Functional Imaging in the Evaluation of Treatment Response in Multiple Myeloma: The Role of PET-CT and MRI
Abstract
:1. Introduction
2. PET/CT: Methods and Role in Response to Therapy in MM
2.1. New Tracers
2.2. PET/CT and MRD in MM
2.3. Clinical Studies
3. MRI: Methods and Role in Response to Therapy in MM
3.1. MRI and MRD in MM
3.2. Clinical Studies
4. Comparison of PET/CT and Functional MRI in Response Evaluation in MM
Comparison of PET/CT and Functional MRI for MRD in MM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hoffbrand, A.V.; Higgs, D.R.; Keeling, D.M.; Mehta, A.B. Postgraduated Hematology, 7th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; p. 537. [Google Scholar]
- Gozzetti, A.; Candi, V.; Papini, G.; Bocchia, M. Therapeutic advancements in multiple myeloma. Front. Oncol. 2014, 4, 241. [Google Scholar] [CrossRef] [PubMed]
- Sammartano, V.; Cerase, A.; Venanzi, V.; Mazzei, M.A.; Vangone, B.E.; Gentili, F.; Chiarotti, I.; Bocchia, M.; Gozzetti, A. Central Nervous System Myeloma and Unusual Extramedullary Localizations: Real Life Practical Guidance. Front. Oncol. 2022, 12, 934240. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Cerase, A.; Lotti, F.; Rossi, D.; Palumbo, A.; Petrucci, M.T.; Patriarca, F.; Nozzoli, C.; Cavo, M.; Offidani, M.; et al. GIMEMA (Gruppo Italiano Malattie Ematologiche dell’Adulto) Myeloma Working Party Extramedullary intracranial localizations of multiple myeloma and treatment with novel agents: A retrospective survey of 50 patients. Cancer 2012, 118, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Cerase, A. Novel agents in CNS myeloma treatment. Cent. Nerv. Syst. Agents Med. Chem. 2014, 14, 23–27. [Google Scholar] [CrossRef]
- Castillo, J.J.; Jurczyszyn, A.; Brozova, L.; Crusoe, E.; Czepiel, J.; Davila, J.; Dispenzieri, A.; Eveillard, M.; Fiala, M.A.; Ghobrial, I.M.; et al. IgM myeloma: A multicenter retrospective study of 134 patients. Am. J. Hematol. 2017, 92, 746–751. [Google Scholar] [CrossRef]
- Jurczyszyn, A.; Olszewska-Szopa, M.; Hungria, V.; Crusoe, E.; Pika, T.; Delforge, M.; Leleu, X.; Rasche, L.; Nooka, A.K.; Druzd-Sitek, A.; et al. Cutaneous involvement in multiple myeloma: A multi-institutional retrospective study of 53 patients. Leuk. Lymphoma 2016, 57, 2071–2076. [Google Scholar] [CrossRef]
- Jurczyszyn, A.; Radocha, J.; Davila, J.; Fiala, M.A.; Gozzetti, A.; Grząśko, N.; Robak, P.; Hus, I.; Waszczuk-Gajda, A.; Guzicka-Kazimierczak, R.; et al. Prognostic indicators in primary plasma cell leukaemia: A multicentre retrospective study of 117 patients. Br. J. Haematol. 2018, 180, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Avivi, I.; Cohen, Y.C.; Suska, A.; Shragai, T.; Mikala, G.; Garderet, L.; Seny, G.M.; Glickman, S.; Jayabalan, D.S.; Niesvizky, R.; et al. Hematogenous extramedullary relapse in multiple myeloma-a multicenter retrospective study in 127 patients. Am. J. Hematol. 2019, 94, 1132–1140. [Google Scholar] [CrossRef]
- Kosmala, A.; Bley, T.; Petritsch, B. Imaging of Multiple Myeloma. Rofo 2019, 191, 805–816. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020, 95, 548–567. [Google Scholar] [CrossRef]
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 2003, 78, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Gozzetti, A.; Guarnieri, A.; Zamagni, E.; Zakharova, E.; Coriu, D.; Bittrich, M.; Pika, T.; Tovar, N.; Schutz, N.; Ciofini, S.; et al. Monoclonal gammopathy of renal significance (MGRS): Real-world data on outcomes and prognostic factors. Am. J. Hematol 2022, 97, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Hillengass, J.; Moulopoulos, L.A.; Delorme, S.; Koutoulidis, V.; Mosebach, J.; Hielscher, T.; Drake, M.; Rajkumar, S.V.; Oestergaard, B.; Abildgaard, N.; et al. Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: A study of the International Myeloma Working Group. Blood Cancer J. 2017, 7, e599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinzani, P.L.; Zompatori, M.; Bendandi, M.; Battista, G.; Fanti, S.; Barbieri, E.; Gherlinzoni, F.; Rimondi, M.R.; Frezza, G.; Pisi, P.; et al. Monitoring bulky mediastinal disease with gallium-67, CT-scan and magnetic resonance imaging in Hodgkin’s disease and high-grade non-Hodgkin’s lymphoma. Leuk. Lymphoma 1996, 22, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Riva, E.; et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019, 20, e346. [Google Scholar] [CrossRef]
