A Personalized 3D-Printed Model for Obtaining Informed Consent Process for Thyroid Surgery: A Randomized Clinical Study Using a Deep Learning Approach with Mesh-Type 3D Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. The DNN for Thyroid Segmentation
2.3. Development of an Application Incorporating the DNN for 3D Thyroid Reconstruction
2.4. Thyroid 3D model Printing
2.5. Prospective Study on Informed Consent
2.6. Prospective Study on Informed Consent
3. Results
3.1. Thyroid Gland Segmentation Using the Deep Learning Technique
3.2. The Results of the First Questionnaire
3.3. The Results of the Second Questionnaire
4. Discussion
4.1. Fabrication of Personalized Thyroid 3D-Printed Models
4.2. The Usefulness of Personalized 3D-Printed Thyroid Models
4.3. Limitations
5. Conclusions
6. Patent
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazur, D.J. Consent and Informed Consent: Their Ongoing Evolutions in Clinical Care and Research on Humans. Sociol. Compass 2008, 2, 253–267. [Google Scholar] [CrossRef]
- Chan, Y.; Irish, J.C.; Wood, S.J.; Rotstein, L.E.; Brown, D.H.; Gullane, P.J.; Lockwood, G.A. Patient education and informed consent in head and neck surgery. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 1269–1274. [Google Scholar] [CrossRef]
- Lavelle-Jones, C.; Byrne, D.J.; Rice, P.; Cuschieri, A. Factors affecting quality of informed consent. Br. Med. J. 1993, 306, 885–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutson, M.M.; Blaha, J.D. Patients’ recall of preoperative instruction for informed consent for an operation. J. Bone Jt. Surg. Ser. A 1991, 73, 160–162. [Google Scholar] [CrossRef]
- Hekkenberg, R.J.; Irish, J.C.; Rotstein, L.E.; Brown, D.H.; Gullane, P.J. Informed consent in head and neck surgery: How much do patients actually remember? J. Otolaryngol. 1997, 26, 155–159. [Google Scholar] [PubMed]
- Tait, A.R.; Voepel-Lewis, T. Digital multimedia: A new approach for informed consent? JAMA J. Am. Med. Assoc. 2015, 313, 463–464. [Google Scholar] [CrossRef] [PubMed]
- Gabay, G.; Bokek-Cohen, Y. Infringement of the right to surgical informed consent: Negligent disclosure and its impact on patient trust in surgeons at public general hospitals—The voice of the patient. BMC Med. Ethics 2019, 20, 77. [Google Scholar] [CrossRef]
- Nehme, J.; El-Khani, U.; Chow, A.; Hakky, S.; Ahmed, A.R.; Purkayastha, S. The use of multimedia consent programs for surgical procedures: A systematic review. Surg. Innov. 2013, 20, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Alsaffar, H.; Wilson, L.; Kamdar, D.P.; Sultanov, F.; Enepekides, D.; Higgins, K.M. Informed consent: Do information pamphlets improve post-operative riskrecall in patients undergoing total thyroidectomy: Prospective randomized control study. J. Otolaryngol. Head Neck Surg. 2016, 45, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tack, P.; Victor, J.; Gemmel, P.; Annemans, L. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online 2016, 15, 115. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, J.C.; Isotani, S.; Matsugasumi, T.; Duddalwar, V.; Hung, A.J.; Suer, E.; Baco, E.; Satkunasivam, R.; Djaladat, H.; Metcalfe, C.; et al. Personalized 3D printed model of kidney and tumor anatomy: A useful tool for patient education. World J. Urol. 2016, 34, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Park, S.; Kang, C.H.; Park, I.K.; Goo, J.M.; Kim, Y.T. Personalized 3D-Printed Model for Informed Consent for Stage I Lung Cancer: A Randomized Pilot Trial. Semin. Thorac. Cardiovasc. Surg. 2019, 31, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Hong, D.; Lee, S.; Kim, T.; Baek, J.H.; Kim, W.W.; Chung, K.W.; Kim, N.; Sung, T.Y. Usefulness of a 3D-Printed Thyroid Cancer Phantom for Clinician to Patient Communication. World J. Surg. 2020, 44, 788–794. [Google Scholar] [CrossRef]
- Seok, J.; Yoon, S.; Ryu, C.H.; Ryu, J.; Kim, S.-K.; Jung, Y.-S. Mesh-type three-dimensional (3D) printing of human organs and tumors: Fast, cost-effective, and personalized anatomic modeling of patient-oriented visual aids. Appl. Sci. 2021, 11, 1047. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Conference Name: Medical Image Computing and Computer-Assisted Intervention (MICCAI), 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, E.K.; Wayne, D.B.; Barsness, K.A.; McGaghie, W.C.; Barsuk, J.H. Use of 3D Printing for Medical Education Models in Transplantation Medicine: A Critical Review. Curr. Transplant. Rep. 2016, 3, 109–119. [Google Scholar] [CrossRef]
- Kurenov, S.N.; Ionita, C.; Sammons, D.; Demmy, T.L. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J. Thorac. Cardiovasc. Surg. 2015, 149, 973–979.e1. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.H.L.; Siewerdsen, J.H.; Vescan, A.; Daly, M.J.; Prisman, E.; Irish, J.C. 3D rapid prototyping for otolaryngology-head and neck surgery: Applications in image-guidance, surgical simulation and patient-specific modeling. PLoS ONE 2015, 10, e0136370. [Google Scholar] [CrossRef] [Green Version]
