The Prognostic Significance of FOXD1 Expression in Head and Neck Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Samples
2.2. Tissue Microarray (TMA)
2.3. Immunohistochemistry
2.4. Evaluation of FOXD1 Expression
2.5. Statistical Analyses
2.6. Protein-Protein Interaction of FOXD1
3. Results
3.1. Patients Characteristics
3.2. Immunostaining of FOXD1
3.3. Correlation between Survival and FOXD1 Expression
3.4. Protein-Protein Interaction of FOXD1
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.N.; Faísca, P.; Ferreira, H.A.; Gaspar, M.M.; Reis, C.P. Current Insights and Progress in the Clinical Management of Head and Neck Cancer. Cancers 2022, 14, 6079. [Google Scholar] [CrossRef] [PubMed]
- Worsham, M.J. Identifying the risk factors for late-stage head and neck cancer. Expert Rev. Anticancer. Ther. 2011, 11, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.L.; Nishimoto, I.N.; Califano, J.A.; Kowalski, L.P. Trends in incidence and prognosis for head and neck cancer in the United States: A site-specific analysis of the SEER database. Int. J. Cancer 2005, 114, 806–816. [Google Scholar] [CrossRef]
- Sasahira, T.; Kirita, T.; Oue, N.; Bhawal, U.K.; Yamamoto, K.; Fujii, K.; Ohmori, H.; Luo, Y.; Yasui, W.; Bosserhoff, A.K.; et al. High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci. 2008, 99, 1806–1812. [Google Scholar] [CrossRef]
- Zheng, R.; Zhang, S.; Zeng, H.; Wang, S.; Sun, K.; Chen, R.; Li, L.; Wei, W.; He, J. Cancer incidence and mortality in China, 2016. J. Natl. Cancer Cent. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Sasahira, T.; Ueda, N.; Yamamoto, K.; Kurihara, M.; Matsushima, S.; Bhawal, U.K.; Kirita, T.; Kuniyasu, H. Prox1 and FOXC2 act as regulators of lymphangiogenesis and angiogenesis in oral squamous cell carcinoma. PLoS ONE 2014, 9, e92534. [Google Scholar] [CrossRef]
- Blot, W.J.; McLaughlin, J.K.; Winn, D.M.; Austin, D.F.; Greenberg, R.S.; Preston-Martin, S.; Bernstein, L.; Schoenberg, J.B.; Stemhagen, A.; Fraumeni, J.F. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988, 48, 3282–3287. [Google Scholar]
- Chen, S.W.; Li, S.H.; Shi, D.B.; Jiang, W.M.; Song, M.; Yang, A.K.; Li, Y.D.; Bei, J.X.; Chen, W.K.; Zhang, Q. Expression of PD-1/PD-L1 in head and neck squamous cell carcinoma and its clinical significance. Int. J. Biol. Markers 2019, 34, 398–405. [Google Scholar] [CrossRef]
- Hannenhalli, S.; Kaestner, K.H. The evolution of Fox genes and their role in development and disease. Nat. Rev. Genet. 2009, 10, 233–240. [Google Scholar] [CrossRef]
- Levinson, R.S.; Batourina, E.; Choi, C.; Vorontchikhina, M.; Kitajewski, J.; Mendelsohn, C. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 2005, 132, 529–539. [Google Scholar] [CrossRef]
- Carreres, M.I.; Escalante, A.; Murillo, B.; Chauvin, G.; Gaspar, P.; Vegar, C.; Herrera, E. Transcription factor Foxd1 is required for the specification of the temporal retina in mammals. J. Neurosci. 2011, 31, 5673–5681. [Google Scholar] [CrossRef]