- Mesguich, C.; Hulin, C.; Latrabe, V.; Lascaux, A.; Bordenave, L.; Hindié, E. 18F-FDG PET/CT and MRI in the Management of Multiple Myeloma: A Comparative Review. Front. Nucl. Med. 2022, 1, 808627. [Google Scholar] [CrossRef]
- Baur, A.; Stäbler, A.; Nagel, D.; Lamerz, R.; Bartl, R.; Hiller, E.; Wendtner, C.; Bachner, F.; Reiser, M. Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer 2002, 95, 1334–1345. [Google Scholar] [CrossRef]
- Lecouvet, F.E.; Vekemans, M.C.; Van Den Berghe, T.; Verstraete, K.; Kirchgesner, T.; Acid, S.; Malghem, J.; Wuts, J.; Hillengass, J.; Vandecaveye, V.; et al. Imaging of treatment response and minimal residual disease in multiple myeloma: State of the art WB-MRI and PET/CT. Skeletal. Radiol. 2022, 51, 59–80. [Google Scholar] [CrossRef]
- Zamagni, E.; Nanni, C.; Gay, F.; Dozza, L.; Rota Scalabrini, D.; Omedé, P.; Ribolla, R.; Galli, M.; Racca, M.; Zambello, R.; et al. MRD Evaluation By PET/CT According to Deauville Criteria Combined with Multiparameter Flow Cytometry in Newly Diagnosed Transplant Eligible Multiple Myeloma (MM) Patients Enrolled in the Phase II Randomized Forte Trial. Blood 2019, 134, 4321. [Google Scholar] [CrossRef]
- Filho, A.G.O.; Carneiro, B.C.; Pastore, D.; Silva, I.P.; Yamashita, S.R.; Consolo, F.D.; Hungria, V.T.M.; Sandes, A.F.; Gil Rizzatti, E.; Nico, M.A.C. Whole-body imaging of multiple myeloma: Diagnostic criteria. Radiographics 2019, 39, 1077–1097. [Google Scholar] [CrossRef]
- Abe, Y.; Narita, K.; Kobayashi, H.; Kitadate, A.; Takeuchi, M.; O’uchi, T.; Matsue, K. Medullary Abnormalities in Appendicular Skeletons Detected With 18F-FDG PET/CT Predict an Unfavorable Prognosis in Newly Diagnosed Multiple Myeloma Patients with High-Risk Factors. Am. J. Roentgenol. 2019, 213, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Zamagni, E.; Patriarca, F.; Nanni, C.; Zannetti, B.; Englaro, E.; Pezzi, A.; Tacchetti, P.; Buttignol, S.; Perrone, G.; Brioli, A.; et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 2012, 120, 2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, J.; Huang, B.; Chen, M.; Diao, X.; Li, J. Application of PET/CT in treatment response evaluation and recurrence prediction in patients with newly-diagnosed multiple myeloma. Oncotarget 2017, 8, 25637–25649. [Google Scholar] [CrossRef] [Green Version]
- Zamagni, E.; Tacchetti, P.; Barbato, S.; Cavo, M. Role of Imaging in the Evaluation of Minimal Residual Disease in Multiple Myeloma Patients. J. Clin. Med. 2020, 9, 3519. [Google Scholar] [CrossRef] [PubMed]
- Nanni, C.; Zamagni, E.; Cavo, M.; Rubello, D.; Tacchetti, P.; Pettinato, C.; Farsad, M.; Castellucci, P.; Ambrosini, V.; Montini, G.C.; et al. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J. Surg. Oncol. 2007, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Cassou-Mounat, T.; Balogová, S.; Nataf, V.; Calzada, M.; Huchet, V.; Kerrou, K.; Devaux, J.-Y.; Mohty, M.; Talbot, J.-N.; Garderet, L. 18F-fluorocholine versus 18F-fluorodeoxyglucose for PET/CT imaging in patients with suspected relapsing or progressive multiple myeloma: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1995–2004. [Google Scholar] [CrossRef]
- Ho, C.L.; Chen, S.; Leung, Y.L.; Cheng, T.; Wong, K.N.; Cheung, S.K.; Liang, R.; Chim, C.S. 11C-acetate PET/CT for metabolic characterization of multiple myeloma: A comparative study with 18F-FDG PET/CT. J. Nucl. Med. 2014, 55, 749–752. [Google Scholar] [CrossRef] [Green Version]
- Ngai, C.; Kumar, S.; Chi-Lai Ho, G.; Chen, S.; Chim, C.S. Case series: MRD negativity assessment using 11C-Acetate PET with 3-weekly daratumumab-based quadruplet induction in newly diagnosed multiple myeloma. Ther. Adv. Hematol. 2021, 12, 20406207211030369. [Google Scholar] [CrossRef]
- Lapa, C.; Kircher, M.; da Via, M.C.; Schreder, M.; Rasche, L.; Kortüm, K.M.; Einsele, H.; Buck, A.K.; Hänscheid, H.; Samnick, S. Comparison of 11C-Choline and 11C-Methionine PET/CT in Multiple Myeloma. Clin. Nucl. Med. 2019, 44, 620–624. [Google Scholar] [CrossRef]
- Revheim, M.-E.; Stokke, C.; Nørgaard, J.N.; Phillips, H.F.; Sherwani, A.G.; Schjesvold, F.; Connelly, J.P. New Targets for PET Imaging of Myeloma. Hemato 2021, 2, 727–738. [Google Scholar] [CrossRef]
