post-operative global coronal balance in Lenke 5 C scoliosis. J. Spine Surg. 2017, 3, 541–547. [Google Scholar] [CrossRef]
- Ishikawa, M.; Cao, K.; Pang, L.; Fujita, N.; Yagi, M.; Hosogane, N.; Tsuji, T.; Machida, M.; Ishihara, S.; Nishiyama, M.; et al. Onset and remodeling of coronal imbalance after selective posterior thoracic fusion for Lenke 1C and 2C adolescent idiopathic scoliosis (a pilot study). Scoliosis Spinal Disord. 2017, 12, 16. [Google Scholar] [CrossRef]
- Cheshire, J.; Gardner, A.; Berryman, F.; Pynsent, P. Do the SRS-22 self-image and mental health domain scores reflect the degree of asymmetry of the back in adolescent idiopathic scoliosis? Scoliosis Spinal Disord. 2017, 12, 37. [Google Scholar] [CrossRef]
- Atici, Y.; Erdogan, S.; Akman, Y.E.; Mert, M.; Carkci, E.; Tuzuner, T. The Surgical Overcorrection of Lenke Type 1 Deformities with Selective Fusion Segments: What Happens to the Coronal Balance? Korean J. Spine 2016, 13, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Zhu, F.; Liu, Z.; Zhu, Z.; He, S.; Ding, Y.; Qiu, Y. Coronal curvature and spinal imbalance in degenerative lumbar scoliosis: Disc degeneration is associated. Spine 2014, 39, E1441–E1447. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, X.; Qiao, J.; Chen, Z.; Shi, B.; Li, S.; Du, C.; Zhou, Q.; Zhu, Z.; Qiu, Y.; et al. Coronal Imbalance After Three-Column Osteotomy in Thoracolumbar Congenital Kyphoscoliosis: Incidence and Risk Factors. Spine 2019, 44, E99–E106. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Yan, P.; Qiu, Y.; Liu, Z.; Zhu, F. Coronal imbalance in degenerative lumbar scoliosis: Prevalence and influence on surgical decision-making for spinal osteotomy. Bone Jt. J. 2016, 98-B, 1227–1233. [Google Scholar] [CrossRef]
- Chan, A.K.; Lau, D.; Osorio, J.A.; Yue, J.K.; Berven, S.H.; Burch, S.; Hu, S.S.; Mummaneni, P.V.; Deviren, V.; Ames, C.P. Asymmetric pedicle subtraction osteotomy for adult spinal deformity with coronal imbalance: Complications, radiographic and surgical outcomes. Oper. Neurosurg. 2020, 18, 209–216. [Google Scholar] [CrossRef]
- Girod, P.P.; Hartmann, S.; Kavakebi, P.; Obernauer, J.; Verius, M.; Thomé, C. Asymmetric pedicle subtractionosteotomy (aPSO) guided by a 3D-printed model to correct a combined fixed sagittal and coronal imbalance. Neurosurg. Rev. 2017, 40, 689–693. [Google Scholar] [CrossRef]
- Takahashi, T.; Hanakita, J.; Watanabe, M.; Kawaoka, T.; Takebe, N.; Kitahara, T. Lumbar alignment and clinical outcome after single level asymmetrical transforaminal lumbar interbody fusion for degenerative spondylolisthesis with local coronal imbalance. Neurol. Med. Chir. 2014, 54, 691–697. [Google Scholar] [CrossRef]
