Challenges of E-Learning: Behavioral Intention of Academicians to Use E-Learning during COVID-19 Crisis
Abstract
:1. Introduction
1.1. Literature Review
1.1.1. Technology Acceptance Model (TAM)
1.1.2. External Factors (Self-Efficacy, System Accessibility, and Subjective Norm)
1.1.3. Perceived Ease of Use (PEU) and Perceived Usefulness (PU)
1.1.4. Attitude (Towards Use)
1.1.5. Hypotheses Development
2. Materials and Methods
2.1. Data Collection Procedure and Sampling
2.2. Measurements
3. Results
3.1. Assessment of Measurement Model
3.2. Assessment of Structural Model
4. Discussion
Theoretical and Practical Implication
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The World Bank. World Bank Education and COVID-19. Available online: https://www.worldbank.org/en/data/interactive/2020/03/24/world-bank-education-and-covid-19 (accessed on 4 April 2021).
- UNESCO. COVID-19 Educational Disruption and Response. Available online: https://en.unesco.org/covid19/educationresponse (accessed on 4 April 2021).
- Ansong, E.; Lovia Boateng, S.; Boateng, R. Determinants of e-learning adoption in universities: Evidence from a developing country. J. Educ. Technol. Syst. 2017, 46, 30–60. [Google Scholar] [CrossRef]
- Karkar, A.J.; Fatlawi, H.K.; Al-Jobouri, A.A. Highlighting e-learning adoption challenges using data analysis techniques: University of Kufa as a case study. Electron. J. e-Learn. 2020, 18, 136–149. [Google Scholar] [CrossRef]
- Brush, T.; Glazewski, K.D.; Hew, K.F. Development of an instrument to measure preservice teachers’ technology skills, technology beliefs, and technology barriers. Comput. Sch. 2008, 25, 112–125. [Google Scholar] [CrossRef]
- Anupama, L. A comparative study on e-learning environment for corporate training in a public and private sector bank. Int. J. Res. Econ. Soc. Sci. 2018, 8, 755–767. [Google Scholar]
- Soumitra, C. “e–Learning in India” its prospects and challenges. Int. J. Res. Econ. Soc. Sci. 2014, 4, 250–259. [Google Scholar]
- Pradeepa, D.; Valarmady, A.; Nithyanandam, K. E-Learning Types, Opportunities and Skills. J. Adv. Res. Dyn. Control Syst. 2006, 11, 670–672. [Google Scholar]
- Goyal, S. E-Learning: Future of education. J. Educ. Learn. 2012, 6, 239–242. [Google Scholar] [CrossRef]
- Singh, P.P.; Sharma, S. E-Learning: New Trends and Innovations, 1st ed.; Deep and Deep Publication Pvt. Ltd.: New Delhi, India, 2005; pp. 133–147. [Google Scholar]
- Pirani, J. Supporting E-Learning in Higher Education. 2004. Available online: http://net.educause.edu/ir/library/pdf/ERS0303/ecm0303.pdf (accessed on 16 April 2021).
- Ahmad, K.; Jo, S. Implementing e-learning in the Jordanian Higher Education System: Factors affecting impact. Int. J. Educ. Dev. Using Inf. Commun. Technol. 2012, 8, 121–135. [Google Scholar]
- Salloum, S.A. Investigating Students’ Acceptance of E-Learning System in Higher Educational Environments in the UAE: Applying the Extended Technology Acceptance Model (TAM). Ph.D. Thesis, The British University, Dubai, United Arab Emirates, September 2018. [Google Scholar]
- Al-Rahmi, W.M.; Alias, N.; Othman, M.S.; Alzahrani, A.I.; Alfarraj, O.; Saged, A.A.; Rahman, N.S. Use of e-learning by university students in Malaysian higher educational institutions: A case in University Technology Malaysia. IEEE Access 2018, 6, 14268–14276. [Google Scholar] [CrossRef]
- Alamri, M.M.; Al-Rahmi, W.M.; Yahaya, N.; Al-Rahmi, A.M.; Abualrejal, H.; Zeki, A.M.; Al-Maatouk, Q. Towards adaptive e-learning among university students: By applying technology acceptance model (TAM). Int. J. Eng. Adv. Technol. 2019, 8, 270–276. [Google Scholar]