- Golson, M.L.; Kaestner, K.H. Fox transcription factors: From development to disease. Development 2016, 143, 4558–4570. [Google Scholar] [CrossRef]
- Quintero-Ronderos, P.; Laissue, P. The multisystemic functions of FOXD1 in development and disease. J. Mol. Med. 2018, 96, 725–739. [Google Scholar] [CrossRef]
- Van der Heul-Nieuwenhuijsen, L.; Dits, N.F.; Jenster, G. Gene expression of forkhead transcription factors in the normal and diseased human prostate. BJU Int. 2009, 103, 1574–1580. [Google Scholar] [CrossRef]
- Zhao, Y.-F.; Zhao, J.-Y.; Yue, H.; Hu, K.-S.; Shen, H.; Guo, Z.-G.; Su, X.-J. FOXD1 promotes breast cancer proliferation and chemotherapeutic drug resistance by targeting p27. Biochem. Biophys. Res. Commun. 2015, 456, 232–237. [Google Scholar] [CrossRef]
- Li, D.; Fan, S.; Yu, F.; Zhu, X.; Song, Y.; Ye, M.; Fan, L.; Lv, Z. FOXD1 Promotes Cell Growth and Metastasis by Activation of Vimentin in NSCLC. Cell. Physiol. Biochem. 2018, 51, 2716–2731. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, C.; Lu, N.; Liu, Z.; Jin, C.; Sun, C.; Bu, H.; Yu, H.; Dongol, S.; Kong, B. FOXD1 is targeted by miR-30a-5p and miR-200a-5p and suppresses the proliferation of human ovarian carcinoma cells by promoting p21 expression in a p53-independent manner. Int. J. Oncol. 2018, 52, 2130–2142. [Google Scholar] [CrossRef]
- Chen, S.; Yang, M.; Wang, C.; Ouyang, Y.; Chen, X.; Bai, J.; Hu, Y.; Song, M.; Zhang, S.; Zhang, Q. Forkhead box D1 promotes EMT and chemoresistance by upregulating lncRNA CYTOR in oral squamous cell carcinoma. Cancer Lett. 2021, 503, 43–53. [Google Scholar] [CrossRef]
- Kononen, J.; Bubendorf, L.; Kallionimeni, A.; Bärlund, M.; Schraml, P.; Leighton, S.; Torhorst, J.; Mihatsch, M.J.; Sauter, G.; Kallionimeni, O.-P. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 1998, 4, 844–847. [Google Scholar] [CrossRef]
- Crowe, A.R.; Yue, W. Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc. 2019, 9, e3465. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-L.; Ma, Q.-L.; Huang, W.; Liu, X.; Qiu, L.-H.; Lin, P.; Long, H.; Zhang, L.-J.; Ma, G.-W. A prognostic model for stratification of stage IB/IIA esophageal squamous cell carcinoma: A retrospective study. BMC Gastroenterol. 2021, 21, 59. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qian, Z.; Li, F.; Li, J.; Lu, Y. Integrative Analysis of Microarray Data to Reveal Regulation Patterns in the Pathogenesis of Hepatocellular Carcinoma. Gut Liver 2017, 11, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-F.; Zhu, T.; Mao, X.-Y.; Mao, C.-X.; Li, L.; Yin, J.-Y.; Zhou, H.-H.; Liu, Z.-Q. Silencing of Forkhead box D1 inhibits proliferation and migration in glioma cells. Oncol. Rep. 2017, 37, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Yoo, B.C.; Kim, I.-J.; Kim, J.W.; Kim, S.C.; Lee, H.P. Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol. Res. 2009, 18, 47–56. [Google Scholar] [CrossRef]