- Stokke, C.; Nørgaard, J.N.; Feiring Phillips, H.; Sherwani, A.; Nuruddin, S.; Connelly, J.; Schjesvold, F.; Revheim, M.E. Comparison of [18F]fluciclovine and [18F]FDG PET/CT in Newly Diagnosed Multiple Myeloma Patients. Mol. Imaging Biol. 2022, 24, 842–851. [Google Scholar] [CrossRef]
- Lückerath, K.; Lapa, C.; Spahmann, A.; Jörg, G.; Samnick, S.; Rosenwald, A.; Einsele, H.; Knop, S.; Buck, A.K. Targeting paraprotein biosynthesis for non-invasive characterization of myeloma biology. PLoS ONE 2013, 8, e84840. [Google Scholar] [CrossRef]
- Okasaki, M.; Kubota, K.; Minamimoto, R.; Miyata, Y.; Morooka, M.; Ito, K.; Ishiwata, K.; Toyohara, J.; Inoue, T.; Hirai, R.; et al. Comparison of (11)C-4′-thiothymidine, (11)C-methionine, and (18)F-FDG PET/CT for the detection of active lesions of multiple myeloma. Ann. Nucl. Med. 2015, 29, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Sachpekidis, C.; Goldschmidt, H.; Kopka, K.; Kopp-Schneider, A.; Dimitrakopoulou-Strauss, A. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: A first report on combined 18F-FDG and 18F-FLT PET/CT imaging. EJNMMI Res. 2018, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Oosting, S.F.; Brouwers, A.H.; van Es, S.C.; Nagengast, W.B.; Oude Munnink, T.H.; Lub-de Hooge, M.N.; Hollema, H.; de Jong, J.R.; de Jong, I.J.; de Haas, S.; et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J. Nucl. Med. 2015, 56, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Kuyumcu, S.; Isik, E.G.; Tiryaki, T.O.; Has-Simsek, D.; Sanli, Y.; Buyukkaya, F.; Özkan, Z.G.; Kalayoglu-Besisik, S.; Unal, S.N. Prognostic significance of 68Ga-Pentixafor PET/CT in multiple myeloma recurrence: A comparison to 18F-FDG PET/CT and laboratory results. Ann. Nucl. Med. 2021, 35, 1147–1156. [Google Scholar] [CrossRef]
- Moreau, P.; Zweegman, S.; Perrot, A.; Hulin, C.; Caillot, D.; Facon, T.; Leleu, X.; Belhadj, K.; Karlin, L.; Benboubker, L.; et al. Evaluation of the Prognostic Value of Positron Emission Tomography-Computed Tomography (PET-CT) at Diagnosis and Follow-up in Transplant-Eligible Newly Diagnosed Multiple Myeloma (TE NDMM) Patients Treated in the Phase 3 Cassiopeia Study: Results of the Cassiopet Companion Study. Blood 2019, 134, 692. [Google Scholar] [CrossRef]
- Gozzetti, A.; Raspadori, D.; Bacchiarri, F.; Sicuranza, A.; Pacelli, P.; Ferrigno, I.; Tocci, D.; Bocchia, M. Minimal Residual Disease in Multiple Myeloma: State of the Art and Applications in Clinical Practice. J. Pers. Med. 2020, 10, 120. [Google Scholar] [CrossRef]
- Alonso, R.; Cedena, M.T.; Gómez-Grande, A.; Ríos, R.; Moraleda, J.M.; Cabañas, V.; Moreno, M.J.; López-Jiménez, J.; Martín, F.; Sanz, A.; et al. Imaging and bone marrow assessments improve minimal residual disease prediction in multiple myeloma. Am. J. Hematol. 2019, 94, 853–861. [Google Scholar] [CrossRef]
- Bartel, T.B.; Haessler, J.; Brown, T.L.; Shaughnessy, J.D., Jr.; van Rhee, F.; Anaissie, E.; Alpe, T.; Angtuaco, E.; Walker, R.; Epstein, J.; et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 2009, 114, 2068–2076. [Google Scholar] [CrossRef]
- Nanni, C.; Zamagni, E.; Celli, M.; Caroli, P.; Ambrosini, V.; Tacchetti, P.; Brioli, A.; Zannetti, B.; Pezzi, A.; Pantani, L.; et al. The value of 18F-FDG PET/CT after autologous stem cell transplantation (ASCT) in patients affected by multiple myeloma (MM): Experience with 77 patients. Clin. Nucl. Med. 2013, 38, e74–e79. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Mitchell, A.; Waheed, S.; Crowley, J.; Hoering, A.; Petty, N.; Brown, T.; Bartel, T.; Anaissie, E.; van Rhee, F.; et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood 2013, 121, 1819–1823. [Google Scholar] [CrossRef] [Green Version]
- Zamagni, E.; Nanni, C.; Mancuso, K.; Tacchetti, P.; Pezzi, A.; Pantani, L.; Zannetti, B.; Rambaldi, I.; Brioli, A.; Rocchi, S.; et al. PET/CT improves the definition of complete response and allows to detect otherwise unidentifiable skeletal progression in multiple myeloma. Clin. Cancer Res. 2015, 21, 4384–4390. [Google Scholar] [CrossRef] [Green Version]
- Moreau, P.; Attal, M.; Caillot, D.; Macro, M.; Karlin, L.; Garderet, L.; Facon, T.; Benboubker, L.; Escoffre-Barbe, M.; Stoppa, A.M.; et al. Prospective Evaluation of Magnetic Resonance Imaging and [18F]Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography at Diagnosis and Before Maintenance Therapy in Symptomatic Patients With Multiple Myeloma Included in the IFM/DFCI 2009 Trial: Results of the IMAJEM Study. J. Clin. Oncol. 2017, 35, 2911–2918. [Google Scholar] [CrossRef]