- Elkaseh, A.M.; Wong, K.W.; Fung, C.C. Perceived ease of use and perceived usefulness of social media for e-learning in Libyan higher education: A structural equation modeling analysis. Int. J. Inf. Educ. Technol. 2016, 6, 192. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Torres, M.D.; Toral Marín, S.L.; García, F.B.; Vazquez, S.G.; Oliva, M.A.; Torres, T. A technological acceptance of e-learning tools used in practical and laboratory teaching, according to the European higher education area. Behav. Inf. Technol. 2008, 27, 495–505. [Google Scholar] [CrossRef]
- Alghizzawi, M.; Habes, M.; Salloum, S.A.; Ghani, M.A.; Mhamdi, C.; Shaalan, K. The effect of social media usage on students-learning acceptance in higher education: A case study from the United Arab Emirates. Int. J. Inf. Technol. Lang. Stud. 2019, 3, 13–26. [Google Scholar]
- Maatuk, A.M.; Elberkawi, E.K.; Aljawarneh, S.; Rashaideh, H.; Alharbi, H. The COVID-19 pandemic and E-learning: Challenges and opportunities from the perspective of students and instructors. J. Comput. High. Educ. 2022, 34, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Almaiah, M.A.; Al-Khasawneh, A.; Althunibat, A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Educ. Inf. Technol. 2020, 25, 5261–5280. [Google Scholar] [CrossRef]
- Mahyoob, M. Challenges of e-Learning during the COVID-19 Pandemic Experienced by EFL Learners. Arab. World Engl. J. 2020, 11, 351–362. [Google Scholar] [CrossRef]
- Nguyen, M.; Fujioka, J.; Wentlandt, K.; Onabajo, N.; Wong, I.; Bhatia, R.S.; Bhattacharyya, O.; Stamenova, V. Using the technology acceptance model to explore health provider and administrator perceptions of the usefulness and ease of using technology in palliative care. BMC Palliat. Care 2020, 19, 138. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Elmahdi, A.E.; Abdelmonem, A.M.; Haralur, S.B.; Alqahtani, N.M.; Suleman, G.; Sharif, R.A.; Gurumurthy, V.; Alfarsi, M.A. Predoctoral dental implant education techniques-students’ perception and attitude. J. Dent. Educ. 2021, 85, 392–400. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, C. Empirical study on continuance intentions towards E-Learning 2.0 systems. Behav. Inf. Technol. 2014, 33, 1027–1038. [Google Scholar] [CrossRef]
- Scherer, R.; Siddiq, F.; Tondeur, J. The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Comput. Educ. 2019, 128, 13–35. [Google Scholar] [CrossRef]
- Becker, D. Acceptance of mobile mental health treatment applications. Procedia Comput. Sci. 2016, 58, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Bandura, A. Self-Efficacy. In The Corsini Encyclopedia of Psychology; Weiner, I.B., Craighead, W.E., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 1–3. [Google Scholar]
- Malureanu, A.; Panisoara, G.; Lazar, I. The relationship between self-confidence, self-efficacy, grit, usefulness, and ease of use of elearning platforms in corporate training during the COVID-19 pandemic. Sustainability 2021, 13, 6633. [Google Scholar] [CrossRef]
- Reddy, L.K.V.; Madithati, P.; Narapureddy, B.R.; Ravula, S.R.; Vaddamanu, S.K.; Alhamoudi, F.H.; Minervini, G.; Chaturvedi, S. Perception about Health Applications (Apps) in Smartphones towards Telemedicine during COVID-19: A Cross-Sectional Study. J. Pers. Med. 2022, 12, 1920. [Google Scholar] [CrossRef] [PubMed]