- Nakayama, S.; Soejima, K.; Yasuda, H.; Yoda, S.; Satomi, R.; Ikemura, S.; Terai, H.; Sato, T.; Yamaguchi, N.; Hamamoto, J.; et al. FOXD1 expression is associated with poor prognosis in non-small cell lung cancer. Anticancer Res. 2015, 35, 261–268. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Huang, J.; Liang, B.; Wang, T. FOXD1 expression in head and neck squamous carcinoma: A study based on TCGA, GEO and meta-analysis. Biosci. Rep. 2021, 41, BSR20210158. [Google Scholar] [CrossRef]
- Li, J.; Yan, T.; Wu, X.; Ke, X.; Li, X.; Zhu, Y.; Yang, J.; Li, Z. Aberrant overexpression of transcription factor Forkhead box D1 predicts poor prognosis and promotes cancer progression in HNSCC. BMC Cancer 2021, 21, 1205. [Google Scholar] [CrossRef]
- Li, Z.; Yan, T.; Wu, X.; Zhang, W.; Li, J.; Wang, L.; Yang, J. Increased expression of FOXD1 is associated with cervical node metastasis and unfavorable prognosis in oral squamous cell carcinoma. J. Oral Pathol. Med. 2020, 49, 1030–1036. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, W.; Liu, K.; Shang, Z. FOXD1 promotes EMT and cell stemness of oral squamous cell carcinoma by transcriptional activation of SNAI2. Cell Biosci. 2021, 11, 154. [Google Scholar] [CrossRef]
- Zong, Y.; Miao, Y.; Li, W.; Zheng, M.; Xu, Z.; Gao, H.; Feng, W.; Xu, Z.; Zhao, J.; Shen, L.; et al. Combination of FOXD1 and Plk2: A novel biomarker for predicting unfavourable prognosis of colorectal cancer. J. Cell. Mol. Med. 2022, 26, 3471–3482. [Google Scholar] [CrossRef]
- Weiss, A.-C.; Rivera-Reyes, R.; Englert, C.; Kispert, A. Expansion of the renal capsular stroma, ureteric bud branching defects and cryptorchidism in mice with Wilms tumor 1 gene deletion in the stromal compartment of the developing kidney. J. Pathol. 2020, 252, 290–303. [Google Scholar] [CrossRef]
- Davies, J. Pax2: A “Keep to the Path” Sign on Waddington’s Epigenetic Landscape. Dev. Cell 2017, 41, 331–332. [Google Scholar] [CrossRef]
- Li, W.; Hartwig, S.; Rosenblum, N.D. Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev. Dyn. 2014, 243, 853–863. [Google Scholar] [CrossRef]
- Hartman, H.A.; Lai, H.L.; Patterson, L.T. Cessation of renal morphogenesis in mice. Dev. Biol. 2007, 310, 379–387. [Google Scholar] [CrossRef]
- Loeb, D.M.; Evron, E.; Patel, C.B.; Sharma, P.M.; Niranjan, B.; Buluwela, L.; Weitzman, S.A.; Korz, D.; Sukumar, S. Wilms’ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res. 2001, 61, 921–925. [Google Scholar]
- Miyoshi, Y.; Ando, A.; Egawa, C.; Taguchi, T.; Tamaki, Y.; Tamaki, H.; Sugiyama, H.; Noguchi, S. High expression of Wilms’ tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin. Cancer Res. 2002, 8, 1167–1171. [Google Scholar]
- Oji, Y.; Miyoshi, S.; Maeda, H.; Hayashi, S.; Tamaki, H.; Nakatsuka, S.I.; Yao, M.; Takahashi, E.; Nakano, Y.; Hirabayashi, H.; et al. Overexpression of the Wilms’ tumor gene WT1 in de novo lung cancers. Int. J. Cancer 2002, 100, 297–303. [Google Scholar] [CrossRef]