- Zamagni, E.; Nanni, C.; Dozza, L.; Carlier, T.; Bailly, C.; Tacchetti, P.; Versari, A.; Chauvie, S.; Gallamini, A.; Attal, M. Standardization of 18F-FDG PET/CT according to Deauville criteria for metabolic complete response in newly diagnosed transplant eligible multiple myeloma (mm) patients: Joint analysis of two prospective randomized phase III trials. Blood 2018, 132, 257. [Google Scholar] [CrossRef] [Green Version]
- Zamagni, E.; Nanni, C.; Dozza, L.; Carlier, T.; Bailly, C.; Tacchetti, P.; Versari, A.; Chauvie, S.; Gallamini, A.; Gamberi, B.; et al. Standardization of 18F-FDG-PET/CT According to Deauville Criteria for Metabolic Complete Response Definition in Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2021, 39, 116–125. [Google Scholar] [CrossRef]
- Kaddoura, M.; Dingli, D.; Buadi, F.K.; Lacy, M.Q.; Gertz, M.A.; Dispenzieri, A.; Kapoor, P.; Hwa, L.; Fonder, A.; Hobbs, M.; et al. Prognostic impact of posttransplant FDG PET/CT scan in multiple myeloma. Blood Adv. 2021, 5, 2753–2759. [Google Scholar] [CrossRef]
- Charalampous, C.; Goel, U.; Broski, S.M.; Dingli, D.; Kapoor, P.; Gertz, M.A.; Lacy, M.Q.; Dispenzieri, A.; Hayman, S.R.; Buadi, F.; et al. Utility of PET/CT in assessing early treatment response in patients with newly diagnosed multiple myeloma. Blood Adv. 2022, 6, 2763–2772. [Google Scholar] [CrossRef]
- Torkian, P.; Mansoori, B.; Hillengass, J.; Azadbakht, J.; Rashedi, S.; Lee, S.S.; Amini, B.; Bonaffini, P.A.; Chalian, M. Diffusion-weighted imaging (DWI) in diagnosis, staging, and treatment response assessment of multiple myeloma: A systematic review and meta-analysis. Skeletal Radiol. 2022, 1–9. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 309–322. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Hillengass, J.; Usmani, S.; Zamagni, E.; Lentzsch, S.; Davies, F.E.; Raje, N.; Sezer, O.; Zweegman, S.; Shah, J.; et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: A consensus statement. J. Clin. Oncol. 2015, 33, 657–664. [Google Scholar] [CrossRef]
- Van Den Berghe, T.; Verstraete, K.L.; Lecouvet, F.E.; Lejoly, M.; Dutoit, J. Review of diffusion-weighted imaging and dynamic contrast-enhanced MRI for multiple myeloma and its precursors (monoclonal gammopathy of undetermined significance and smouldering myeloma). Skeletal Radiol. 2022, 51, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Morone, M.; Bali, M.A.; Tunariu, N.; Messiou, C.; Blackledge, M.; Grazioli, L.; Koh, D.-M. Whole-body MRI: Current applications in oncology. Am. J. Roentgenol. 2017, 209, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Vicentini, J.R.T.; Bredella, M.A. Whole body imaging in musculoskeletal oncology: When, why, and how. Skeletal Radiol. 2022. [Google Scholar] [CrossRef]
- Barwick, T.; Bretsztajn, L.; Wallitt, K.; Amiras, D.; Rockall, A.; Messiou, C. Imaging in myeloma with focus on advanced imaging techniques. Br. J. Radiol. 2019, 92, 20180768. [Google Scholar] [CrossRef]
- Verstraele, K.L.; Van Der Woude, H.J.; Hogendoorn, P.C.W.; De Deene, Y.; Kunnen, M.; Bloem, J.L. Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: Basic principles and clinical applications. J. Magn. Reson. Imaging 1996, 6, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Dutoit, J.C.; Claus, E.; Offner, F.; Noens, L.; Delanghe, J.; Verstraete, K.L. Combined evaluation of conventional MRI, dynamic contrast-enhanced MRI and diffusion weighted imaging for response evaluation of patients with multiple myeloma. Eur. J. Radiol. 2016, 85, 373–382. [Google Scholar] [CrossRef]
- Lang, N.; Su, M.-Y.; Yu, H.J.; Lin, M.; Hamamura, M.J.; Yuan, H. Differentiation of myeloma and metastatic cancer in the spine using dynamic contrast enhanced MRI. Bone 2014, 23, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Biffar, A.; Dietrich, O.; Sourbron, S.; Duerr, H.R.; Reiser, M.F.; Baur- Melnyk, A. Diffusion and perfusion imaging of bone marrow. Eur. J. Radiol. 2010, 76, 323–328. [Google Scholar] [CrossRef]
- Gariani, J.; Westerland, O.; Natas, S.; Verma, H.; Cook, G.; Goh, V. Comparison of whole body magnetic resonance imaging (WBMRI) to whole body computed tomography (WBCT) or 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) in patients with myeloma: Systematic review of diagnostic performance. Crit. Rev. Oncol. Hematol. 2018, 124, 66–72. [Google Scholar] [CrossRef]