- Craft, D.F.; Howell, R.M. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. J. Appl. Clin. Med. Phys. 2017, 18, 285–292. [Google Scholar] [CrossRef]
- Hong, D.; Lee, S.; Kim, T.; Baek, J.H.; Lee, Y.M.; Chung, K.W.; Sung, T.Y.; Kim, N. Development of a personalized and realistic educational thyroid cancer phantom based on CT images: An evaluation of accuracy between three different 3D printers. Comput. Biol. Med. 2019, 113, 103393. [Google Scholar] [CrossRef] [PubMed]
- Hazelaar, C.; Van Eijnatten, M.; Dahele, M.; Wolff, J.; Forouzanfar, T.; Slotman, B.; Verbakel, W.F.A.R. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes. Med. Phys. 2018, 45, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Osti, F.; Santi, G.M.; Neri, M.; Liverani, A.; Frizziero, L.; Stilli, S.; Maredi, E.; Zarantonello, P.; Gallone, G.; Stallone, S.; et al. CT conversion workflow for intraoperative usage of bony models: From DICOM data to 3D printed models. Appl. Sci. 2019, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Bizzotto, N.; Tami, I.; Santucci, A.; Romani, D.; Cosentino, A. 3D Printed replica of articular fractures for surgical planning and patient consent: A 3 years multi-centric experience. Mater. Today Commun. 2018, 15, 309–313. [Google Scholar] [CrossRef]
- Masumoto, J.; Hori, M.; Sato, Y.; Murakami, T.; Johkoh, T.; Nakamura, H.; Tamura, S. Automated liver segmentation using multislice CT images. Syst. Comput. Jpn. 2003, 34, 71–82. [Google Scholar] [CrossRef]
- Shiftman, S.; Rubin, G.D.; Napel, S. Medical image segmentation using analysis of isolable-contour maps. IEEE Trans. Med. Imaging 2000, 19, 1064–1074. [Google Scholar] [CrossRef]
- Zhuang, Y.D.; Zhou, M.C.; Liu, S.C.; Wu, J.F.; Wang, R.; Chen, C.M. Effectiveness of personalized 3D printed models for patient education in degenerative lumbar disease. Patient Educ. Couns. 2019, 102, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, Y.; Yang, X.; Tang, P.; Qiu, Q.; Liang, Y.; Jiang, J. Thin slice three dimentional (3D) reconstruction versus CT 3D reconstruction of human breast cancer. Indian J. Med. Res. 2013, 137, 57–62. [Google Scholar] [PubMed]
- Kim, J.S.; Kim, J.H.; Cho, G.; Bae, K.T. Automated detection of pulmonary nodules on CT images: Effect of section thickness and reconstruction interval—Initial results. Radiology 2005, 236, 295–299. [Google Scholar] [CrossRef] [PubMed]
Questions 1 |
---|
General Knowledge |
|
Benefits |
|
Risks |
|
Satisfaction |
|
Question 1 |
---|
|
- If the highest degree of improvement was more than two, which of the items do you think is the most helpful? (Items 1–4) |
With 3D Model (n = 28) | With Conventional Tools (n = 25) | p | ||
---|---|---|---|---|
Age | 49.2 ± 11.3 | 42.4 ± 15.8 | 0.083 * | |
Sex | Female | 24 (85.7%) | 18 (72.0%) | 0.313 † |
Male | 4 (14.3%) | 7 (28.0%) | ||
Pathologic diagnosis | Malignant § | 25 (89.3%) | 25 (100.0%) | 0.238 † |
Benign | 3 (10.7%) | 0 (0.0%) | ||
pT classification ‡ | 1 | 21 (84.0%) | 19 (76.0%) | 0.615 † |
2 | 0 (0.0%) | 2 (8.0%) | ||
3 | 4 (16.0%) | 4 (16.0%) | ||
4 | 0 (0.0%) | 0 (0.0%) | ||
pN classification ‡ | 0 | 13 (52.0%) | 15 (60.0%) | 0.639 † |
1a | 6 (24.0%) | 7 (28.0%) | ||
1b | 6 (24.0%) | 3 (12.0%) | ||
Operation | Lobectomy | 18 (64.3%) | 13 (52.0%) | 0.413 † |
Total thyroidectomy | 10 (35.7%) | 12 (48.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seok, J.; Yoon, S.; Ryu, C.H.; Kim, S.-k.; Ryu, J.; Jung, Y.-S. A Personalized 3D-Printed Model for Obtaining Informed Consent Process for Thyroid Surgery: A Randomized Clinical Study Using a Deep Learning Approach with Mesh-Type 3D Modeling. J. Pers. Med. 2021, 11, 574. https://doi.org/10.3390/jpm11060574
Seok J, Yoon S, Ryu CH, Kim S-k, Ryu J, Jung Y-S. A Personalized 3D-Printed Model for Obtaining Informed Consent Process for Thyroid Surgery: A Randomized Clinical Study Using a Deep Learning Approach with Mesh-Type 3D Modeling. Journal of Personalized Medicine. 2021; 11(6):574. https://doi.org/10.3390/jpm11060574
Chicago/Turabian StyleSeok, Jungirl, Sungmin Yoon, Chang Hwan Ryu, Seok-ki Kim, Junsun Ryu, and Yuh-Seog Jung. 2021. "A Personalized 3D-Printed Model for Obtaining Informed Consent Process for Thyroid Surgery: A Randomized Clinical Study Using a Deep Learning Approach with Mesh-Type 3D Modeling" Journal of Personalized Medicine 11, no. 6: 574. https://doi.org/10.3390/jpm11060574
APA StyleSeok, J., Yoon, S., Ryu, C. H., Kim, S.-k., Ryu, J., & Jung, Y.-S. (2021). A Personalized 3D-Printed Model for Obtaining Informed Consent Process for Thyroid Surgery: A Randomized Clinical Study Using a Deep Learning Approach with Mesh-Type 3D Modeling. Journal of Personalized Medicine, 11(6), 574. https://doi.org/10.3390/jpm11060574