- Wang, M.Y.; Mummaneni, P.V. Minimally invasive surgery for thoracolumbar spinal deformity: Initial clinical experience with clinical and radiographic outcomes. Neurosurg. Focus 2010, 28, E9. [Google Scholar] [CrossRef]
- Dakwar, E.; Cardona, R.F.; Smith, D.A.; Uribe, J.S. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg. Focus 2010, 28, E8. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, A.; Hai, Y.; Li, W.; Yin, L.; Guo, R. Asymmetric biomechanical characteristics of the paravertebral muscle in adolescent idiopathic scoliosis. Clin. Biomech. 2019, 65, 81–86. [Google Scholar] [CrossRef]
- Sy, N.; Borysov, M.; Moramarco, M.; Nan, X.F.; Weiss, H.R. Bracing Scoliosis—State of the Art (Mini-Review). Curr. Pediatr. Rev. 2016, 12, 36–42. [Google Scholar] [CrossRef]
- Park, Y.H.; Park, Y.S.; Lee, Y.T.; Shin, H.S.; Oh, M.K.; Hong, J.; Lee, K.Y. The effect of a core exercise program on Cobb angle and back muscle activity in male students with functional scoliosis: A prospective, randomized, parallel-group, comparative study. J. Int. Med. Res. 2016, 44, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Lafage, V.; Boyce, R.; Skalli, W.; Farcy, J.P. Gravity line analysis in adult volunteers: Age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 2006, 31, E959–E967. [Google Scholar] [CrossRef] [PubMed]
- Haddas, R.; Satin, A.; Lieberman, I. What is actually happening inside the “cone of economy”: Compensatory mechanisms during a dynamic balance test. Eur. Spine J. 2020, 29, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
Total | CB− | CB+ | CIB− | CIB+ | p-Value * | |
---|---|---|---|---|---|---|
Number | 80 | 10 | 46 | 10 | 14 | - |
Age (years) | 25.97 ± 9.20 (18–45) | 25.70 ± 6.96 | 24.96 ± 8.14 | 27.20 ± 7.88 | 29.50 ± 10.98 | 0.3648 |
Gender (M/F) | 22/58 | 1/9 | 14/32 | 2/8 | 5/9 | 0.1755 |
Height (cm) | 154.51 ± 8.35 | 160.75 ± 5.12 | 155.31 ± 8.92 | 150.10 ± 12.45 | 151.25 ± 6.34 | 0.2936 |
Weight (kg) | 49.88 ± 7.68 | 54.38 ± 8.70 | 51.50 ± 9.50 | 49.10 ± 9.03 | 48.54 ± 8.01 | 0.8214 |
Preop Cobb Angle (°) | 107.25 ± 21.11 | 99.02 ± 14.88 | 105.77 ± 20.84 | 115.03 ± 15.21 | 112.43 ± 25.88 | 0.2588 |
Preop CBD (mm) | 20.05 ± 21.36 | 6.53 ± 4.95 | 9.38 ± 4.75 | 59.78 ± 18.08 | 36.38 ± 19.58 | <0.0001 |
Follow-up (year) | 3.76 ± 1.38 (2–8) | 3.98 ± 1.48 | 3.62 ± 1.30 | 3.68 ± 1.14 | 4.11 ± 1.63 | 0.6401 |
CB− | CB+ | CIB− | CIB+ | p-Value * | |
---|---|---|---|---|---|
Number (%) | 10 | 46 | 10 | 14 | - |
Preop Cobb Angle (°) | 99.02 ± 14.88 | 105.77 ± 20.84 | 115.03 ± 15.21 | 112.43 ± 25.88 | 0.2588 |
Postop Cobb Angle (°) | 54.09 ± 24.01 | 48.79 ± 24.05 | 65.52 ± 15.52 | 54.17 ± 25.56 | 0.2357 |
Fusion levels | 12.20 ± 1.08 | 11.78 ± 1.39 | 13.30 ± 1.55 | 12.93 ± 1.71 | 0.0061 |
Preop CBD (mm) | 6.53 ± 4.95 | 9.38 ± 4.75 | 59.78 ± 18.08 | 36.38 ± 19.58 | <0.0001 |