- Le Bihan, D. Intravoxel incoherent motion imaging using steady- state free precession. Magn. Reson. Med. 1988, 7, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Petralia, G.; Padhani, A.R.; Pricolo, P.; Zugni, F.; Martinetti, M.; Summers, P.E.; Grazioli, L.; Colagrande, S.; Giovagnoni, A.; Bellomi, M.; et al. Whole-body magnetic resonance imaging (WB- MRI) in oncology: Recommendations and key uses. Radiol. Med. 2019, 124, 218–233. [Google Scholar] [CrossRef] [PubMed]
- Costachescu, D.; Ionita, I.; Borsi, E.C.; Potre, O.; Potre, C.; Navolan, D.B.; Blidisel, A.; Ionita, H.; Erimescu, A.; Pop, G.N.; et al. Whole-body diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient values as prognostic factors in multiple myeloma. Exp. Ther. Med. 2021, 22, 827. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Bian, B.; Zhang, Y.; Zhang, L.; Zhang, R.; Wang, J. The Apparent Diffusion Coefficient of Diffusion-Weighted Whole-Body Magnetic Resonance Imaging Affects the Survival of Multiple Myeloma Independently. Front. Oncol. 2022, 12, 780078. [Google Scholar] [CrossRef]
- Böckle, D.; Tabares, P.; Zhou, X.; Schimanski, S.; Steinhardt, M.J.; Bittrich, M.; Seebacher, E.; Ulbrich, M.; Wilnit, A.; Metz, C.; et al. Minimal residual disease and imaging-guided consolidation strategies in newly diagnosed and relapsed refractory multiple myeloma. Br. J. Haematol. 2022, 198, 515–522. [Google Scholar] [CrossRef]
- Messiou, C.; Hillengass, J.; Delorme, S.; Lecouvet, F.E.; Moulopoulos, L.A.; Collins, D.J.; Blackledge, M.D.; Abildgaard, N.; Østergaard, B.; Schlemmer, H.-P.; et al. Guidelines for Acquisition, Interpretation, and Reporting of Whole-Body MRI in Myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology 2019, 291, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Fenchel, M.; Konaktchieva, M.; Weisel, K.; Kraus, S.; Claussen, C.D.; Horger, M. Response assessment in patients with multiple myeloma during antiangiogenic therapy using arterial spin labeling and diffusion-weighted imaging: A feasibility study. Acad. Radiol. 2010, 17, 1326–1333. [Google Scholar] [CrossRef]
- Horger, M.; Weisel, K.; Horger, W.; Mroue, A.; Fenchel, M.; Lichy, M. Whole-body diffusion-weighted MRI with apparent diffusion coefficient mapping for early response monitoring in multiple myeloma: Preliminary results. Am. J. Roentgenol. 2011, 196, 790–795. [Google Scholar] [CrossRef]
- Messiou, C.; Giles, S.; Collins, D.J.; West, S.; Davies, F.E.; Morgan, G.J.; Desouza, N.M. Assessing response of myeloma bone disease with diffusion-weighted MRI. Br. J. Radiol. 2012, 85, 1198–1203. [Google Scholar] [CrossRef] [Green Version]
- Giles, S.L.; Messiou, C.; Collins, D.J.; Morgan, V.A.; Simpkin, C.J.; West, S.; Davies, F.E.; Morgan, G.J.; deSouza, N.M. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology 2014, 271, 785–794. [Google Scholar] [CrossRef]
- Bonaffini, P.A.; Ippolito, D.; Casiraghi, A.; Besostri, V.; Franzesi, C.T.; Sironi, S. Apparent diffusion coefficient maps integrated in whole-body MRI examination for the evaluation of tumor response to chemotherapy in patients with multiple myeloma. Acad. Radiol. 2015, 22, 1163–1171. [Google Scholar] [CrossRef]
- Latifoltojar, A.; Hall-Craggs, M.; Rabin, N.; Popat, R.; Bainbridge, A.; Dikaios, N.; Sokolska, M.; Rismani, A.; D’Sa, S.; Punwani, S.; et al. Whole body magnetic resonance imaging in newly diagnosed multiple myeloma: Early changes in lesional signal fat fraction predict disease response. Br. J. Haematol. 2017, 176, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.F.; Li, Y.C.; Xu, Y.; Wang, X.M.; Guo, L.; Fu, C.C. Role of whole-body diffusion weighted imaging (WB-DWI) in the diagnosis and monitoring of newly diagnosed multiple myeloma. Zhonghua Xue Ye Xue Za Zhi 2017, 38, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Latifoltojar, A.; Hall-Craggs, M.; Bainbridge, A.; Rabin, N.; Popat, R.; Rismani, A.; D’Sa, S.; Dikaios, N.; Sokolska, M.; Antonelli, M.; et al. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction. Eur. Radiol. 2017, 27, 5325–5336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacognata, C.; Crimì, F.; Guolo, A.; Varin, C.; De March, E.; Vio, S.; Ponzoni, A.; Barilà, G.; Lico, A.; Branca, A.; et al. Diffusion-weighted whole-body MRI for evaluation of early response in multiple myeloma. Clin. Radiol. 2017, 72, 850–857. [Google Scholar] [CrossRef]