- Oji, Y.; Inohara, H.; Nakazawa, M.; Nakano, Y.; Akahani, S.; Nakatsuka, S.-I.; Koga, S.; Ikeba, A.; Abeno, S.; Honjo, Y.; et al. Overexpression of the Wilms’ tumor gene WT1 in head and neck squamous cell carcinoma. Cancer Sci. 2003, 94, 523–529. [Google Scholar] [CrossRef]
- Li, X.; Ottosson, S.; Wang, S.; Jernberg, E.; Boldrup, L.; Gu, X.; Nylander, K.; Li, A. Wilms’ tumor gene 1 regulates p63 and promotes cell proliferation in squamous cell carcinoma of the head and neck. BMC Cancer 2015, 15, 342. [Google Scholar] [CrossRef] [PubMed]
Variables | Number of Cases | FOXD1 Expression | Kappa Value | p Value | |
---|---|---|---|---|---|
Low N (%) | High N (%) | ||||
Total | 334 | 135 | 199 | ||
Sex | 2.382 | 0.123 | |||
Male | 282 | 119 (88.1) | 163 (81.9) | ||
Female | 52 | 16 (11.9) | 36 (18.1) | ||
Age (year) | 0.560 | 0.454 | |||
≤55 | 128 | 55 (40.7) | 73 (36.7) | ||
>55 | 206 | 80 (59.3) | 126 (63.3) | ||
Histology grade | 0.763 | 0.683 | |||
Well | 130 | 54 (40.0) | 76 (38.2) | ||
Moderate | 124 | 52 (38.5) | 72 (36.2) | ||
Poor | 80 | 29 (21.5) | 51 (25.6) | ||
Subsite | 0.410 | 0.938 | |||
Oral cavity | 146 | 61 (45.2) | 85 (42.7) | ||
Oropharynx | 32 | 12 (8.9) | 20 (10.1) | ||
Hypopharynx | 80 | 33 (24.4) | 47 (23.6) | ||
Larynx | 76 | 29 (21.5) | 47 (23.6) | ||
Smoking status | 1.171 | 0.279 | |||
Non-smokers | 138 | 51 (37.8) | 87 (43.7) | ||
Ex-smokers | 196 | 84 (62.2) | 112 (56.3) | ||
Drinking status | 0.235 | 0.628 | |||
Non-drinkers | 235 | 93 (68.9) | 142 (71.4) | ||
Ex-drinkers | 99 | 42 (31.1) | 57 (28.6) | ||
T stage | 2.939 | 0.086 | |||
T1–T2 | 194 | 86 (63.7) | 108 (54.3) | ||
T3–T4 | 140 | 49 (36.3) | 91 (45.7) | ||
N stage | 1.596 | 0.207 | |||
N0 | 179 | 78 (57.8) | 101 (50.8) | ||
N+ | 155 | 57 (42.2) | 98 (49.2) | ||
AJCC stage | 2.775 | 0.096 | |||
I–II | 128 | 59 (43.7) | 69 (34.7) | ||
III–IV | 206 | 76 (56.3) | 130 (65.3) | ||
Treatment | 0.034 | 0.853 | |||
Surgery alone | 195 | 78 (57.8) | 117 (58.8) | ||
Surgery with adjuvant radiotherapy and/or chemotherapy | 139 | 57 (42.2) | 82 (41.2) | ||
Relapse/Metastases | 8.227 | 0.004 | |||
No | 255 | 114 (84.4) | 164 (71.9) | ||
Yes | 79 | 21 (15.6) | 64 (28.1) |
Variables | Univariate | Multivariate | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
OS | ||||
Sex | ||||
Male | 1 (ref) | 1 (ref) | ||
Female | 0.520 (0.310, 0.871) | 0.013 | 0.764 (0.431, 1.354) | 0.357 |
Age (year) | ||||
≤55 | 1 (ref) | |||
>55 | 1.225 (0.891, 1.685) | 0.212 | ||
Histology grade | ||||
Well | 1 (ref) | 1 (ref) | ||
Moderate | 1.323 (0.919, 1.903) | 0.132 | 0.940 (0.628, 1.407) | 0.764 |
Poor | 1.754 (1.193, 2.580) | 0.004 | 0.918 (0.578, 1.459) | 0.719 |
Subsites | ||||
Oral cavity | 1 (ref) | 1 (ref) | ||
Oropharynx | 1.157 (0.645, 2.076) | 0.624 | 1.334 (0.711, 2.505) | 0.369 |
Hypopharynx | 2.033 (1.045, 2.939) | 0.000 | 1.181 (0.756, 1.845) | 0.465 |
Larynx | 1.432 (0.954, 2.150) | 0.083 | 1.179 (0.738, 1.885) | 0.490 |
Smoking status | ||||