- Abouzeid, H.L.; Chaturvedi, S.; Abdelaziz, K.M.; Alzahrani, F.A.; AlQarni, A.A.S.; Alqahtani, N.M. Role of Robotics and Artificial Intelligence in Oral Health and Preventive Dentistry-Knowledge, Perception and Attitude of Dentists. Oral Health Prev. Dent. 2021, 19, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Baumann, S.; Gaertner, B.; Schnuerer, I.; Haberecht, K.; John, U.; Freyer-Adam, J. Belief incongruence and the intention-behavior gap in persons with at-risk alcohol use. Addict. Behav. 2015, 48, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Haralur, S.B.; Majeed, M.I.; Afzal, M.; Chaturvedi, S. Association of sociodemographic factors and emotional intelligence with academic performance in clinical and preclinical dental courses. Niger. J. Clin. Pract. 2019, 22, 1109–1114. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univ. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- Karahanna, E.; Straub, D.W. The psychological origins of perceived usefulness and ease-of-use. Inf. Manag. 1999, 35, 237–250. [Google Scholar] [CrossRef]
- Schermerhorn, J.R., Jr.; Osborn, R.N.; Uhl-Bien, M.; Hunt, J.G. Organizational Behavior; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Abouzeid, H.L.; Chaturvedi, S.; Ahmed Alzahrani, F.; Alqahtani, N.M.; Salim AlQarni, A.A.; Alaajam, W.H.; Elsir Elmahdi, A. A cross-sectional survey to evaluate acquaintance about dental photography among dental students in daily clinical practice. J. Public Health Res. 2020, 9, 1866. [Google Scholar] [CrossRef]
- Yang, H.D.; Yoo, Y. It’s all about attitude: Revisiting the technology acceptance model. Decis. Support Syst. 2004, 38, 19–31. [Google Scholar] [CrossRef]
- Mailizar, M.; Almanthari, A.; Maulina, S. Examining teachers’ behavioral intention to use E-learning in teaching of mathematics: An extended TAM model. Contemp. Educ. Technol. 2021, 13, 298. [Google Scholar] [CrossRef] [PubMed]
- Ansong-Gyimah, K. Students’ Perceptions and Continuous Intention to Use E-Learning Systems: The Case of Google Classroom. Int. J. Emerg. Technol. Learn. 2020, 15, 236–244. [Google Scholar] [CrossRef]
- Mailizar, M.; Burg, D.; Maulina, S. Examining university students’ behavioural intention to use e-learning during the COVID-19 pandemic: An extended TAM model. Educ. Inf. Technol. 2021, 26, 7057–7077. [Google Scholar] [CrossRef]
- Al-Rahmi, W.M.; Yahaya, N.; Aldraiweesh, A.A.; Alamri, M.M.; Aljarboa, N.A.; Alturki, U.; Aljeraiwi, A.A. Integrating technology acceptance model with innovation diffusion theory: An empirical investigation on students’ intention to use E-learning systems. IEEE Access 2019, 7, 26797–26809. [Google Scholar] [CrossRef]
- Higgins, J.P. Smartphone Applications for Patients’ Health and Fitness. Am. J. Med. 2016, 129, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Ying-Hsiang, C.; Chung-Hung, T.; Yu-Li, L.; Chang-Shu, T. The effect of organizational support, self efficacy, and computer anxiety on the usage intention of e-learning system in hospital. Afr. J. Bus. Manag. 2011, 5, 5518–5523. [Google Scholar]
- Vinnikova, A.; Lu, L.; Wei, J.; Fang, G.; Yan, J. The Use of Smartphone Fitness Applications: The Role of Self-Efficacy and Self-Regulation. Int. J. Environ. Res. Public Health 2020, 17, 7639. [Google Scholar] [CrossRef]
- Culnan, M.J. The dimensions of accessibility to online information: Implications for implementing office information systems. ACM Trans. Inf. Syst. (TOIS) 1984, 2, 141–150. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hsiao, C.; Purnomo, S.H. An empirical examination of individual and system characteristics on enhancing e-learning acceptance. Australas. J. Educ. Technol. 2014, 30, 562–579. [Google Scholar] [CrossRef]
- Park, S.Y. An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning. J. Educ. Technol. Soc. 2009, 12, 150–162. [Google Scholar]
- Suki, N.M.; Suki, N.M. Exploring the relationship between perceived usefulness, perceived ease of use, perceived enjoyment, attitude and subscribers’ intention towards using 3G mobile services. J. Inf. Technol. Manag. 2011, 22, 1–7. [Google Scholar]