- Wu, C.; Huang, J.; Xu, W.B.; Guan, Y.J.; Ling, H.W.; Mi, J.Q.; Yan, H. Discriminating Depth of Response to Therapy in Multiple Myeloma Using Whole-body Diffusion-weighted MRI with Apparent Diffusion Coefficient: Preliminary Results from a Single-center Study. Acad Radiol. 2018, 25, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Park, H.Y.; Kim, K.W.; Yoon, M.A.; Lee, M.H.; Chae, E.J.; Lee, J.H.; Chung, H.W.; Yoon, D.H. Role of whole-body MRI for treatment response assessment in multiple myeloma: Comparison between clinical response and imaging response. Cancer Imaging 2020, 20, 14. [Google Scholar] [CrossRef] [Green Version]
- Takasu, M.; Kondo, S.; Akiyama, Y.; Takahashi, Y.; Maeda, S.; Baba, Y.; Kawase, T.; Ichinohe, T.; Awai, K. Assessment of early treatment response on MRI in multiple myeloma: Comparative study of whole-body diffusion-weighted and lumbar spinal MRI. PLoS ONE 2020, 15, e0229607. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, K.; Tsuchiya, J.; Tateishi, U. Comparison of [18F]FDG PET/CT and MRI for Treatment Response Assessment in Multiple Myeloma: A Meta-Analysis. Diagnostics 2021, 11, 706. [Google Scholar] [CrossRef]
- Basha, M.A.A.; Hamed, M.A.G.; Refaat, R.; AlAzzazy, M.Z.; Bessar, M.A.; Mohamed, E.M.; Ahmed, A.F.; Tantawy, H.F.; Altaher, K.M.; Obaya, A.A.; et al. Diagnostic performance of 18F-FDG PET/CT and whole-body MRI before and early after treatment of multiple myeloma: A prospective comparative study. Jpn. J Radiol. 2018, 36, 382–393. [Google Scholar] [CrossRef]
- Mesguich, C.; Latrabe, V.; Hulin, C.; Lascaux, A.; Bordenave, L.; Hindié, E.; Marit, G. Prospective Comparison of 18-FDG PET/CT and Whole-Body MRI with Diffusion-Weighted Imaging in the Evaluation of Treatment Response of Multiple Myeloma Patients Eligible for Autologous Stem Cell Transplant. Cancers 2021, 13, 1938. [Google Scholar] [CrossRef] [PubMed]
- Spinnato, P.; Bazzocchi, A.; Brioli, A.; Nanni, C.; Zamagni, E.; Albisinni, U.; Cavo, M.; Fanti, S.; Battista, G.; Salizzoni, E. Contrast enhanced MRI and ¹⁸F-FDG PET-CT in the assessment of multiple myeloma: A comparison of results in different phases of the disease. Eur. J. Radiol. 2012, 81, 4013–4018. [Google Scholar] [CrossRef] [PubMed]
- Rama, S.; Suh, C.H.; Kim, K.W.; Durieux, J.C.; Ramaiya, N.H.; Tirumani, S.H. Comparative Performance of Whole-Body MRI and FDG PET/CT in Evaluation of Multiple Myeloma Treatment Response: Systematic Review and Meta-Analysis. Am. J. Roentgenol. 2022, 218, 602–613. [Google Scholar] [CrossRef]
- Moreau, P.; Zamagni, E. MRD in multiple myeloma: More questions than answers? Blood Cancer J. 2017, 7, 639. [Google Scholar] [CrossRef] [Green Version]
- Rasche, L.; Alapat, D.; Kumar, M.; Gershner, G.; McDonald, J.; Wardell, C.P.; Samant, R.; Van Hemert, R.; Epstein, J.; Williams, A.F.; et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia 2019, 33, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Angtuaco, E.; McDonald, J.E.; Buros, A.; Stein, C.; Pawlyn, C.; Thanendrarajan, S.; Schinke, C.; Samant, R.; Yaccoby, S.; et al. Low expression of hexokinase-2 is associated with false-negative FDG-positron emission tomography in multiple myeloma. Blood 2017, 130, 30–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Q.; Cao, X.; Luo, Y.; Li, J.; Feng, J.; Li, F. Chemokine receptor-4 targeted PET/CT with 68Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: Comparison to 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 537–546. [Google Scholar] [CrossRef]
- Ulaner, G.A.; Sobol, N.B.; O’Donoghue, J.A.; Kirov, A.S.; Riedl, C.C.; Min, R.; Smith, E.; Carter, L.M.; Lyashchenko, S.K.; Lewis, J.S.; et al. CD38-targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-in-Human Imaging. Radiology 2020, 295, 606–615. [Google Scholar] [CrossRef]
- Messiou, C.; Porta, N.; Sharma, B.; Levine, D.; Koh, D.M.; Boyd, K.; Pawlyn, C.; Riddell, A.; Downey, K.; Croft, J.; et al. Prospective Evaluation of Whole-Body MRI versus FDG PET/CT for Lesion Detection in Participants with Myeloma. Radiol Imaging Cancer 2021, 3, e210048. [Google Scholar] [CrossRef]
Study, Year, Journal | Type | Patients | Aim | Results |