Non-smokers | 1 (ref) | |||
Ex-smokers | 1.262 (0.922, 1.728) | 0.146 | ||
Drinking status | ||||
Non-drinkers | 1 (ref) | |||
Ex-drinkers | 1.321 (0.958, 1.820) | 0.094 | ||
T stage | ||||
T1–T2 | 1 (ref) | 1 (ref) | ||
T3–T4 | 2.383 (1.752, 3.243) | 0.000 | 1.229 (0.829, 1.821) | 0.304 |
N stage | ||||
N0 | 1 (ref) | 1 (ref) | ||
N1 | 2.579 (1.884, 3.531) | <0.001 | 1.398 (0.883, 2.214) | 0.153 |
AJCC stage | ||||
I–II | 1 (ref) | 1 (ref) | ||
III–IV | 4.037 (2.728, 5.974) | <0.001 | 2.746 (1.518, 4.969) | 0.001 |
Treatment | ||||
Surgery alone | 1 (ref) | 1 (ref) | ||
Surgery with adjuvant radiotherapy and/or chemotherapy | 1.622 (1.197, 2.197) | 0.002 | 0.913 (0.639, 1.302) | 0.614 |
FOXD1 expression | ||||
Low expression | 1 (ref) | 1 (ref) | ||
High expression | 1.545 (1.119, 2.135) | 0.008 | 1.403 (1.016, 2.129) | 0.042 |
DFS | ||||
Sex | ||||
Male | 1 (ref) | 1 (ref) | ||
Female | 0.503 (0.300, 0.842) | 0.009 | 0.741 (0.359, 1.530) | 0.417 |
Age (year) | ||||
≤55 | 1 (ref) | |||
>55 | 0.705 (0.453, 1.097) | 0.124 | ||
Histology grade | ||||
Well | 1 (ref) | |||
Moderate | 0.774 (0.467, 1.281) | 0.319 | ||
Poor | 0.864 (0.485, 1.539) | 0.620 | ||
Subsite | ||||
Oral cavity | 1 (ref) | |||
Oropharynx | 0.587 (0.231, 1.491) | 0.263 | ||
Hypopharynx | 0.637 (0.340, 1.195) | 0.160 | ||
Larynx | 1.209 (0.716, 2.039) | 0.478 | ||
Smoking status | ||||
Non-smokers | 1 (ref) | |||
Ex-smokers | 0.970 (0.621, 1.514) | 0.893 | ||
Drinking status | ||||
Non-drinkers | 1 (ref) | |||
Ex-drinkers | 0.977 (0.597, 1.599) | 0.926 | ||
T stage | ||||
T1–T2 | 1 (ref) | |||
T3–T4 | 1.399 (0.897, 2.182) | 0.139 | ||
N stage | ||||
N0 | 1 (ref) | 1 (ref) | ||
N1 | 1.665 (1.068, 2.596) | 0.024 | 1.117 (0.599, 2.084) | 0.727 |
AJCC stage | ||||
I–II | 1 (ref) | 1 (ref) | ||
III–IV | 1.849 (1.142, 2.993) | 0.010 | 1.416 (0.736, 2.726) | 0.298 |
Treatment | ||||
Surgery alone | 1 (ref) | 1 (ref) | ||
Surgery with adjuvant radiotherapy and/or chemotherapy | 1.626 (1.045, 2.529) | 0.031 | 1.311 (0.789, 2.179) | 0.296 |
FOXD1 expression | ||||
Low expression | 1 (ref) | 1 (ref) | ||
High expression | 2.041 (1.238, 3.363) | 0.005 | 2.017 (1.222, 3.330) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Li, Y.; Li, R.; Chen, W.; Song, M.; Zhang, Q.; Chen, S. The Prognostic Significance of FOXD1 Expression in Head and Neck Squamous Cell Carcinoma. J. Pers. Med. 2023, 13, 530. https://doi.org/10.3390/jpm13030530
Jiang W, Li Y, Li R, Chen W, Song M, Zhang Q, Chen S. The Prognostic Significance of FOXD1 Expression in Head and Neck Squamous Cell Carcinoma. Journal of Personalized Medicine. 2023; 13(3):530. https://doi.org/10.3390/jpm13030530
Chicago/Turabian StyleJiang, Wenmei, Yudong Li, Ruiyu Li, Wenkuan Chen, Ming Song, Quan Zhang, and Shuwei Chen. 2023. "The Prognostic Significance of FOXD1 Expression in Head and Neck Squamous Cell Carcinoma" Journal of Personalized Medicine 13, no. 3: 530. https://doi.org/10.3390/jpm13030530