- Gajanayake, R.; Sahama, T.; Iannella, R. The role of perceived usefulness and attitude on electronic health record acceptance. In Proceedings of the 15th International Conference on E-Health Networking, Applications and Services (Healthcom 2013), Lisbon, Portugal, 9–12 October 2013. [Google Scholar]
- Manda, E.F.; Salim, R. Analysis of the influence of perceived usefulness, perceived ease of use and attitude toward using technology on actual to use Halodoc application using the technology acceptance model (TAM) method approach. Int. Res. J. Adv. Eng. Sci. 2021, 6, 135–140. [Google Scholar]
- Guritno, S.; Siringoringo, H. Perceived usefulness, ease of use, and attitude towards online shopping usefulness towards online airlines ticket purchase. Procedia-Soc. Behav. Sci. 2013, 81, 212–216. [Google Scholar]
- Seyal, A.; Rahman, M.N. Student Use of the Internet: An extension of TAM in technical and vocational institutions in Brunei Darussalam. Australas. J. Inf. Syst. 2003, 10, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, S.; Addas, M.K.; Alqahtani, N.M.; Al Ahmari, N.M.; Alfarsi, M.A. Computerized occlusal forces analysis in complete dentures fabricated by additive and subtractive techniques. Technol. Health Care 2021, 29, 781–795. [Google Scholar] [CrossRef]
- Nair, U.P.; Shivamurthy, R.; Nagate, R.R.; Chaturvedi, S.; Al-Qahtani, S.M.; Magbol, M.A.; Gokhale, S.T.; Tikare, S.; Chaturvedi, M. Effect of Injectable Platelet-Rich Fibrin with a Nano-Hydroxyapatite Bone Graft on the Treatment of a Grade II Furcation Defect. Bioengineering 2022, 9, 602. [Google Scholar] [CrossRef]
- Alobaid, M.A.; Alshahrani, E.M.; Alshehri, E.M.; Shaiban, A.S.; Haralur, S.B.; Chaturvedi, S.; Addas, M.K. Radiographic assessment of root canal morphology of mandibular central incisors using new classification system: A cross-sectional study. Medicine 2022, 101, e30751. [Google Scholar] [CrossRef]
- Rajput, G.; Ahmed, S.; Chaturvedi, S.; Addas, M.K.; Bhagat, T.V.; Gurumurthy, V.; Alqahtani, S.M.; Alobaid, M.A.; Alsubaiy, E.F.; Gupta, K. Comparison of Microleakage in Nanocomposite and Amalgam as a Crown Foundation Material Luted with Different Luting Cements under CAD-CAM Milled Metal Crowns: An In Vitro Microscopic Study. Polymers 2022, 14, 2609. [Google Scholar] [CrossRef]
- Mittal, P.; Gokhale, S.T.; Manjunath, S.; Al-Qahtani, S.M.; Magbol, M.A.; Nagate, R.R.; Tikare, S.; Chaturvedi, S.; Agarwal, A.; Venkataram, V. Comparative Evaluation of Locally Administered 2% Gel Fabricated from Lemongrass Polymer and 10% Doxycycline Hyclate Gel as an Adjunct to Scaling and Root Planing in the Treatment of Chronic Periodontitis—A Randomized Controlled Trial. Polymers 2022, 14, 2766. [Google Scholar] [CrossRef]
- Nadim, J.; Noorjahan, B. The role of perceived usefulness, perceived ease of use, security and privacy, and customer attitude to engender customer adaptation in the context of electronic banking. Afr. J. Bus. Manag. 2008, 2, 032–040. [Google Scholar]
- Sekaran, U.; Bougie, R. Research Methods for Business: A Skill Building Approach, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 300–329. [Google Scholar]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; pp. 655–690. [Google Scholar]
- Reinartz, W.; Haenlein, M.; Henseler, J. An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int. J. Res. Mark. 2009, 26, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Nam, M.W.; Cha, S.B. University students’ behavioral intention to use mobile learning: Evaluating the technology acceptance model. Br. J. Educ. Technol. 2012, 43, 592–605. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. Testing measurement invariance of composites using partial least squares. Int. Mark. Rev. 2016, 33, 405–431. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. Advanced Issues in Partial Least Squares Structural Equation Modeling, 1st ed.; SAGE publications: Thousand Oaks, CA, USA, 2017; pp. 37–87. [Google Scholar]