△CBD (postop minus preop, − improvement, + aggravation) (mm) | +24.50 ± 19.77 | +10.79 ± 14.01 | −28.26 ± 19.39 | −1.04 ± 15.97 | <0.0001 |
△CBD (FU minus preop, − improvement, + aggravation) (mm) | +11.23 ± 9.64 | +3.78 ± 12.07 | −29.34 ± 14.59 | −8.31 ± 13.62 | <0.0001 |
Preop | CB− | CB+ | CIB− | CIB+ |
---|---|---|---|---|
Number (%) | 10 | 46 | 10 | 14 |
Postop CIB | 7 (70%) | 23 (50%) | 6 (60%) | 9 (64.29%) |
Final follow-up CIB | 4 (40%) | 13 (28.26%) | 6 (60%) | 10 (71.43%) |
CB− | CB+ | CIB− | CIB+ | p1 | p2 | |
---|---|---|---|---|---|---|
VAS Back Pain | 2.00 (1.29) | 2.40 (2.08) | 0.67 (0.94) | 2.00 (1.30) | 0.56 | 0.01 * |
VAS Leg Pain | 0.83 (0.69) | 0.80 (1.63) | 0.67 (0.94) | 0.3 (0.47) | 0.95 | 0.22 |
ODI% | 7 (6) | 10 (9) | 5 (5) | 13 (16) | 0.32 | 0.14 |
Function/Activity | 4.2 (0.38) | 4.0 (0.54) | 3.8 (0.34) | 4.2 (0.63) | 0.27 | 0.08 |
Pain | 4.1 (0.52) | 4.3 (0.30) | 4.0 (0.36) | 4.5 (0.43) | 0.10 | 0.01 * |
Self-image/Appearance | 4.2 (0.43) | 3.9 (0.85) | 4.0 (0.56) | 4.1 (0.38) | 0.28 | 0.61 |
Mental health | 4.0 (0.38) | 4.1 (0.46) | 4.4 (0.32) | 4.5 (0.41) | 0.52 | 0.53 |
Satisfaction with management | 3.9 (0.87) | 3.8 (0.94) | 3.7 (0.45) | 4.0 (0.32) | 0.76 | 0.07 |
SF-36 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
PF | RP | BP | GH | VT | SF | RE | MH | HT | Total | |
CB− | 87.50 (4.79) | 100 (0.00) | 83.33 (8.69) | 70.83 (13.48) | 69.17 (7.31) | 118.75 (9.55) | 88.89 (15.71) | 73.33 (12.15) | 75.00 (25.00) | 766.81 (71.17) |
CB+ | 84.25 (16.07) | 60.00 (39.84) | 85.80 (14.18) | 67.05 (25.75) | 63.50 (15.34) | 109.38 (19.31) | 71.67 (38.41) | 69.20 (18.85) | 75.00 (23.72) | 685.84 (158.39) |
CIB− | 83.33 (4.71) | 58.33 (31.18) | 79.33 (4.11) | 68.00 (17.38) | 56.67 (14.34) | 95.83 (15.59) | 55.56 (41.57) | 58.67 (18.57) | 66.67 (23.57) | 622.39 (88.15) |
CIB+ | 88.33 (7.45) | 87.50 (27.95) | 80.67 (16.68) | 68.00 (17.99) | 60.00 (25.66) | 89.58 (26.43) | 61.11 (40.45) | 62.67 (22.94) | 66.67 (27.64) | 664.53 (146.81) |
p-value | 0.88 | 0.07 | 0.78 | 0.99 | 0.69 | 0.50 | 0.50 | 0.62 | 0.86 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, A.; Hai, Y.; Lenke, L.G.; Zheng, Z.; Yang, J. Apical Vertebras Distribution Modifier for Coronal Balance Classification in Adult Idiopathic Scoliosis. J. Pers. Med. 2023, 13, 897. https://doi.org/10.3390/jpm13060897
Pan A, Hai Y, Lenke LG, Zheng Z, Yang J. Apical Vertebras Distribution Modifier for Coronal Balance Classification in Adult Idiopathic Scoliosis. Journal of Personalized Medicine. 2023; 13(6):897. https://doi.org/10.3390/jpm13060897
Chicago/Turabian StylePan, Aixing, Yong Hai, Lawrence G. Lenke, Zhaomin Zheng, and Jincai Yang. 2023. "Apical Vertebras Distribution Modifier for Coronal Balance Classification in Adult Idiopathic Scoliosis" Journal of Personalized Medicine 13, no. 6: 897. https://doi.org/10.3390/jpm13060897