---|---|---|---|---|
Bartel et al., 2009, Blood [41] | Prospective | 239 | To examine the prognostic implications of 18F-FDG-PET/CT 1 and MRI 2 in patients (pts) with NDMM 3 | 30 months OS 4: 92% if complete suppression in FL 5 and EMD 6 after CTx 7 71% if not complete suppression after CTx (p 0.0002) 30 months PFS 8: 89% if complete suppression after CTx 63% if not complete suppression after CTx (p 0.0003) |
Zamagni et al., 2011, Blood [23] | Prospective | 192 | To determine prognostic implications of 18F-FDG-PET/CT at diagnosis and in the evaluation of treatment response | 4 years PFS: PET−: 47% PET+: 32% (p 0.02) 4 years OS: PET−: 79% PET+: 66% (p 0.02) |
Nanni et al., 2013, Clinical Nuclear Medicine [42] | Prospective | 107 | To analyze the prognostic value of 18F-FDG-PET/CT after therapy in patients with MM 9 | TTR 10 in relapsed pts (44%): PET− after ASCT 11: 27.6 mo. PET+ after ASCT: 18 mo. (p 0.05) |
Usmani et al., 2013, Blood [43] | Prospective | 302 | To investigate the survival implications of the day 7 PET scanning of patients treated with total therapy 3A clinical trial and Total Therapy 3B protocol | 3 years PFS: 0 PET-FL: 84% 1–3 PET-FL: 78% >3 PET-FL: 56% (p 0.0003) 3 years OS: 0 PET-FL: 87% 1–3 PET-FL: 82% >3 PET-FL: 63% (p < 0.0001) |
Zamagni et al., 2015, Clinical Cancer Research [44] | Retrospective | 282 | To evaluate the role of 18F-FDG-PET/CT in a cohort of symptomatic MM patients treated up-front | PFS: PET−: 52 months PET+: 38 months (p 0.0319) 5 years OS: PET−: 90% PET+: 71% (p 0.0014) |
Moreau et al., 2017, Journal of Clinical Oncology [45] | Prospective | 134 | To assess the prognostic impact of MRI and PET/CT regarding PFS and OS | 30 months PFS: PET−: 78.7% PET+: 56.8% (p 0.08) 2 years OS: PET−: 94.2% PET+: 72.9% (p < 0.001) |
Zamagni et al., 2018, Blood [46] | Prospective | 236 | To standardize PET/CT evaluation by centralized imaging and revision, to define criteria for PET negativity after therapy (MRD 12 definition), evaluating 18F-FDG-PET/CT at diagnosis and prior to maintenance therapy in a sub-group of patients with NDMM | PFS: FL < 3: 40 months FL > 3: 26 months (p 0.0019) BMS 13 < 3: 39.8 months BMS > 3: 26.6 months (p 0.024) 63 months OS: FLs < 3: 73% FLs > 3: 63.6% (p 0.028) BMS < 3: 75.5% BMS < 3: 49.7% (p 0.002) |
Zamagni et al., 2021, Journal of Clinical Oncology [47] | Retrospective | 228 | To standardize 18F-FDG-PET/CT according to Deauville criteria | PFS: FS < 4: 40 months FS > 4: 26.6 months (p 0.0307) BMS < 4: 44.9 months BMS > 4: 26.6 months (p 0.028) 60 months OS: FS < 4: 77.7% FS > 4: 64.1% (p 0.0276) BMS < 4: 76.7% BMS > 4: 52.1% (p 0.029) |
Kaddoura et al., 2021, Blood Advances [48] | Retrospective | 229 | To determine prognostic impact of post-transplant, day 100 PET/CT scan | TTP 14: PET−: 24 months PET+: 12.4 months (p < 0.0001) OS: PET−: 100 months PET+: 47.2 months (p < 0.0001) |
Charalampos et al., 2022, Blood [49] | Retrospective | 195 | Prognostic significance of PET/CT at 6 months following induction therapy | TTNT 15: CR 16, PET−: 58.9 mo. CR, PET+: 39.2 mo. (p 0.27) >VGPR 17, PET−: 46.9 mo. >VGPR; PET+: 26.9 mo. (p 0.02) <VGPR, PET−: 55.2 mo. <VGPR, PET+: 50.4 mo. (p 0.0058) OS: CR, PET−: unreached CR, PET+: 72 mo. (p 0.01) >VGPR, PET−: unreached >VGPR; PET+: unreached (p 0.00051) <VGPR, PET−: 112.7 mo. <VGPR, PET+: 9.5 mo. (p 0.032) |
Study, Year, Journal | Type | Patients | Aim | Results |
---|---|---|---|---|
Fenchel et al., 2010, Acad Radiol. [68] | prospective | 10 | To determine response to therapy using non-contrast perfusion MRI 1 and DWI WB-MRI 2 | Mean diffusion increased after therapy Baseline 0.68 ± 0.19 × 103 s/mm2 After treatment 0.96 ± 0.40 × 103 s/mm2 |
Horger et al., 2011, Am J Roentgenol. [69] | prospective | 12 | To assess the feasibility of DWI WB-MRI for the evaluation of response to treatment in MM 3 | ADC 4 value changes after treatment Responders 63.92% Non-responders 7.82% |
Messiou et al., 2012, Br J Radiol [70] | prospective | 20 | To determine the response to treatment in MM patients | ADC value Active disease 0.76 ± 0.25 × 103 s/mm2 After treatment 0.60 ± 0.46 × 103 s/mm2 |
Giles et al., 2014, Radiology [71] | prospective | 26 | To determine the feasibility of DWI-MRI for assessment of treatment response in MM | ADC value changes after treatment Responders 19.80% Non-responders 3.20% |