- Ozturk, A.B.; Bilgihan, A.; Nusair, K.; Okumus, F. What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. Int. J. Inf. Manag. 2016, 36, 1350–1359. [Google Scholar] [CrossRef]
- Jeng, R.; Tseng, S.M. The relative importance of computer self-efficacy, perceived ease-of-use and reducing search cost in determining consumers’ online group-buying intention. Int. J. Hum. Technol. Interact. 2018, 2, 1–2. [Google Scholar]
- Mutahar, A.M.; Daud, N.M.; Thurasamy, R.; Isaac, O.; Abdulsalam, R. The mediating of perceived usefulness and perceived ease of use: The case of mobile banking in Yemen. Int. J. Technol. Diffus. 2018, 9, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, F.; Ward, R.; Ahmed, E. Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Comput. Hum. Behav. 2016, 63, 75–90. [Google Scholar] [CrossRef]
- Izuagbe, R.; Ifijeh, G.; Izuagbe-Roland, E.I.; Olawoyin, O.R.; Ogiamien, L.O. Determinants of perceived usefulness of social media in university libraries: Subjective norm, image and voluntariness as indicators. J. Acad. Librariansh. 2019, 45, 394–405. [Google Scholar] [CrossRef]
- Perangin-angin, W.A.; Respati, A.D.; Kusumawati, M.D. Pengaruh perceived usefulness dan perceived ease of use terhadap attitude toward using e-faktur. J. Ris. Ekon. Dan Manaj. 2018, 16, 307–322. [Google Scholar] [CrossRef] [Green Version]
- Saadé, R.; Bahli, B. The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model. Inf. Manag. 2005, 42, 317–327. [Google Scholar] [CrossRef]
- Moses, P.; Wong, S.L.; Bakar, K.A.; Mahmud, R. Perceived usefulness and perceived ease of use: Antecedents of attitude towards laptop use among science and mathematics teachers in Malaysia. Asia-Pac. Educ. Res. 2013, 22, 293–299. [Google Scholar] [CrossRef]
- Islami, M.M.; Asdar, M.; Baumassepe, A.N. Analysis of Perceived Usefulness and Perceived Ease of Use to the Actual System Usage through Attitude Using Online Guidance Application. Hasanuddin J. Bus. Strategy 2021, 3, 52–64. [Google Scholar] [CrossRef]
- Dutot, V.; Bhatiasevi, V.; Bellallahom, N. Applying the technology acceptance model in a three-countries study of smartwatch adoption. J. High Technol. Manag. Res. 2019, 30, 1–4. [Google Scholar] [CrossRef]
- Teo, T. Is there an attitude problem? Reconsidering the role of attitude in the TAM. Br. J. Educ. Technol. 2009, 40, 1139–1141. [Google Scholar] [CrossRef]
- Thompson, R.L.; Higgins, C.A.; Howell, J.M. Personal computing: Toward a conceptual model of utilization. MIS Q. 1991, 15, 125–143. [Google Scholar] [CrossRef]
- Al-hawari, M.A.; Mouakket, S. The influence of technology acceptance model (TAM) factors on students’e-satisfaction and e-retention within the context of UAE e-learning. Educ. Bus. Soc. Contemp. Middle East. Issues 2010, 3, 299–314. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Alqahtani, T.; Alsolami, S.; Alqahtani, A.; Das, G.; Alsubaiy, E. Fracture resistance of CAD-CAM all-ceramic surveyed crowns with different occlusal rest seat designs. J. Adv. Prosthodont. 2021, 13, 36–45. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Addas, M.K.; Alqahtani, N.M.; Al Ahmari, N.M.; Alfarsi, M.A. Clinical analysis of CAD-CAM milled and printed complete dentures using computerized occlusal force analyser. Technol. Health Care 2021, 29, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Alsubaiy, E.F.; Chaturvedi, S.; Qutub, O.A.; Mously, H.A.; Zarbah, M.A.; Haralur, S.B.; Bhagat, T.V. Novel CAD-CAM zirconia coping design to enhance the aesthetics and strength for anterior PLZ crowns. Technol. Health Care 2021, 29, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.; Leng, N.S.; Yusoff, R.C.; Samy, G.N.; Masrom, S.; Rizman, Z.I. E-learning acceptance based on technology acceptance model (TAM). J. Fundam. Appl. Sci. 2017, 9 (Suppl. S4), 871–889. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Chaturvedi, S.; Ali, M.; Pandey, K.K.; Alqahtani, N.M.; Alfarsi, M.A.; Addas, M.K.; Vaddamanu, S.K.; Al Ahmari, N.M.; Alqahtani, S.M.; et al. Dimensional Stability of Light-Activated Urethane Dimethacrylate Denture Base Resins. Polymers 2023, 15, 744. [Google Scholar] [CrossRef]
- Rai, J.J.; Chaturvedi, S.; Gokhale, S.T.; Nagate, R.R.; Al-Qahtani, S.M.; Magbol, M.A.; Bavabeedu, S.S.; Elagib, M.F.A.; Venkataram, V.; Chaturvedi, M. Effectiveness of a Single Chair Side Application of NovaMin® [Calcium Sodium Phosphosilicate] in the Treatment of Dentine Hypersensitivity following Ultrasonic Scaling—A Randomized Controlled Trial. Materials 2023, 16, 1329. [Google Scholar] [CrossRef] [PubMed]
- Vaddamanu, S.K.; Alhamoudi, F.H.; Chaturvedi, S.; Alqahtani, N.M.; Addas, M.K.; Alfarsi, M.A.; Vyas, R.; Kanji, M.A.; Zarbah, M.A.; Alqahtani, W.M.S.; et al. Retentive Forces and Deformation of Fitting Surface in RPD Clasp Made of Polyether-Ether-Ketone (PEEK). Polymers 2023, 15, 956. [Google Scholar] [CrossRef] [PubMed]
- Rathi, S.; Chaturvedi, S.; Abdullah, S.; Rajput, G.; Alqahtani, N.M.; Chaturvedi, M.; Gurumurthy, V.; Saini, R.; Bavabeedu, S.S.; Minervini, G. Clinical Trial to Assess Physiology and Activity of Masticatory Muscles of Complete Denture Wearer Following Vitamin D Intervention. Medicina 2023, 59, 410. [Google Scholar] [CrossRef]
- Mohammadi, H. Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Comput. Hum. Behav. 2015, 45, 359–374. [Google Scholar] [CrossRef]
- Kaur, K.; Suneja, B.; Jodhka, S.; Saini, R.S.; Chaturvedi, S.; Bavabeedu, S.S.; Alhamoudi, F.H.; Cicciù, M.; Minervini, G. Comparison between Restorative Materials for Pulpotomised Deciduous Molars: A Randomized Clinical Study. Children 2023, 10, 284. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Badnjevic, A. Evidence-based maintenance of medical devices: Current shortage and pathway towards solution. Technol. Health Care 2023, 31, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, B.; Nadri, H.; Lotfnezhad Afshar, H.; Timpka, T. A Systematic Review of the Technology Acceptance Model in Health Informatics. Appl. Clin. Inform. 2018, 9, 604–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammenwerth, E. Technology Acceptance Models in Health Informatics: TAM and UTAUT. Stud. Health Technol. Inform. 2019, 263, 64–71. [Google Scholar] [PubMed]
- Elagib, M.F.A.; Alqaysi, M.A.H.; Almushayt, M.O.S.; Nagate, R.R.; Gokhale, S.; Chaturvedi, S. Dental implants in growing patients: A systematic review and meta-analysis. Technol. Health Care 2022. ahead of print. [Google Scholar] [CrossRef]
- Tarhini, A.; Hone, K.; Liu, X. Extending the TAM model to empirically investigate the students’ behavioural intention to use e-learning in developing countries. In Proceedings of the 2013 Science and Information Conference, London, UK, 7–9 October 2013; pp. 732–737. [Google Scholar]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191. [Google Scholar] [CrossRef]
Categories | Category | Number | Percent (%) |
---|---|---|---|
Nationality | Non-Saudi | 200 | 76 |
Saudi | 63 | 24 | |
Gender | Male | 166 | 63 |
Female | 97 | 37 | |