Bonaffini et al., 2015, Acad Radiol [72] | prospective | 14 | To determine the value of DWI-MRI in the assessment of response to chemotherapy in patients with MM | ADC value changes after treatment Responders 66% Non-responders 15% |
Latifoltojar et al., 2017, BJHaem [73] | prospective | 25 | To explore and compare FLs 5 measures and DWI WB-MRI before and after chemotherapy in NDMM 6 | ADC value changes after treatment Baseline 0.75 × 103 s/mm2 After treatment 1.34 × 103 s/mm2 |
Dutoit et al., 2016, Eur J Radiol. [58] | prospective | 68 | To evaluate the value of DCE-MRI 7 and DWI in MM patients after treatment | Agreement between IMWG 8 and MRI response criteria Kendall’s coefficient = 0.761 |
Wang et al., 2017, CJH [74] | prospective | 8 | To explore the practical value of WB-DWI in the diagnosis and monitoring of NDMM patients | ADC value changes after treatment Baseline 0.984 × 103 s/mm2 After treatment 1.142 × 103 s/mm2 |
Latifoltojar, 2017, Eur Radiol. [75] | prospective | 21 | To evaluate association between DWI WB-MRI and treatment response in MM | ADC value changes after treatment Baseline 0.804 × 103 s/mm2 After treatment 1.180 × 103 s/mm2 |
Lacognata et al., 2017, Clin Radiol [76] | prospective | 18 | To evaluate the modification of DWI WB-MRI after induction chemotherapy in MM patients and to correlate with patients response to therapy | ADC value changes after treatment Responders 32% Non-responders 6% |
Wu et al., 2018, Acad Radiol. [77] | prospective | 17 | To assess the diagnostic accuracy of WB-DWI MRI in evaluation of response to induction chemotherapy in MM | ADC value changes after treatment Responders 36.79% Non-responders 11.50% |
Park et al., 2020, Cancer Imaging [78] | retrospective | 75 | To evaluate the role of WB-DWI in the response assessment | Agreement between clinical and imaging response K = 0.69 for MDA-DWI 9 criteria |
Takasu et al., 2020, PLoS One [79] | prospective | 50 | To compare remission status at the end of chemotherapy using WB-DWI in MM To assess the predictive value of MRI | ADC value changes after treatment Responders 25.50% Non-responders 1.46% |
Costachescu et al., 2021, Exp Ther Med. [64] | retrospective | 32 | To evaluate DWI-WB MRI as possible prognostic factor in patients with MM | ADC values are inversely correlated with OS 10 r −0.641, p < 0.001 |
Modality | Advantages | Limitations |
---|---|---|
PET/CT | Concurrent morphologic and functional assessment | False negative in low hexokinase expression MM |
Quantification of disease metabolic activity | False positive in inflammatory setting | |
Post-therapeutic prognostic significance | Expensive | |
Lack of standardization | ||
Functional MRI | Gold standard for diffuse BM infiltration | False positive for persistence of not active lesions |
Apparent highest sensitivity in lesions detection | Lack of standardization Need for integration with other MRI sequences |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoni, A.; Simoncelli, M.; Franceschini, M.; Ciofini, S.; Fredducci, S.; Caroni, F.; Sammartano, V.; Bocchia, M.; Gozzetti, A. Functional Imaging in the Evaluation of Treatment Response in Multiple Myeloma: The Role of PET-CT and MRI. J. Pers. Med. 2022, 12, 1885. https://doi.org/10.3390/jpm12111885
Santoni A, Simoncelli M, Franceschini M, Ciofini S, Fredducci S, Caroni F, Sammartano V, Bocchia M, Gozzetti A. Functional Imaging in the Evaluation of Treatment Response in Multiple Myeloma: The Role of PET-CT and MRI. Journal of Personalized Medicine. 2022; 12(11):1885. https://doi.org/10.3390/jpm12111885
Chicago/Turabian StyleSantoni, Adele, Martina Simoncelli, Marta Franceschini, Sara Ciofini, Sara Fredducci, Federico Caroni, Vincenzo Sammartano, Monica Bocchia, and Alessandro Gozzetti. 2022. "Functional Imaging in the Evaluation of Treatment Response in Multiple Myeloma: The Role of PET-CT and MRI" Journal of Personalized Medicine 12, no. 11: 1885. https://doi.org/10.3390/jpm12111885
APA StyleSantoni, A., Simoncelli, M., Franceschini, M., Ciofini, S., Fredducci, S., Caroni, F., Sammartano, V., Bocchia, M., & Gozzetti, A. (2022). Functional Imaging in the Evaluation of Treatment Response in Multiple Myeloma: The Role of PET-CT and MRI. Journal of Personalized Medicine, 12(11), 1885. https://doi.org/10.3390/jpm12111885