Age group (Years) | 26–35 | 83 | 31 |
36–45 | 146 | 56 | |
46–55 | 34 | 13 | |
Education | Ph.D. | 161 | 61 |
Masters | 102 | 39 | |
Experience (years) | 0–5 | 58 | 22 |
6–10 | 122 | 46 | |
11–20 | 78 | 30 | |
21 and more | 5 | 2 |
Latent Variable | Mean | SD | Factor Loading | CR | AVE |
---|---|---|---|---|---|
Self-efficacy (SE) | 3.743 | 0.728 | 0.925 | 0.861 | |
SE1 | 0.912 | ||||
SE2 | 0.836 | ||||
SE3 | 0.924 | ||||
SE4 | 0.823 | ||||
System accessibility (SA) | 3.768 | 0.757 | 0.921 | 0.754 | |
SA1 | 0.879 | ||||
SA2 | 0.970 | ||||
SA3 | 0.838 | ||||
Subjective norms (SN) | 3.938 | 0.787 | 0.948 | 0.82 | |
SN1 | 0.921 | ||||
SN2 | 0.933 | ||||
SN3 | 0.827 | ||||
Perceived usefulness (PU) | 3.773 | 0.673 | 0.933 | 0.776 | |
PU1 | 0.902 | ||||
PU2 | 0.839 | ||||
PU3 | 0.843 | ||||
PU4 | 0.857 | ||||
Perceived ease of use (PEU) | 3.564 | 0.535 | 0.868 | 0.628 | |
PEU1 | 0.867 | ||||
PEU2 | 0.896 | ||||
PEU3 | 0.524 | ||||
Attitude (AT) | 3.238 | 0.578 | 0.871 | 0.628 | |
AT1 | 0.883 | ||||
AT2 | 0.796 | ||||
AT3 | 0.861 | ||||
Behavioural Intention (BI) | 3.978 | 0.643 | 0.856 | 0.754 | |
BI1 | 0.865 | ||||
BI2 | 0.886 | ||||
BI3 | 0.754 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
---|---|---|---|---|---|---|---|---|
1 | Self-efficacy | |||||||
2 | System accessibility | 0.63 | ||||||
3 | Subjective norms | 0.603 | 0.539 | |||||
4 | Perceived usefulness | 0.748 | 0.665 | 0.663 | ||||
5 | Perceived ease of use | 0.502 | 0.548 | 0.73 | 0.678 | |||
6 | Attitude | 0.869 | 0.611 | 0.683 | 0.826 | 0.676 | ||
7 | Behavioural Intention | 0.593 | 0.784 | 0.448 | 0.689 | 0.778 | 0.638 |
Hypo Thesis | Relationship | Beta | SE | T-Value | p-Value | Decision |
---|---|---|---|---|---|---|
H1 | Self-efficacy -> Perceived usefulness | 0.143 | 0.086 | 1.654 | 0.048 | Supported |
H2 | Self-efficacy -> Perceived ease of use | 0.057 | 0.093 | 0.631 | 0.266 | Not supported |
H3 | System accessibility -> Perceived usefulness | 0.283 | 0.087 | 3.215 | 0.001 | Supported |
H4 | System accessibility -> Perceived ease of use | 0.247 | 0.087 | 2.804 | 0.004 | Supported |
H5 | Subjective Norms -> Perceived usefulness | −0.065 | 0.087 | 0.723 | 0.234 | Not supported |
H6 | Subjective Norms -> Perceived ease of use | −0.012 | 0.094 | 0.124 | 0.452 | Not supported |
H7 | Perceived usefulness -> Attitude | 0.168 | 0.081 | 2.058 | 0.030 | Supported |
H8 | Perceived ease of use -> Attitude | 0.556 | 0.067 | 8.104 | 0.000 | Supported |
H9 | Attitude -> Intention to use | 0.262 | 0.085 | 3.024 | 0.001 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.J.; Reddy, L.K.V.; Khan, J.; Narapureddy, B.R.; Vaddamanu, S.K.; Alhamoudi, F.H.; Vyas, R.; Gurumurthy, V.; Altijani, A.A.G.; Chaturvedi, S. Challenges of E-Learning: Behavioral Intention of Academicians to Use E-Learning during COVID-19 Crisis. J. Pers. Med. 2023, 13, 555. https://doi.org/10.3390/jpm13030555
Khan MJ, Reddy LKV, Khan J, Narapureddy BR, Vaddamanu SK, Alhamoudi FH, Vyas R, Gurumurthy V, Altijani AAG, Chaturvedi S. Challenges of E-Learning: Behavioral Intention of Academicians to Use E-Learning during COVID-19 Crisis. Journal of Personalized Medicine. 2023; 13(3):555. https://doi.org/10.3390/jpm13030555
Chicago/Turabian StyleKhan, Mohammad Jamal, Lingala Kalyan Viswanath Reddy, Javed Khan, Bayapa Reddy Narapureddy, Sunil Kumar Vaddamanu, Fahad Hussain Alhamoudi, Rajesh Vyas, Vishwanath Gurumurthy, Abdelrhman Ahmed Galaleldin Altijani, and Saurabh Chaturvedi. 2023. "Challenges of E-Learning: Behavioral Intention of Academicians to Use E-Learning during COVID-19 Crisis" Journal of Personalized Medicine 13, no. 3: 555. https://doi.org/10.3390/jpm13030555